The Many Faces of Quantum Chaos

Total Page:16

File Type:pdf, Size:1020Kb

The Many Faces of Quantum Chaos MM; is *~# ">~ LQO TECHNION—93—QCAP The Many Faces of Quantum Chaos CERN l.IBRFIF!IES» GENE/Fl ||l||\\l||l||||\|||l|\\||||||||lllllllllllllllll ASHER PERES PBEBIBSEI Department of Physics, Technion—Israel Institute of Technology, 32 000 Haifa, Israel Abstract — Various approaches to quantum chaos are reviewed and compared. It is not difficult to generate quantum evolutions (unitary mappings of Hilbert space) which are chaotic. Some of the algorithms achieving this result are quite formal and apparently devoid of physical interest. In the more promising approaches, the following property stands out: a quantum system whose classical analog is chaotic displays hypersensi tivity to small perturbations of its Hamiltonian. The long range evolution of such a system is unpredictable in the presence of small, uncontrollable perturbations. This unpredictability is the hallmark of physical chaos. INTRODUCTION The study of classical chaos is a mature and well understood discipline, covering a wide array of physical phenomena. On the other hand, the very existence of quantum chaos was until recently a controversial subject Indeed, the notion of chaos refers to the dynamical behavior as t —> oo, and has a fundamentally asymptotic character. On the other hand, for large enough but still finite times, the correspondence principle, which has undeniable heuristic value when we want to compare classical and quantum systems, fails for any nonlinear system In classical Hamiltonian dynamics, chaos arises because orbits may be unstable and errors in the initial data grow exponentially In quantum mechanics, the situation seems to be quite different. The dynamical law is a unitary evolution, 1/xt = U $0. Starting from a slightly different initial state 1,/26 yields 1/Jl = Ud}6, with the same unitary operator U. It follows that the scalar product of the perturbed and unperturbed states is constant: (1/1,,1%} : (1/JO , 1%}. In other words, small imperfections in the preparation of the initial state d0 uat grow. This elementary argument, however, is not convincing: if, instead of considering isolated classical trajectories, we use Liouville’s equation which describes an ensemble of classical systems, it readily follows from Koopman’s theorem [4] that the overlap of two different Liouville densities is constant in time, just as the overlap of two quantum wave functions, which also describe statistical ensembles. The mere constancy of this overlap therefore does not guarantee the absence of chaos. OCR Output in time, just as the overlap of two quantum wave functions, which also describe statistical ensembles. The mere constancy of this overlap therefore does not guarantee the absence of chaos. There is indeed a very simple way of generating a quantum chaos which closely parallels any type of classical chaos Consider an autonomous dynamical system obeying the equations of motion dmk/dt:V(a:1,...,xN),k k:1,...,N. (1) lf N 2 3, such a system may be chaotic. Irrespective of its physical nature, it is always formally possible to introduce a Hamiltonian, H:EVk(xl,...,xN)pk, (2) where the pk are new variables, defined to be canonically conjugate to the :1:k. This Hamiltonian obviously gives Eq. (1) as the law of motion. (Note that the Lagrangian, L E Z pk ick ——H, is numerically equal to zero. This is a highly constrained canonical system.) Quantization may then proceed as usual by the introduction of a wave function $(:101, . ,:1:N) and the substitution pk —>—i7i3/Oxk. We then still have Eq. (1) as the Heisenberg equation of motion for the operators wk, and since the latter commute (and therefore can be simultaneously diagonalized) any chaos in the solution of the classical equations (1) will be reflected as chaos in the time evolution of the expectation values We thus see that there is no formal incompatibility between quantum theory and chaos. The only relevant question is whether chaos can be found in “natural” quantum systems (in particular, in those which are experimentally observable) just as we encounter chaos in ordinary planetary systems, or in fluid mechanics. For example, a classical model of the lithium atom is chaotic; l1ow is this fact reflected in the properties of real lithium atoms? QUANTUM ASPECTS OF CLASSICAL CHAOS A quantum state is not the analog of a point in the classical phase space. The classical analog of a quantum state is a Liouville probability density. lf two Liouville functions are initially concentrated around neighboring points, and have some overlap, that overlap remains constant in time, by virtue of Koopman’s theorem Each one of tl1e Liouville functions may become distorted beyond description, until all phase space appears thoroughly mixed when seen on a coarse scale; yet, the overlap of these functions remains constant. However, the interesting problem is