Landing a Spacecraft on Mars

Total Page:16

File Type:pdf, Size:1020Kb

Landing a Spacecraft on Mars Editor: Michiel van Genuchten Open Digital Dentistry IMPACT [email protected] Editor: Les Hatton Kingston University [email protected] Landing a Spacecraft on Mars Gerard J. Holzmann How much software does it take to land a spacecraft safely on Mars, and how do you make all that code reliable? In this column, Gerard Holzmann describes the software development process that was followed. —Michiel van Genuchten and Les Hatton THOUSANDS OF PEOPLE worked on de- About 75 percent of the code is auto-gen- sign, construction, and testing of the hard- erated from other formalisms, such as state- ware for NASA’s latest mission to Mars. machine descriptions and XML files. The re- This hardware includes not just the rover it- mainder was handwritten specifically for this self with its science instruments, but also the mission, in many cases building on heritage cruise stage, which guided the Curiosity rover code from earlier Mars missions. to Mars, and the descent stage, with the intri- The Curiosity Rover is the seventh space- cate sky-crane mechanism that gently lowered craft that NASA has successfully landed on the rover to the surface on 5 August 2012. Mars. Previous spacecraft include All this painstakingly developed, tested, and retested hardware is controlled by soft- • two Viking landers in 1976, ware. This software was written by a rela- • the Pathfinder minirover in 1996, tively small team of about 35 developers at • the two Mars Exploration Rovers Op- NASA’s Jet Propulsion Laboratory (JPL). portunity and Spirit in 2004, and Obviously, the control software is critically • the Phoenix Mars lander, which was important to the mission’s success, with launched in 2007 but reused the design of any failure potentially leading to the loss of the failed Mars Surveyor lander from 2001. the spacecraft—as well as to headline news around the world. Each new mission is more complex and The control software onboard the space- uses more control software than its predeces- craft consists of about 3 MLOC . Most of sor. But that’s putting it mildly. As in many this code is written in C, with a small por- other industries, code size is growing expo- tion (mostly for surface navigation) in C++. nentially fast: each new mission to Mars uses The code executes on a radiation hardened more control software than all missions be- CPU. The CPU is a version of an IBM Pow- fore it combined: erPC 750, called RAD750, which is designed for use in space. It has 4 Gbytes of flash • the Viking landers had about 5 KLOC memory, 128 Mbytes of RAM, and runs at a onboard, clock-speed of 133 MHz. • Pathfinder had 150 KLOC, 0740-7459/13/$31.00 © 2013 IEEE MARCH/APRIL 2013 | IEEE SOFTWARE 17 IMPACT fully managed process. The three main COMPOUND ANNUAL GROWTH RATE control points in this process are pre- IN MARS MISSIONS’ CoDE vention, detection, and containment. The Compound Annual Growth Rate, as described in previous columns,1 in flight Prevention software for spacecraft over the last 36 years comes out at roughly 1.20—close to The best way to make software reliable the median value of 1.16. The Mars Science Laboratory software is comparable to is to prevent the introduction of defects other safety-critical systems that were described in this column, such as the Tokyo from the start. We tried to do this in a Railway system,2 Honeywell’s Flight Management System,3 and Airbus.4 What sets number of ways. this system apart is that it must operate reliably at a distance of millions of miles First, we adopted a strong new cod- from Earth, making it inaccessible to standard types of maintenance and repair. ing standard for the mission (which was later also adopted as a common References standard for all software development 1. M. Genuchten and L. Hatton, “Compound Average Growth Rate for Software,” IEEE Software, vol. 29, at JPL1). Although most software devel- no. 4, 2011, pp. 19–21. opment projects use coding standards, 2. D. Avery, “The Evolution of Flight Management Systems,” IEEE Software, vol. 28, no. 1, 2011, pp. 11–13. 