A System of Nomenclature for Rocks in Olkiluoto

Total Page:16

File Type:pdf, Size:1020Kb

A System of Nomenclature for Rocks in Olkiluoto Working Report 2006-32 A System of Nomenclature for Rocks in Olkiluoto Jussi Mattila June 2006 POSIVA OY FI-27160 OLKILUOTO, FINLAND Tel +358-2-8372 31 Fax +358-2-8372 3709 Working Report 2006-32 A System of Nomenclature for Rocks in Olkiluoto Jussi Mattila Posiva Oy June 2006 Working Reports contain information on work in progress or pending completion. A SYSTEM OF NOMENCLATURE FOR ROCKS IN OLKILUOTO ABSTRACT Due to international interest in the Finnish deep repository project at Olkiluoto (SW Finland) and the need for collaboration between scientists involved in site investigations for the disposal of spent nuclear fuel in other countries, a well-documented system of rock nomenclature is required, based on existing classification schemes and international recommendations. The BGS (British Geological Survey) rock classification scheme is the most comprehensive rock classification scheme and the basic principles behind it are utilised for the system of nomenclature for rocks in Olkiluoto. The BGS classification system is based on the use of descriptive names and a clear hierarchy, making it possible to classify rocks at different levels depending on the specific goals of the study, the level of available information, and the expertise of the user. Each rock type is assigned a root name, which is based on structural and textural characteristics or modal compositions of the rock and the root names are refined with qualifier terms as prefixes. Qualifier terms refer to the structure or modal composition of the rock. The bedrock at the Olkiluoto site consists of metamorphic and igneous rocks. The metamorphic rocks consist of migmatitic gneisses and (non-migmatitic) gneisses, which are further divided according to their structural characteristics and modal compositions, the former into stromatic, veined, diatexitic gneisses, the latter into mica, quartz, mafic and TGG gneisses. Igneous rocks consist of pegmatitic granites, K-feldspar porphyry and diabases. Keywords: Rock classification, rock nomenclature, metamorphic rocks, igneous rocks, Olkiluoto, Finland, disposal of spent nuclear fuel OLKILUODON KIVIEN NIMEÄMISKÄYTÄNTÖ TIIVISTELMÄ Ydinjätteiden loppusijoitukseen liittyvän kansainvälisen kiinnostuksen ja yhteistyön vuoksi on kivien luokittelussa ja nimeämisessä tarpeellista noudattaa olemassa olevia luokitussysteemejä sekä kansainvälisiä suosituksia. Britannian geologian tutkimuskeskuksen (BGS) kivien luokittelusysteemi on ainoa olemassa oleva perusteellinen kivien luokittelusysteemi ja sen perusperiaatteita on myös käytetty Olkiluodon kivien nimeämisessä. BGS:n luokittelusysteemi perustuu kuvailevien termien sekä hierarkian käyttöön, joka mahdollistaa kivien luokittelun eri tasoilla riippuen tehtävän tutkimuksen tarkoituksesta, käytettävissä olevan tiedon määrästä sekä käyttäjän asiantuntemuksesta. Luokittelusysteemissä jokaiselle kivilajille määritellään perusnimi, joka pohjautuu kiven rakenteeseen, tekstuuriin tai modaaliseen koostumukseen ja lisäksi perusnimeä voidaan täydentää ylimääräisillä määritteillä, jotka perustuvat kiven rakenteeseen, tekstuuriin tai mineralogiaan. Olkiluodon metamorfiset kivet koostuvat migmatiittisista sekä (ei-migmatiittisista) gneisseistä, jotka voidaan edelleen jakaa alaluokkiin kiven rakenteen ja mineralogian perusteella. Alaluokkia ovat stromaattiset, suoni-, diateksiittiset, kiille-, kvartsi-, mafiset ja TGG-gneissit. Syväkivet muodostuvat puolestaan pegmatiittisistä graniiteista, K- maasälpäporfyyreistä sekä diabaaseista. Asiasanat: Kivien luokitus, kivien nimeäminen, metamorfiset kivet, syväkivet, Olkiluoto, Suomi, ydinjätteiden loppusijoitus 1 TABLE OF CONTENTS ABSTRACT TIIVISTELMÄ 1 INTRODUCTION .................................................................................................... 2 2 BACKGROUND FOR THE NOMENCLATURE ...................................................... 3 3 NOMENCLATURE FOR ROCKS IN OLKILUOTO ................................................. 4 3.1 BASIC CONCEPTS AND SUBDIVISION OF THE ROCK TYPES ................................... 4 3.2 ROOT NAMES AND QUALIFIER TERMS ................................................................. 5 3.2.1 Metamorphic rocks.................................................................................. 