not how a Liouville probability density, which was initially given, will later overlap with the tortuous domain covered by the time evolution of another, initially given Liouville density. The experimentally relevant question is how each one of these time dependent domains overlaps with a fixed domain of phase space. ln a classical chaotic system, the final probability density, seen on a coarse scale, is homogeneous and roughly independent of the initial conditions. This property is called mixing. OCR Output Turning now to quantum theory, we may inquire whether Wigner’s function [6] WM, P) = (rh)`N / z>(q — rl q + r) €2"’""’” dr, (3) which is the quantum analog of a Liouville density, is also subject to mixing. The answer is negative: Wl (q, p) has a much smoother time evolution than a Liouville function In particular, it can never develop contorted substructures on scales smaller than 71. Therefore, Wigner’s function VV(q, p) does not possess the mixing property, as defined above. In general, it is found empirically, by numerical simulations, that quantum mechanics tends to suppress the appearance of chaos. Quantum wave packets may remain localized, even when classical orbits are strongly chaotic, because the breakup of KAM (Kolmogorov-Arnol’d—Moser) surfaces starts in limited regions, and the remnants of these surfaces effectively act as barriers to quantum wave packet motion while permitting extensive classical flow A similar phenomenon appea.rs in simple models where the Hamiltonian includes a time~dependent perturbation In these models, which may have a single degree of freedom, the physical system is prepared in a state involving only one, or at most a few energy levels of the unperturbed Hamiltonian. One then finds that the time evolution of the quantum system involves only a few more neighboring energy levels, so that the energy remains "localized” in a narrow domain, even though no vestige remains of the KAM manifolds, the corresponding classical evolution is chaotic, and the classical energy increases without bound in a diffusive way [10]. As a consequence of this energy "localization,” the quantum motion is almost periodic and the initial state recurs repeatedly [11], as it would for a ti1ne—independent Hamiltonian with a point spectrum. The peculiarity here is not the recurrence itself, which is similar to that in a Poincaré cycle [12], and is completed only after an inordinately long time, but the fact that the quantum state after an arbitrarily long time can be computed accurately with a finite amount of work. This suggests a curious paradox [13]. Rather than computing a classically chaotic orbit by numeri cal integration of Hamilton’s equations, we could quantize in the standard way the classical Hamiltonian (with an arbitrarily low, but finite value of li) and then integrate the Schrodinger equation in order to follow the motion of a small wave packet. For example, we could integrate the evolution of the solar system for trillions of years, by assuming that the Sun and the planets, and all their moons, and all the asteroids, are point particles with constant and exactly known masses, and by replacing these classical points by Gaussian wave packets of optimum size. Could this be a less complex task (for t —+ oo) than the direct integration of Hamilton’s equations? Unfortunately, nothing can be gained by this subterfuge, because the initial quantum state from which we obtain the final wave packet is not itself a small wave packet, but is likely to be spread throughout all the accessible phase space. lf we want a genuine quantum simulation of a classical orbit of total duration t, we must start from a wave packet of size Aq ~ e’L‘(Aq)nna; and Ap ~ e“L’(Ap)nm;, where L is the Lyapunov exponent. Then, for a given value of the final uncertainty, the initial Aq Ap OCR Output must behave as exp(—2Lt), and this requires using a fake h which decreases as exp(—2Lt). As a consequence, we must take into account an increasing number of states, because the smaller Ti, the larger the density of energy levels for a given energy. A detailed analysis [13] then shows that the number of terms needed in the expansion into energy eigenstates increases exponentially with t, with at least the same Lyapunov exponent as for the classical problem. We thus see that if we attach to the word “chaos” the meaning that the computational complexity of a dynamical evolution increases faster than the actual duration of the motion (so that long range predictions are impossible, except statistically), then a genuine quantum system, with fixed Ti and a discrete energy spectrum, is never chaotic. On the other hand, if we want the correspondence principle to hold for a classically chaotic system, all we have to do is to use a fake value of h which decreases as e`2L’, where t is the total duration of the motion. It is crucial to specify which limit is taken first, t -—> oo or Ti —> 0 [14].