3. S. Burger, O. Hummel, and M. Heinisch, “Airbus Cabin Software,” IEEE Software, vol. 30, no. 1, 2013, we followed a somewhat different ap- pp. 21–25. proach in the definition of this one. To 4. K. Tomita and K. Ito, “Software in an Evolving Train Traffic Control System,”IEEE Software, vol. 28, no. define the rules in this standard, we 2, 2011, pp. 19–21. first looked at everything that had gone wrong in previous space missions. We categorized the problems that could Code size—exponential growth trend be attributed to software and devised 10,000 a small set of rules that could prevent MSL these classes of errors. Next, we fo- cused on those rules for which we could 1,000 MER mechanically check compliance—for example, with a static analyzer. Our Pathnder Phoenix coding standard captured those rules, 100 and only those rules. Therefore, the rules in this coding standard cannot be silently ignored (as is often done with 10 other standards). We mechanically Lines of code in thousands (KLOC) Viking checked compliance with all the rules on every build of the software. Any de- 1 viations were reported and became part 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 Year of the input to the downstream code re- view process. Second, we introduced a flight soft- FIGURE A. The amount of flight code that is flown to land spacecraft on Mars has ware developer certification course, grown exponentially in the last 36 years. Its Compound Annual Growth Rate comes focused in part on software risk and out at roughly 1.20—close to the median value of 1.16 from previous columns. defensive coding techniques. Every software developer is required to com- plete this course and pass the exams be- fore they can touch flight software. The course covers the coding standard’s ra- • the Phoenix lander had 300 KLOC, There’s clearly no single magic tool tionale, as well as general background • the Mars Exploration Rovers each or technique that can be used to secure on computer science principles and the had 650 KLOC, and the reliability of any large and complex basic structure of spacecraft control • the MSLRover upped the ante to 3 software application; rather, it takes software. Some of this material is also MLOC. good tools, workmanship, and a care- presented to more senior managers at 18 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE IMPACT JPL to secure a common knowledge 100.0 base regarding the challenges of mis- 90.0 sion-critical software development (al- though in the latter case, the material 80.0 86.0 84.4 82.3 is presented without the pressure of an 70.0 exam at the end). 60.0 Detection 50.0 The next best thing to preventing de- 40.0 rcent of comments fects is to detect them as early as pos- leading to code x Pe 30.0 sible in the software development cycle. To do this, we adopted a range of state- 20.0 of-the-art static source code analyzers, 10.0 paired with a new tool-based code re- 0.0 2 view process. High Medium Low The challenges in conducting peer code reviews on millions of lines of FIGURE 1. The percent of peer comments resulting in a code fix in the Mars Science code are well known.3 The process we Laboratory code review process between 2008 and 2012, by priority, showing that all adopted therefore shifted much of the comments were taken equally seriously. The majority of comments led to changes in the code. burden of the routine checks (such as checks for common types of coding er- rors, compliance with the coding stan- module. What was perhaps different Only the remaining 20 percent of the dard, or risky code patterns) to back- about the code review process we fol- reports or tool warnings therefore re- ground tools. A complete integration lowed was that we did all peer reviews quired discussion in the review meet- build of all MSL flight software was offline rather than in face-to-face meet- ings, leading to a final resolution of ei- performed nightly, with all checkers ings. We required the module owner ther fix (which in some cases overruled running over the code in parallel to the to respond to all reports (generated by an earlier disagree response from the builds. We jointly used four different tools or peers) with a simple agree, dis- module owner), or no fix (see Figure static analyzers with close to a hundred agree, or discuss response. Agree meant 1). In all, roughly 10,000 peer com- simpler custom-written checking scripts that the module owner agreed with ments on the code were processed in that verified compliance with various the finding and committed to chang- this way, together with approximately types of requirements that are harder to ing the code. Disagree indicated a dif- 25,000 tool reports. As shown, the encode in static analyzers (such as rules ference of opinion, where the module vast majority of these peer comments against the use of tabs in code or rules owner believed that the code was cor- and tool reports led to changes in the for the types of header files that must or rect as previously written and shouldn’t flight code to either address an issue or must not be used). be changed. Discuss meant that the re- to prevent a tool warning from recur- We used the static analyzers Cov- port was unclear and the owner needed ring in later builds.