6 3.2.2 Igneous rocks.......................................................................................... 9 4 USING DIFFERENT LEVELS OF HIERARCHY IN THE NOMENCLATURE OF ROCKS ................................................................................................................. 10 5 FUTURE MODIFICATIONS TO THE NOMENCLATURE .................................... 12 6 CORRELATION TO OLD ROCK NAMES ............................................................ 13 SUMMARY ................................................................................................................... 14 REFERENCES ............................................................................................................. 15 APPENDIX 1................................................................................................................. 16 2 1 INTRODUCTION Due to international interest in the Finnish deep repository project at Olkiluoto (SW Finland) and the need for collaboration between scientists involved in site investigations for the disposal of spent nuclear fuel in other countries, a well-documented system of rock nomenclature is required, based on existing classification schemes and international recommendations. Any good and practical system of rock classification (or any other classification system) should fulfil the following requirements: x The scheme should be based on descriptive terms, which can be determined unambiguously based on features directly observable in the field. Apart from the primary classification of rocks into metamorphic, igneous and sedimentary, any genetic terms should be disfavoured, since understanding of the genetic nature of rocks may change within time, whereas the textural, structural and modal properties of rocks do not. x The scheme should have a hierarchical structure, which is a prerequisite for being simple and practical in application, proceeding in a series of levels and giving the possibility of classifying rocks in different levels according to the level of information available and the expertise of the user. x Well-established names should be used as far as possible, yet changes should be allowed if necessary. Changes may be necessary, for example, in cases where the existing terminology does not fully describe the whole scale of rock characteristics and does not serve the goal of a specific study. Careful documentation of such changes is important in any proposed classification scheme. This report introduces a system of nomenclature, which is applicable to Olkiluoto during the presently ongoing site confirmation studies and establishes a link to existing classification schemes and international recommendations. 3 2 BACKGROUND FOR THE NOMENCLATURE IUGS (International Union of Geological Sciences) and its subcommissions are currently working towards the establishment of unified terminology and classification of rock types. However, the work is far from ready and so far the IUGS has only produced general principles and recommendations on the use of terms. The process of introducing a comprehensive classification system is still some time in the future. The BGS (British Geological Survey) rock classification scheme (Robertson 1999, Gillespie & Styles 1999) is at present the most comprehensive classification system for rocks. It adopts the general principles of the current IUGS recommendations, yet, as stated by Gillespie & Styles (1999), it “... contains many refinements and changes to the IUGS recommendations, where it was considered necessary and appropriate, and the resulting scheme is more logical, consistent, systematic and clearly defined”. The basic principle of the BGS scheme is the use of a relatively small amount of accepted root names with or without qualifier terms, based, as far as possible, on descriptive attributes. The use of genetic terms is discouraged, as opinions on the genetic factors of rocks are likely to change during time whereas textural and structural characteristics and modal compositions do not. These basic principles have also been utilised in the nomenclature of rocks in Olkiluoto 4 3 NOMENCLATURE FOR ROCKS IN OLKILUOTO 3.1 Basic concepts and subdivision of the rock types The bedrock at the Olkiluoto site consists of two main types of rock, metamorphic rocks and igneous rocks (treated separately in the BGS system in the reports of Robertson 1999 and Gillespie & Styles 1999, respectively). The metamorphic rocks in Olkiluoto are gneisses, based on their texture