Recommended publications
  • Quantum Chaos in Rydberg Atoms In.Strong Fields by Hong Jiao
    Experimental and Theoretical Aspects of Quantum Chaos in Rydberg Atoms in.Strong Fields by Hong Jiao B.S., University of California, Berkeley (1987) M.S., California Institute of Technology (1989) Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 1996 @ Massachusetts Institute of Technology 1996. All rights reserved. Signature of Author. Department of Physics U- ge December 4, 1995 Certified by.. Daniel Kleppner Lester Wolfe Professor of Physics Thesis Supervisor Accepted by. ;AssAGiUS. rrS INSTITU It George F. Koster OF TECHNOLOGY Professor of Physics FEB 1411996 Chairman, Departmental Committee on Graduate Students LIBRARIES 8 Experimental and Theoretical Aspects of Quantum Chaos in Rydberg Atoms in Strong Fields by Hong Jiao Submitted to the Department of Physics on December 4, 1995, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract We describe experimental and theoretical studies of the connection between quantum and classical dynamics centered on the Rydberg atom in strong fields, a disorderly system. Primary emphasis is on systems with three degrees of freedom and also the continuum behavior of systems with two degrees of freedom. Topics include theoret- ical studies of classical chaotic ionization, experimental observation of bifurcations of classical periodic orbits in Rydberg atoms in parallel electric and magnetic fields, analysis of classical ionization and semiclassical recurrence spectra of the diamagnetic Rydberg atom in the positive energy region, and a statistical analysis of quantum manifestation of electric field induced chaos in Rydberg atoms in crossed electric and magnetic fields.
    [Show full text]
  • The Emergence of Chaos in Quantum Mechanics
    S S symmetry Article The Emergence of Chaos in Quantum Mechanics Emilio Fiordilino Dipartimento di Fisica e Chimica—Emilio Segrè, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy; emilio.fi[email protected] Received: 4 April 2020; Accepted: 7 May 2020; Published: 8 May 2020 Abstract: Nonlinearity in Quantum Mechanics may have extrinsic or intrinsic origins and is a liable route to a chaotic behaviour that can be of difficult observations. In this paper, we propose two forms of nonlinear Hamiltonian, which explicitly depend upon the phase of the wave function and produce chaotic behaviour. To speed up the slow manifestation of chaotic effects, a resonant laser field assisting the time evolution of the systems causes cumulative effects that might be revealed, at least in principle. The nonlinear Schrödinger equation is solved within the two-state approximation; the solution displays features with characteristics similar to those found in chaotic Classical Mechanics: sensitivity on the initial state, dense power spectrum, irregular filling of the Poincaré map and exponential separation of the trajectories of the Bloch vector s in the Bloch sphere. Keywords: nonlinear Schrödinger equation; chaos; high order harmonic generation 1. Introduction The theory of chaos gained the role of a new paradigm of Science for explaining a large variety of phenomena by introducing the concept of unpredictability within the perimeter of Classical Physics. Chaos occurs when the trajectory of a particle is sensitive to the initial conditions and is produced by a nonlinear equation of motion [1]. As examples we quote the equation for the Duffing oscillator (1918) 3 mx¨ + gx˙ + rx = F cos(wLt) (1) or its elaborated form 3 mx¨ + gx˙ + kx + rx = F cos(wLt) (2) that are among the most studied equation of mathematical physics [1,2] and, as far as we know, cannot be analytically solved.
    [Show full text]
  • Signatures of Quantum Mechanics in Chaotic Systems
    entropy Article Signatures of Quantum Mechanics in Chaotic Systems Kevin M. Short 1,* and Matthew A. Morena 2 1 Integrated Applied Mathematics Program, Department of Mathematics and Statistics, University of New Hampshire, Durham, NH 03824, USA 2 Department of Mathematics, Christopher Newport University, Newport News, VA 23606, USA; [email protected] * Correspondence: [email protected] Received: 6 May 2019; Accepted: 19 June 2019; Published: 22 June 2019 Abstract: We examine the quantum-classical correspondence from a classical perspective by discussing the potential for chaotic systems to support behaviors normally associated with quantum mechanical systems. Our main analytical tool is a chaotic system’s set of cupolets, which are highly-accurate stabilizations of its unstable periodic orbits. Our discussion is motivated by the bound or entangled states that we have recently detected between interacting chaotic systems, wherein pairs of cupolets are induced into a state of mutually-sustaining stabilization that can be maintained without external controls. This state is known as chaotic entanglement as it has been shown to exhibit several properties consistent with quantum entanglement. For instance, should the interaction be disturbed, the chaotic entanglement would then be broken. In this paper, we further describe chaotic entanglement and go on to address the capacity for chaotic systems to exhibit other characteristics that are conventionally associated with quantum mechanics, namely analogs to wave function collapse, various entropy definitions, the superposition of states, and the measurement problem. In doing so, we argue that these characteristics need not be regarded exclusively as quantum mechanical. We also discuss several characteristics of quantum systems that are not fully compatible with chaotic entanglement and that make quantum entanglement unique.