Recommended publications
  • Can't Go Home by Noelle Adams / Pfangirl PART 1
    Can't go home By Noelle Adams / pfangirl PART 1 - SUFFOCATED A caged lioness. That's what Lara reminded Sam of now. Every time she looked at her best friend, the American thought of the big cat she'd seen in a German zoo during her globe- trotting childhood. It wouldn't lie still. It was pure feral energy, striding back and forth in its enclosure, muscles rippling beneath its pelt. Lara was the same. Lithe grace and power in human form, always moving, always intensely focused on some task or thing. Almost permanently scowling. Sam had always wondered which of her parents Lara inherited her effortless physicality from. Four years of knowing Lara, and Sam still wasn't sure. There were no photos for her to consult. The young archaeologist hardly spoke about her vanished mother and father. She avoided talking about them; evidently running from their memory like she ran from what had happened on Yamatai. In the one and a half months since the shipwreck – well, at least since she was released from hospital – Lara had been seized by a frantic, feverish vigour. They had travelled from Osaka to the UK, where Lara had spent a single day at her family's estate, ransacking her father's study. From there they headed to New York. This put Lara closer to her next intended stop – Roanoke Island. Although the city was a good base for Lara to work from while she planned her next expedition, there was a second, more distasteful reason for the archaeologist to be there: an exclusive television interview.
    [Show full text]
  • Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum K
    Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum K. E. Herkenhoff, et al. Science 306, 1727 (2004); DOI: 10.1126/science.1105286 This copy is for your personal, non-commercial use only. If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here. Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here. The following resources related to this article are available online at www.sciencemag.org (this infomation is current as of October 27, 2011 ): Updated information and services, including high-resolution figures, can be found in the online version of this article at: http://www.sciencemag.org/content/306/5702/1727.full.html Supporting Online Material can be found at: http://www.sciencemag.org/content/suppl/2004/11/30/306.5702.1727.DC1.html A list of selected additional articles on the Science Web sites related to this article can be on October 27, 2011 found at: http://www.sciencemag.org/content/306/5702/1727.full.html#related This article has been cited by 70 article(s) on the ISI Web of Science This article has been cited by 10 articles hosted by HighWire Press; see: http://www.sciencemag.org/content/306/5702/1727.full.html#related-urls This article appears in the following subject collections: Planetary Science www.sciencemag.org http://www.sciencemag.org/cgi/collection/planet_sci Downloaded from Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005.
    [Show full text]
  • 18Th EANA Conference European Astrobiology Network Association
    18th EANA Conference European Astrobiology Network Association Abstract book 24-28 September 2018 Freie Universität Berlin, Germany Sponsors: Detectability of biosignatures in martian sedimentary systems A. H. Stevens1, A. McDonald2, and C. S. Cockell1 (1) UK Centre for Astrobiology, University of Edinburgh, UK ([email protected]) (2) Bioimaging Facility, School of Engineering, University of Edinburgh, UK Presentation: Tuesday 12:45-13:00 Session: Traces of life, biosignatures, life detection Abstract: Some of the most promising potential sampling sites for astrobiology are the numerous sedimentary areas on Mars such as those explored by MSL. As sedimentary systems have a high relative likelihood to have been habitable in the past and are known on Earth to preserve biosignatures well, the remains of martian sedimentary systems are an attractive target for exploration, for example by sample return caching rovers [1]. To learn how best to look for evidence of life in these environments, we must carefully understand their context. While recent measurements have raised the upper limit for organic carbon measured in martian sediments [2], our exploration to date shows no evidence for a terrestrial-like biosphere on Mars. We used an analogue of a martian mudstone (Y-Mars[3]) to investigate how best to look for biosignatures in martian sedimentary environments. The mudstone was inoculated with a relevant microbial community and cultured over several months under martian conditions to select for the most Mars-relevant microbes. We sequenced the microbial community over a number of transfers to try and understand what types microbes might be expected to exist in these environments and assess whether they might leave behind any specific biosignatures.