and grain size, and can be further divided into migmatitic gneisses and (non-migmatitic)1 gneisses. Migmatitic gneisses can be classified according to the migmatitic structure of the rock into stromatic, veined and diatexitic gneisses. (Non-migmatitic) gneisses consist of four subgroups, which are named according to their modal composition as mica, quartz, mafic and TGG gneisses. Igneous rocks are subdivided into pegmatitic granites, K-feldspar porphyry and diabase. Igneous rocks are named according to their modal composition and texture, with the exception of diabase, which is named according to its field association, i.e. diabase is a basaltic rock occurring as dikes and sills. The subdivision of the rocks in Olkiluoto is shown in Figure 1. 1 The term non-migmatitic is a trivial qualifier
Recommended publications
  • Origin, Texture, and Classification of Metamorphic Rocks - Teklewold Ayalew
    GEOLOGY – Vol. II - Origin, Texture, and Classification of Metamorphic Rocks - Teklewold Ayalew ORIGIN, TEXTURE, AND CLASSIFICATION OF METAMORPHIC ROCKS Teklewold Ayalew Addis Ababa University, Ethiopia Keywords: aluminosilicates, assemblage, fabric, foliation, gneissose banding, index mineral, isograd, lineation, lithosphere, metamorphic facies, metasomatism, orogenic belt, schistosity Contents 1. Introduction 2. Occurrence 2.1. Orogenic Metamorphism 2.2. Contact Metamorphism 2.3. Ocean Floor Metamorphism 3. Classification 4. Minerals of Metamorphic Rocks 5. Metamorphic Facies 5.1. Facies of Very Low Grade 5.2. Greenschist Facies 5.3. Amphibolite Facies 5.4. Granulite Facies 5.5. Hornblende Hornfels Facies 5.6. Pyroxene Hornfels Facies 5.7. Blueschist Facies 5.8. Eclogite Facies 6. Tectonic Setting of Metamorphic Facies 7. Textures 7.1. Layering, Banding, and Fabric Development 8. Kinetics 8.1. Diffusion 8.2. Nucleation 8.3. Crystal Growth AcknowledgmentUNESCO – EOLSS Glossary Bibliography Biographical SketchSAMPLE CHAPTERS Summary Metamorphic rocks are igneous, sedimentary, or other metamorphic rocks whose texture and composition has been changed by metamorphism. Metamorphism occurs as a response to changes in the physical or chemical environment of any pre-existing rock, such as variations in pressure or temperature, strain, or the infiltration of fluids. It involves recrystallization of existing minerals into new grains and/or the appearance of new mineral phases and breakdown of others. Metamorphic processes take place ©Encyclopedia of Life Support Systems (EOLSS) GEOLOGY – Vol. II - Origin, Texture, and Classification of Metamorphic Rocks - Teklewold Ayalew essentially in the solid state. The rock mass does not normally disaggregate and lose coherence entirely; however small amounts of fluids are frequently present and may play an important catalytic role.
    [Show full text]
  • Rocks and Geology: General Information
    Rocks and Geology: General Information Rocks are the foundation of the earth. Rock provides the firmament beneath our oceans and seas and it covers 28% of the earth's surface that we all call home. When we travel any distance in any given direction, it is impossible not to see the tremendous variety in color, texture, and shape of the rocks around us. Rocks are composed of one or more minerals. Limestone, for example, is composed primarily of the mineral calcite. Granite can be made up of the minerals quartz, orthoclase and plagioclase feldspars, hornblende, and biotite mica. Rocks are classified by their mineral composition as well as the environment in which they were formed. There are three major classifications of rocks: igneous, sedimentary and metamorphic. A question: Which kind of rock came first? Think about it....... The following sections describe the conditions and processes that create the landscape we admire and live on here on "terra firma." IGNEOUS ROCKS The millions of tons of molten rock that poured out of the volcano Paracutin in Mexico, and from the eruption of Mount St. Helens in Washington State illustrate one of the methods of igneous rock formation. Igneous (from fire) rocks are formed when bodies of hot liquid rock called magma located beneath the earth's crust, find their way upward through the crust by way of fissures or faults. If the magma reaches the earth's surface, it forms extrusive igneous rocks or volcanic rocks. If the magma cools before it reaches the surface, it forms bodies of rock called intrusive igneous rocks or plutonic rocks.