    [Show full text]
  • Chao-Dyn/9402001 7 Feb 94
    chao-dyn/9402001 7 Feb 94 DESY ISSN Quantum Chaos January Einsteins Problem of The study of quantum chaos in complex systems constitutes a very fascinating and active branch of presentday physics chemistry and mathematics It is not wellknown however that this eld of research was initiated by a question rst p osed by Einstein during a talk delivered in Berlin on May concerning Quantum Chaos the relation b etween classical and quantum mechanics of strongly chaotic systems This seems historically almost imp ossible since quantum mechanics was not yet invented and the phenomenon of chaos was hardly acknowledged by physicists in While we are celebrating the seventyfth anniversary of our alma mater the Frank Steiner Hamburgische Universitat which was inaugurated on May it is interesting to have a lo ok up on the situation in physics in those days Most I I Institut f urTheoretische Physik UniversitatHamburg physicists will probably characterize that time as the age of the old quantum Lurup er Chaussee D Hamburg Germany theory which started with Planck in and was dominated then by Bohrs ingenious but paradoxical mo del of the atom and the BohrSommerfeld quanti zation rules for simple quantum systems Some will asso ciate those years with Einsteins greatest contribution the creation of general relativity culminating in the generally covariant form of the eld equations of gravitation which were found by Einstein in the year and indep endently by the mathematician Hilb ert at the same time In his talk in May Einstein studied the
    [Show full text]
  • Feynman Quantization
    3 FEYNMAN QUANTIZATION An introduction to path-integral techniques Introduction. By Richard Feynman (–), who—after a distinguished undergraduate career at MIT—had come in as a graduate student to Princeton, was deeply involved in a collaborative effort with John Wheeler (his thesis advisor) to shake the foundations of field theory. Though motivated by problems fundamental to quantum field theory, as it was then conceived, their work was entirely classical,1 and it advanced ideas so radicalas to resist all then-existing quantization techniques:2 new insight into the quantization process itself appeared to be called for. So it was that (at a beer party) Feynman asked Herbert Jehle (formerly a student of Schr¨odinger in Berlin, now a visitor at Princeton) whether he had ever encountered a quantum mechanical application of the “Principle of Least Action.” Jehle directed Feynman’s attention to an obscure paper by P. A. M. Dirac3 and to a brief passage in §32 of Dirac’s Principles of Quantum Mechanics 1 John Archibald Wheeler & Richard Phillips Feynman, “Interaction with the absorber as the mechanism of radiation,” Reviews of Modern Physics 17, 157 (1945); “Classical electrodynamics in terms of direct interparticle action,” Reviews of Modern Physics 21, 425 (1949). Those were (respectively) Part III and Part II of a projected series of papers, the other parts of which were never published. 2 See page 128 in J. Gleick, Genius: The Life & Science of Richard Feynman () for a popular account of the historical circumstances. 3 “The Lagrangian in quantum mechanics,” Physicalische Zeitschrift der Sowjetunion 3, 64 (1933). The paper is reprinted in J.