    [Show full text]
  • Arctic Grayling and Burbot Studies at the Fort Knox Mine, 2005 by Alvin G
    Technical Report No. 05-06 Arctic Grayling and Burbot Studies at the Fort Knox Mine, 2005 by Alvin G. Ott and William A. Morris Pond D in Wetland Complex Photograph by William A. Morris 2005 December 2005 Alaska Department of Natural Resources Office of Habitat Management and Permitting The Alaska Department of Natural Resources administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972. If you believe you have been discriminated against in any program, activity, or facility, or if you desire further information please write to DNR, 1300 College Road, Fairbanks, Alaska 99701; U.S. Fish and Wildlife Service, 4040 N. Fairfax Drive, Suite 300 Webb, Arlington, VA 22203; or O.E.O., U.S. Department of the Interior, Washington DC 20240. For information on alternative formats for this and other department publications, please contact the department ADA Coordinator at (voice) 907-269-8549 or (TDD) 907-269-8411. ARCTIC GRAYLING AND BURBOT STUDIES AT THE FORT KNOX MINE, 2005 By Alvin G. Ott and William A. Morris Kerry M. Howard Executive Director Office of Habitat Management and Permitting Alaska Department of Fish and Game Table of Contents Table of Contents.................................................................................................................I List of Tables .....................................................................................................................iii List of Figures...................................................................................................................
    [Show full text]
  • Phoenix Descending NASA’S Mars Strategy Goes from “Follow the Water” to “Arrive at the Ice”
    NEWS NATURE|Vol 453|8 May 2008 Phoenix descending NASA’s Mars strategy goes from “follow the water” to “arrive at the ice”. Since 2001, the slogan for from hardware and software. NASA’s Mars programme has “We may not succeed, but we NASA been “follow the water”. deserve to succeed,” he says. With Phoenix, a US$420- Engineers at the Jet Propul- million mission to the edge of sion Laboratory in Pasadena, the planet’s north ice cap, the California, which runs most of agency hopes to finally touch NASA’s planetary missions, will its quarry, in the form of dirty have their last chance to tweak water ice scraped from the the trajectory on 24 May. The subsurface and melted in the next day, Phoenix is expected probe’s on-board ovens. to use the planet’s atmosphere, If all goes as planned, Phoenix and its own heat shielding, will reach the end of its 680- parachutes and retrorockets, to million-kilometre, 10-month- slow itself down from an orbital long journey on 25 May. Its speed of 20,000 kilometres per landing site is in a region where hour to a soft, safe landing at NASA’s orbiting Mars Odyssey just 2.4 metres per second. spacecraft has detected gamma-ray and neu- Phoenix, a 350-kilogram lander, inherited Smith and his team hope that the ice and soil tron signatures suggesting a significant amount hardware from the Mars Surveyor Lander, a samples they will study with the spacecraft’s of hydrogen — thought to be a constituent of mission cancelled in 2000 after the failure of mass-spectrometer and chemical analysis sys- frozen water — near the surface.
    [Show full text]
  • The Martian by Andy Weir
    The Martian by Andy Weir Summary Spoiler Alert: The following summary and discussion questions reveal plot information that some readers may prefer to encounter as surprises. The Martian takes place in a near-future setting, and unfolds in fragmentary diary entries and third- person accounts. Ares III, the latest manned shuttle mission to Mars, lands with plans to remain on the planet's surface for several weeks. A freak, high-velocity dust storm strikes; mission engineer Mark Watney is impaled by flying debris and presumed dead after his bio-suit stops reporting his vitals. Commander Michelle Lewis orders the remaining crew to evacuate. They flee, mourning Mark's death during the long voyage back to Earth. In reality, Mark is injured but alive. He regains consciousness to find himself utterly alone in the inhospitable alien landscape. The only hope of rescue (the next manned mission) is four long years away -- and he has supplies for, at most, only a few weeks. Fortified by his own wickedly blunt sense of humor -- and completely confident in his crewmates' loyalty and skill -- Mark painstakingly improvises ways of providing himself with water, heat, and shelter. He even establishes a mini-potato farm in his biosphere to extend his scant food supplies. None of it is easy, however: any small incident (torn fabric around an airlock) can have disastrous consequences (the collapse of his shelter -- and destruction of his garden). Although often amused by the realization that he is the first to do everything on Mars, he is also dismayed by the depth of his isolation as the weeks stretch into months.