    [Show full text]
  • Towards a Unified Nomenclature in Metamorphic Petrology
    8. Amphibolite and Granulite Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version 01.02.07 1José Coutinho, 2Hans Kräutner, 3Francesco Sassi, 4Rolf Schmid and 5Sisir Sen. 1 J. Coutinho, University of São Paulo, São Paulo, Brazil 2 L M University, Munich, Germany 3 F. Sassi, Department of Mineralogy and Petrography, University of Padova, Italy 4 R. Schmid, ETH-Centre, Zürich, Switzerland 5 S. Sen, Indian Institute of Technology, Kharagpur, India Introduction This paper summarises the results of the discussions by the SCMR, and the response to circulars distributed by the SCMR, which demonstrated the highly variable usage of the terms granulite and amphibolite. It presents those definitions which currently seem to be the most appropriate ones. Some notes are included in order to explain the reasoning behind the suggested definitions. In considering the definitions it is important to remember that some of them are a compromise of highly different, even conflicting, opinions and traditions. The names amphibolite and granulite have been used in geological literature for nearly 200 years: amphibolite since Brongniart (1813), granulite since Weiss (1803). Although Brongniart described amphibolite as a rock composed of amphibole and plagioclase, in those early days the meaning of the term was variable. Only later (e.g. Rosenbusch, 1898) was it fixed as metamorphic rock consisting of hornblende and plagioclase, and of medium to high metamorphic grade. In contrast, the use of the name granulite was highly variable, a position which was further complicated by the introduction of the facies principle (Eskola, 1920, 1952) when the name granulite was proposed for all rocks of the granulite facies.
    [Show full text]
  • A Systematic Nomenclature for Metamorphic Rocks
    A systematic nomenclature for metamorphic rocks: 1. HOW TO NAME A METAMORPHIC ROCK Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version 1/4/04. Rolf Schmid1, Douglas Fettes2, Ben Harte3, Eleutheria Davis4, Jacqueline Desmons5, Hans- Joachim Meyer-Marsilius† and Jaakko Siivola6 1 Institut für Mineralogie und Petrographie, ETH-Centre, CH-8092, Zürich, Switzerland, [email protected] 2 British Geological Survey, Murchison House, West Mains Road, Edinburgh, United Kingdom, [email protected] 3 Grant Institute of Geology, Edinburgh, United Kingdom, [email protected] 4 Patission 339A, 11144 Athens, Greece 5 3, rue de Houdemont 54500, Vandoeuvre-lès-Nancy, France, [email protected] 6 Tasakalliontie 12c, 02760 Espoo, Finland ABSTRACT The usage of some common terms in metamorphic petrology has developed differently in different countries and a range of specialised rock names have been applied locally. The Subcommission on the Systematics of Metamorphic Rocks (SCMR) aims to provide systematic schemes for terminology and rock definitions that are widely acceptable and suitable for international use. This first paper explains the basic classification scheme for common metamorphic rocks proposed by the SCMR, and lays out the general principles which were used by the SCMR when defining terms for metamorphic rocks, their features, conditions of formation and processes. Subsequent papers discuss and present more detailed terminology for particular metamorphic rock groups and processes. The SCMR recognises the very wide usage of some rock names (for example, amphibolite, marble, hornfels) and the existence of many name sets related to specific types of metamorphism (for example, high P/T rocks, migmatites, impactites).
    [Show full text]
  • Metamorphic Rocks
    Metamorphic Rocks Geology 200 Geology for Environmental Scientists Regionally metamorphosed rocks shot through with migmatite dikes. Black Canyon of the Gunnison, Colorado Metamorphic rocks from Greenland, 3.8 Ga (billion years old) Major Concepts • Metamorphic rocks can be formed from any rock type: igneous, sedimentary, or existing metamorphic rocks. • Involves recrystallization in the solid state, often with little change in overall chemical composition. • Driving forces are changes in temperature, pressure, and pore fluids. • New minerals and new textures are formed. Major Concepts • During metamorphism platy minerals grow in the direction of least stress producing foliation. • Rocks with only one, non-platy, mineral produce nonfoliated rocks such as quartzite or marble. • Two types of metamorphism: contact and regional. Metamorphism of a Granite to a Gneiss Asbestos, a metamorphic amphibole mineral. The fibrous crystals grow parallel to least stress. Two major types of metamorphism -- contact and regional Major Concepts • Foliated rocks - slate, phyllite, schist, gneiss, mylonite • Non-foliated rocks - quartzite, marble, hornfels, greenstone, granulite • Mineral zones are used to recognize metamorphic facies produced by systematic pressure and temperature changes. Origin of Metamorphic Rocks • Below 200oC rocks remain unchanged. • As temperature rises, crystal lattices are broken down and reformed with different combinations of atoms. New minerals are formed. • The mineral composition of a rock provides a key to the temperature of formation (Fig. 6.5) Fig. 6.5. Different minerals of the same composition, Al2SiO5, are stable at different temperatures and pressures. Where does the heat come from? • Hot magma ranges from 700-12000C. Causes contact metamorphism. • Deep burial - temperature increases 15-300C for every kilometer of depth in the crust.
    [Show full text]
  • Metamorphic Rocks -- Rocks That Change by Cindy Grigg
    Metamorphic Rocks -- Rocks that Change By Cindy Grigg 1 Rocks can be put into three main groups. They are grouped by how the rocks formed. Metamorphic (met-uh-MOR-fic) rocks are changed by the heat and pressure inside Earth. "Metamorphic" comes from a Greek word that means "change of form." Metamorphic rocks can be formed from other metamorphic rocks. They can form from sedimentary and igneous rocks, too. 2 The temperature deep inside the Earth is much hotter than temperatures near or on the surface. The weight of tons of land and rocks on top presses down on the rocks underneath. This pressure, along with heat, causes the rocks inside the Earth to go through a physical or chemical change. Movement of Earth's plates causes pressure on rocky material under the surface, resulting in folding. Water can dissolve and redeposit minerals. This can also cause a change in rocks. Minerals react with each other at high heat. Atoms rearrange, and new minerals are created from old ones. Grains in rocks are pressed and made more compact. Rocks morph into other kinds of rocks. 3 Some metamorphic rocks are slate, schist, gneiss, marble, and quartzite. Sandstone is a sedimentary rock. It is made of grains of sand pressed together. Sandstone is fairly soft. It crumbles easily. When sandstone changes into the metamorphic rock quartzite, is becomes one of the hardest rocks. 4 The sedimentary rock shale changes into slate. The mineral grains in shale change directions because of the heat and pressure. Slate, a metamorphic rock, can be changed by continued heat and pressure into a rock called schist.
    [Show full text]
  • Week of May 4 – May 10
    Week of May 4 – May 10 Read the definition and description of the sedimentary rocks in the article titled “Pictures of Sedimentary Rocks” Complete the worksheets: “How are sedimentary rocks are formed” “How are sedimentary rocks classified” Pictures of Sedimentary Rocks Photos of Common Clastic, Chemical, and Organic Sedimentary Rock Types. Article by: Hobart M. King, Ph.D., RPG Breccia is a clastic sedimentary rock that is composed of large (over two-millimeter diameter) angular fragments. The spaces between the large fragments can be filled with a matrix of smaller particles or a mineral cement which binds the rock together. The specimen shown above is about two inches (five centimeters) across. What Are Sedimentary Rocks? Sedimentary rocks are formed by the accumulation of sediments. There are three basic types of sedimentary rocks. Clastic sedimentary rocks such as breccia, conglomerate, sandstone, siltstone, and shale are formed from mechanical weathering debris. Chemical sedimentary rocks, such as rock salt, iron ore, chert, flint, some dolomites, and some limestones, form when dissolved materials precipitate from solution. Organic sedimentary rocks such as coal, some dolomites, and some limestones, form from the accumulation of plant or animal debris. Photos and brief descriptions of some common sedimentary rock types are shown on this page. Coal is an organic sedimentary rock that forms mainly from plant debris. The plant debris usually accumulates in a swamp environment. Coal is combustible and is often mined for use as a fuel. The specimen shown above is about two inches (five centimeters) across. Chert is a microcrystalline or cryptocrystalline sedimentary rock material composed of silicon dioxide (SiO2).