    [Show full text]
  • TOMB RAIDER – E3 Demo Level Doc
    TOMB RAIDER – E3 Demo level doc. 8/4/02 Contents – Approximate diagrams for demo level. Basic demo level Walk-through. Lara Animations required. Code required in addition to basic game code. Special FX required. Enemy animations required. Additional artwork required. Lara voice and other specific sound FX TOMB RAIDER – E3 demo level L.A.5 L.A.2 Main level layout L.A.# = Lara Anim Bridge Shaft Zoom-in i Spiral stairway Zoom i Bridge Secret Zoom-in i L.A.3 L.A.2 L.A.3 Air Chamber Zoom-in i L.A.8 Hall of seasons Upper i L.A.6 Hall of seasons Middle i L.A.7 Hall of seasons Lower i L.A.1 L.A.4 Water Tunnels Zoom i TOMB RAIDER – E3 demo level Air Chamber Zoom-in Altar Zoom-in TOMB RAIDER – E3 demo level Altar Zoom-in TOMB RAIDER – E3 demo level Bridge Shaft Zoom-in TOMB RAIDER – E3 demo level Free-climb secret Zoom-in TOMB RAIDER – E3 demo level Hall of Seasons Lower Zoom TOMB RAIDER – E3 demo level Hall of Seasons Mid Zoom TOMB RAIDER – E3 demo level Hall of Seasons Upper Zoom TOMB RAIDER – E3 demo level Spiral stairway Zoom-in TOMB RAIDER – E3 demo level Above the hall Zoom-in TOMB RAIDER – E3 demo level Underwater tunnels Zoom-in Breakable wall Zoom i TOMB RAIDER – E3 demo level Underwater breakable wall Zoom-in Tomb Raider E3 demo level Demo Walk-through Start in a small dusty cobweb lined tunnel, Lara lights her way down it carefully, anything and everything could be a trap.
    [Show full text]
  • Martian Rock Types Analysis of Surface Composition
    Martian rock types Analysis of surface composition • Most of the knowledge from the surface compostion of Mars comes from: • Orbital spacecraft’s spectroscopic data • Analysis by rovers on the surface • Analysis of meteroites Southern Highlands • Mainly Basalts – Consists primarily of Olivine, Feldspars and Pyroxenes Northern Lowlands • Mainly Andesite – More evolved forms of magma – Highly volatile – Constitutes the majority of the crust Intermediate Felsic Types • High Silica Rocks • Exposed on the surface near Syrtis Major • Uncommon but include: • Dacites and Granitoids • Suggest diverse crustal composition Sedimentary Rocks • Widespread on the surface • Makes up the majority of the Northern lowlands deposists – May have formed from sea/lake deposits – Some show cross‐bedding in their layers – Hold the best chance to find fossilized life Carbonate Rocks • Formed through hydrothermal precipitation Tracks from rover unveil different soil types • Most soil consists of finely ground basaltic rock fragments • Contains iron oxide which gives Mars its red color • Also contains large amounts of sulfur and chlorine Tracks from rover unveil different soil types • Light colored soil is silica rich • High concentrations suggest water must have been involved to help concentrate the silica Blueberries • Iron rich spherules Meteorites on Mars What is a Martian meteorite? • Martian meteorites are achondritic meteorites with strong linear correlations of gases in the Martian atmosphere. Therefore, the gas trapped in each meteorite matches those that the Viking Lander found in Mar’s atmosphere. The graph below explains this correlation. • Image: http://www.imca.cc/mars/martian‐meteorites.htm Types of Martian Meteorites • 34 meteorites have been found that are Martian and they can be separated into 4 major categories with sub‐categories.