    [Show full text]
  • Glossary of Geological Terms
    GLOSSARY OF GEOLOGICAL TERMS These terms relate to prospecting and exploration, to the regional geology of Newfoundland and Labrador, and to some of the geological environments and mineral occurrences preserved in the province. Some common rocks, textures and structural terms are also defined. You may come across some of these terms when reading company assessment files, government reports or papers from journals. Underlined words in definitions are explained elsewhere in the glossary. New material will be added as needed - check back often. - A - A-HORIZON SOIL: the uppermost layer of soil also referred to as topsoil. This is the layer of mineral soil with the most organic matter accumulation and soil life. This layer is not usually selected in soil surveys. ADIT: an opening that is driven horizontally (into the side of a mountain or hill) to access a mineral deposit. AIRBORNE SURVEY: a geophysical survey done from the air by systematically crossing an area or mineral property using aircraft outfitted with a variety of sensitive instruments designed to measure variations in the earth=s magnetic, gravitational, electro-magnetic fields, and/or the radiation (Radiometric Surveys) emitted by rocks at or near the surface. These surveys detect anomalies. AIRBORNE MAGNETIC (or AEROMAG) SURVEYS: regional or local magnetic surveys that measures deviations in the earth=s magnetic field and carried out by flying a magnetometer along flight lines on a pre-determined grid pattern. The lower the aircraft and the closer the flight lines, the more sensitive is the survey and the more detail in the resultant maps. Aeromag maps produced from these surveys are important exploration tools and have played a major role in many major discoveries (e.g., the Olympic Dam deposit in Australia).
    [Show full text]
  • Geological Archive of the Onset of Plate Tectonics
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Geological archive of the onsetprovided by espace@Curtin of plate tectonics rsta.royalsocietypublishing.org Peter A. Cawood1,2, Chris J. Hawkesworth2,3, Sergei A. Pisarevsky4, Bruno Dhuime3,5, 1 1 Research Fabio A. Capitanio andOliverNebel 1 Cite this article: Cawood PA, Hawkesworth School of Earth, Atmosphere and Environment, Monash University, CJ, Pisarevsky SA, Dhuime B, Capitanio FA, Melbourne, VIC 3800, Australia 2 Nebel O. 2018 Geological archive of the onset Department of Earth Sciences, University of St Andrews, of plate tectonics. Phil.Trans.R.Soc.A376: St Andrews, Fife KY16 9AL, UK 20170405. 3School of Earth Sciences, University of Bristol, Wills Memorial http://dx.doi.org/10.1098/rsta.2017.0405 Building, Queens Road, Bristol BS8 1RJ, UK 4ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and Accepted:21June2018 Earth Dynamics Research Group, The Institute for Geoscience Research (TIGeR), Department of Applied Geology, Curtin One contribution of 14 to a discussion meeting University, GPO Box U1987, Perth, WA 6845, Australia issue‘Earthdynamicsandthedevelopmentof 5CNRS-UMR 5243, Géosciences Montpellier, Université de plate tectonics’. Montpellier, Montpellier, France Subject Areas: PAC, 0000-0003-1200-3826;BD,0000-0002-4146-4739; plate tectonics, geochemistry, geology ON, 0000-0002-5068-7117 Keywords: Plate tectonics, involving a globally linked system of lateral motion of rigid surface plates, is a plate tectonics, Archaean, palaeomagnetics, characteristic feature of our planet, but estimates lithosphere, early Earth of how long it has been the modus operandi of lithospheric formation and interactions range from Author for correspondence: the Hadean to the Neoproterozoic.