    [Show full text]
  • TRANSCONTINENTAL GEOPHYSICAL SURVEY (35°-39° N) RADIOMETRIC AGE DETERMINATIONS of ROCKS by Richard F
    ["-. tl') [{) -I DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY TRANSCONTINENTAL GEOPHYSICAL SURVEY (35°-39° N) RADIOMETRIC AGE DETERMINATIONS OF ROCKS By Richard F. Marvin MISCELLANEOUS GEOLOGIC INVESTIGATIONS MAP 1-537 A CONTRIBUTION TO THE UPPER MANTLE PROJECT ["-. tl') lO I PUBLISHED BY THE U.S. GEOLOGICAL SURVEY - 0.. WASHINGTON, D. C. < 1968 ::E DEPARTMENT OF' THE INTERIOR TO ACCOMPANY MAP 1-537 UNITED STATES GEOLOGICAL SURVEY TRANSCONTINENTAL GEOPHYSICAL SURVEY (35°-39° N) RADIOMETRIC AGE DETERMINATIONS OF ROCKS By Richard F. Marvin A CONTRIBUTION TO THE UPPER MANTLE PROJECT INTRODUCTION Because all the radiometric ages given by samples occurring Most analyzed materials are from igneous rocks, some are between 35° and 39° N. latitude could not be shown on the from metamorphic rocks, and a few are from sedimentary four maps without undue clutter and crowding, the following rocks. Of the ages tabulated, most indicate the time of crystalli­ tabulation was made as a supplement to the maps to present zation of the analyzed mineral or rock, but many indicate the both plotted and unplotted ages and their localities. Ages ex­ time or effect of some subsequent geologic event, such as re­ cluded from this tabulation are (1) those that might be confusing gional metamorphism or igneous activity, which partly or such as Pb-c~ ages of detrital zircons found in a Paleozoic sedi­ completely reset the radioactive clocks in existing rocks. Such ment but derived from Precambrian rocks; (2) those obtained age distinctions are not made in this tabulation. The data are presented alphabetically by State and, within from minerals that generally "leak" radiogenic argon and thus the State, by age-Cenozoic, Mesozoic, Paleozoic, and ·Pre­ give much younger ages than cogenetic minerals which display cambrian, but are listed systematically under the appropriate good retention of radiogenic argon; and (3) lead-uranium ages time division according to longitude-latitude designation.
    [Show full text]
  • TR Aofd PS2 Final 6/16/03 12:31 PM Page Iv
    TR AofD PS2 final 6/16/03 12:31 PM Page iv GettingCONTENTS Started . 2 FPO Starting Up . 3 Report on Recent Atrocities . 4 Inside Front Cover Starting the Game . 6 Remove this page before printing. Main Menu . 6 See the “TR AofD PS2 ins cov.eps” Pause / Options Menu . 7 Basic Controls . 7 document for the actual page Menu Controls . 7 Cut Scene / Conversation Controls . 7 Character Controls . 8 Lara’s Attribute Upgrade . 9 Game Screen . 10 Lara’s Special Moves . 12 Generic Actions . 14 Hand Over Hand . 14 Jumping, Grabbing & Shimmying . 14 Grab Bar . 15 Last Chance Grab . 15 Interacting with the Environment . 15 Pushing / Pulling . 16 Attacking . 16 Stealth . 17 Character Status Bars . 18 Pick-Ups . 18 Inventory . 18 Von Croy’s Notebook . 20 Save Game . 20 Load Game . 21 Credits . 22 STUCK? Call the EIDOS Gameplay Helpline 1-900-285-4500 Up to $1.99/minute Please be 18 or have parental permission or call 800-295-5870 with a major credit card TR AofD PS2 final 6/16/03 12:31 PM Page 2 GETTING STARTED STARTING UP MEMORY CARD slot 2 ® MEMORY CARD slot 1 disc tray DUALSHOCK 2 analog controller RESET button L2 button R2 button L1 button R1 button (OPEN) button USB connector S400 i.LINK connector controller port 1 directional controller port 2 buttons button ® left analog stick button Set up your PlayStation 2 computer entertainment system (L3 button when pushed down) button according to the instructions in its Instruction Manual. SELECT button button Make sure the MAIN POWER switch (located on the back ANALOG mode button of the console) is turned on.
    [Show full text]
  • A Historical Context and Archaeological Research Design for Mining Properties in California
    Mining Cvr FINAL.indd 1 Cover Photos: Woman Miner at the Kendon Pit, Mono County, 1930; African American Miners at the Andrade Dredge Mine, California; Cornish Miners on Skip at the Empire Mine, Grass Valley, 1900 (used with permission, California State Department of Conservation, California Geological Survey). Cite as: California Department of Transportation. Historical Context and Archaeological Research Design for Mining Properties in California. Division of Environmental Analysis, California Department of Transportation, Sacramento, CA. 2008. For individuals with sensory disabilities, this document is available in alternate formats upon request. Please call: (916) 653-0647 Voice, or use the CA Relay Service TTY number 1-800-735-2929 or write: Caltrans Division of Environmental Analysis P.O. Box 942874, MS-27 Sacramento, CA 94274-0001 Mining Cvr FINAL.indd 2 12/10/08 4:48:58 PM MANAGEMENT SUMMARY The California Department of Transportation (Caltrans), in cooperation with the Federal Highway Administration, California Division, and the California State Historic Preservation Officer (SHPO), prepared this thematic study to assist with evaluating the information potential of mining properties in California, that is, for their eligibility for the National Register of Historic Places under Criterion D. To be eligible under Criterion D, National Register guidance states that a property must have, or have had, information to contribute to our understanding of human history or prehistory, and the information must be considered important. An integral part of this study is the development of a research design. The archaeological research design explicitly demonstrates the connection between the information a property contains and important research issues or questions associated with a particular property.
    [Show full text]
  • Andover Townsman, 10/4/1956
    SEPTEMBER 27, 1956 ANDOVER OLYMPIC WEEK OCT. 13th - 20th section from Stephen II. Byrne, son d., Volpe has of Dr. and Mrs. Ilarry V. Byrne, 51 plans are be- School st., has enrolled again aE, pe that a call gfiE a student at Vermont academy ut before the Sextons River, Vt., for the coming academic year. ie a four-lane 1 a four-foot include a 13- ACADEMY NIDIDVIER ■ CWNSAAN and a 12-foot BARBER SHOP Andover's Own Newspaper Since 1887 side plus a ?6 Main St. catwalk for 69 NUMBER 52 ANDOVER, MASSACHUSETTS, OCTOBER 4, 1956 PRICE 10 CENTS 3 BARBERS - GOODNeSaErRAVIC6EPIVOLUME 11 be no ped- Mon. - 'rues. - Wed. 8.30 to 6 ed.The bridge Fri. - Spit. rt• -i') t, 7 net, supported CLOSED AI : ' .RSDA YS ore Support argest will be Land Owner Oilers To he river chan- 127 MAIN ST. iven Rogers ;hare distance PAUL'S TEL. 2125 ire will be 30 Pay For Water Main 25 Years' Experience he channel at Dressmaking Remodeling rook Drainage partment esti- Alterations 500,000 for the Ladles' Suits, Coats and Dressd ire voices were raised in fa- On Greenwood Road ng is included. Made to Order or of Rogers brook storm drainage An offer to pay personally for o lay night. the installation of more than 1000 Uliver Surette, whose weekly Some Adults - feet of 12-inch water niain on isits to the 13PW about the brook Greenwood rd. made to the Board ast spring and summer resulted of Public Works Monday night, n its agreement to again sponsor Lose Right has been tabled.
    [Show full text]