    [Show full text]
  • 4 Metamorphic Rock
    Name Class Date CHAPTER 4 Rocks: Mineral Mixtures SECTION 4 Metamorphic Rock National Science BEFORE YOU READ Education Standards After you read this section, you should be able to answer ES 1c these questions: • How do metamorphic rocks form? • How do geologists classify metamorphic rocks? How Does Metamorphic Rock Form? Metamorphic rock forms when the chemical STUDY TIP composition of a rock changes because of heat and Ask Questions Read this pressure. This change is called metamorphism. section quietly to yourself. As you read, write down any Metamorphism can happen to any kind of rock. questions you have. When Most metamorphism happens at temperatures between you fi nish reading, try to 150°C and 1,000°C. Some metamorphism happens at even fi gure out the answer to your higher temperatures. Many people think that all rocks must questions in a small group. melt at such high temperatures. However, these rocks are also under very high pressure, so they do not melt. High pressure can keep a hot rock from melting. Even very hot rocks may not melt if the pressure is high. Instead of melting, the minerals in the rock react with each other to form new minerals. In this way, the com- position of the rock can change, even though the rock remains solid. READING CHECK High pressure can also affect the minerals in a rock. 1. Describe How does the It can cause minerals to react quickly. It can also cause composition of a rock change minerals to move slowly through the rock. In this way, during metamorphism? different minerals can separate into stripes in the rock.
    [Show full text]
  • Metamorphic Rock Identification Maine Geological Survey
    Activity 25: Metamorphic Rock Identification Maine Geological Survey Objectives: To have students develop skill in the visual identification of metamorphic rock species; to also have students conceptualize the relationships between non-metamorphosed species and their metamorphic counterparts. Time: This activity is designed to last one class period. Background: Metamorphism has played a major role in creating the bedrock geology of Maine. From the magnificent phyllite exposures at Two Lights State Park, to the "country rock" surrounding the gem-bearing pegmatites, to the andalusite-rich Smalls Falls Formation, metamorphism is evident in every corner of the state. Often of no commercial value, metamorphic rocks provide tremendous scientific insight into diverse topics ranging from crystal chemistry phase relations to the mechanics of plate tectonics. In practice, metamorphism results when pressure, temperature, and introduced chemical fluids cause a previously existing rock to be transformed into a new rock species, with, almost always, a new assemblage of minerals. The extent to which a metamorphic rock differs from the original rock species is known as the metamorphic grade of the rock. Grade increases as a direct result of increasing the temperature, pressure and, to a lesser degree, the fluid parameters of the metamorphism. Shale, for example, can undergo a number of changes in grade as follows: SHALEPHYLLITESTAUROLITE MICA SCHISTGARNET SILLIMANITE SCHISTGNEISS Notice the use of specific mineral names, staurolite, sillimanite, and garnet, in the above examples. These specific minerals are known as geothermometers. That is, they define a certain minimum temperature that the rock must have achieved during the metamorphism process. Mapping mineral geothermometers allows geologists to define specific zones of intensity (isograds) in the metamorphism of a region.
    [Show full text]
  • Chapter 10. Metamorphism & Metamorphic Rocks
    Physical Geology, First University of Saskatchewan Edition is used under a CC BY-NC-SA 4.0 International License Read this book online at http://openpress.usask.ca/physicalgeology/ Chapter 10. Metamorphism & Metamorphic Rocks Adapted by Karla Panchuk from Physical Geology by Steven Earle Figure 10.1 Grey and white striped metamorphic rocks (called gneiss) at Pemaquid Point were transformed by extreme heat and pressure during plate tectonic collisions. Source: Karla Panchuk (2018) CC BY 4.0. Photos by Joyce McBeth (2009) CC BY 4.0. Map by Flappiefh (2013), derivative of Reisio (2005), Public Domain. Learning Objectives After reading this chapter and answering the review questions at the end, you should be able to: • Summarize the factors that influence the nature of metamorphic rocks. • Explain how foliation forms in metamorphic rocks. • Classify metamorphic rocks based on their texture and mineral content, and explain the origins of both. • Describe the various settings in which metamorphic rocks are formed and explain the links between plate tectonics and metamorphism • Describe the different types of metamorphism, including burial metamorphism, regional metamorphism, seafloor metamorphism, subduction zone metamorphism, contact metamorphism, shock metamorphism, and dynamic metamorphism. • Explain how metamorphic facies and index minerals are used to characterize metamorphism in a region. • Explain why fluids are important for metamorphism and describe what happens during metasomatism. Chapter 10. Metamorphism & Metamorphic Rocks 1 Metamorphism Occurs Between Diagenesis And Melting Metamorphism is the change that takes place within a body of rock as a result of it being subjected to high pressure and/or high temperature. The parent rock or protolith is the rock that exists before metamorphism starts.
    [Show full text]