    [Show full text]
  • High Energy Physics Quantum Information Science Awards Abstracts
    High Energy Physics Quantum Information Science Awards Abstracts Towards Directional Detection of WIMP Dark Matter using Spectroscopy of Quantum Defects in Diamond Ronald Walsworth, David Phillips, and Alexander Sushkov Challenges and Opportunities in Noise‐Aware Implementations of Quantum Field Theories on Near‐Term Quantum Computing Hardware Raphael Pooser, Patrick Dreher, and Lex Kemper Quantum Sensors for Wide Band Axion Dark Matter Detection Peter S Barry, Andrew Sonnenschein, Clarence Chang, Jiansong Gao, Steve Kuhlmann, Noah Kurinsky, and Joel Ullom The Dark Matter Radio‐: A Quantum‐Enhanced Dark Matter Search Kent Irwin and Peter Graham Quantum Sensors for Light-field Dark Matter Searches Kent Irwin, Peter Graham, Alexander Sushkov, Dmitry Budke, and Derek Kimball The Geometry and Flow of Quantum Information: From Quantum Gravity to Quantum Technology Raphael Bousso1, Ehud Altman1, Ning Bao1, Patrick Hayden, Christopher Monroe, Yasunori Nomura1, Xiao‐Liang Qi, Monika Schleier‐Smith, Brian Swingle3, Norman Yao1, and Michael Zaletel Algebraic Approach Towards Quantum Information in Quantum Field Theory and Holography Daniel Harlow, Aram Harrow and Hong Liu Interplay of Quantum Information, Thermodynamics, and Gravity in the Early Universe Nishant Agarwal, Adolfo del Campo, Archana Kamal, and Sarah Shandera Quantum Computing for Neutrino‐nucleus Dynamics Joseph Carlson, Rajan Gupta, Andy C.N. Li, Gabriel Perdue, and Alessandro Roggero Quantum‐Enhanced Metrology with Trapped Ions for Fundamental Physics Salman Habib, Kaifeng Cui1,
    [Show full text]
  • Introduction to Mathematical Aspects of Quantum Chaos - Dieter Mayer
    MATHEMATICS: CONCEPTS, AND FOUNDATIONS - Introduction To Mathematical Aspects of Quantum Chaos - Dieter Mayer INTRODUCTION TO MATHEMATICAL ASPECTS OF QUANTUM CHAOS Dieter Mayer University of Clausthal, Clausthal-Zellerfeld, Germany Keywords: arithmetic quantum chaos, Anosov system, Berry-Tabor conjecture, Bohigas-Giannoni-Schmit conjecture, classically chaotic system, classically integrable system, geodesic flow, Hecke operator, Hecke cusp eigenfunction, holomorphic modular form, invariant tori, Kolmogorov-Sinai entropy, Laplace-Beltrami operator, L- functions, Maass wave form, microlocal lift, quantization of Hamiltonian flow, quantization of torus maps, quantum chaos, quantum ergodicity, quantum limit, quantum unique ergodicity, random matrix theory, Rudnick-Sarnak conjecture, semiclassical limit, semiclassical measure, sensitivity in initial conditions, spectral statistics,Wignerdistribution,zetafunctions Contents 1. Introduction 2. Spectral Statistics of Quantum Systems with Integrable Classical Limit 3. Spectral Statistics of Quantum Systems with Chaotic Classical Limit 4. The Morphology of High Energy Eigenstates and Quantum Unique Ergodicity 5. Quantum Ergodicity for Symplectic Maps 6. Further Reading Glossary Bibliography Biographical Sketch Summary This is a review of rigorous results obtained up to now in the theory of quantum chaos and also of the basic methods used thereby. This theory started from several conjectures about the way how the behavior of a quantum system is influenced by its classical limit being integrable or
    [Show full text]
  • Chapter 3 Feynman Path Integral
    Chapter 3 Feynman Path Integral The aim of this chapter is to introduce the concept of the Feynman path integral. As well as developing the general construction scheme, particular emphasis is placed on establishing the interconnections between the quantum mechanical path integral, classical Hamiltonian mechanics and classical statistical mechanics. The practice of path integration is discussed in the context of several pedagogical applications: As well as the canonical examples of a quantum particle in a single and double potential well, we discuss the generalisation of the path integral scheme to tunneling of extended objects (quantum fields), dissipative and thermally assisted quantum tunneling, and the quantum mechanical spin. In this chapter we will temporarily leave the arena of many–body physics and second quantisation and, at least superficially, return to single–particle quantum mechanics. By establishing the path integral approach for ordinary quantum mechanics, we will set the stage for the introduction of functional field integral methods for many–body theories explored in the next chapter. We will see that the path integral not only represents a gateway to higher dimensional functional integral methods but, when viewed from an appropriate perspective, already represents a field theoretical approach in its own right. Exploiting this connection, various techniques and concepts of field theory, viz. stationary phase analyses of functional integrals, the Euclidean formulation of field theory, instanton techniques, and the role of topological concepts in field theory will be motivated and introduced in this chapter. 3.1 The Path Integral: General Formalism Broadly speaking, there are two basic approaches to the formulation of quantum mechan- ics: the ‘operator approach’ based on the canonical quantisation of physical observables Concepts in Theoretical Physics 64 CHAPTER 3.
    [Show full text]
  • On the Possibility of Nonlinearities and Chaos Underlying Quantum Mechanics
    On the Possibility of Nonlinearities and Chaos Underlying Quantum Mechanics Wm. C. McHarris Departments of Chemistry and Physics/Astronomy Michigan State University East Lansing, MI 48824, USA E-mail: [email protected] Abstract Some of the so-called imponderables and counterintuitive puzzles associated with the Copenhagen interpretation of quantum mechanics appear to have alternate, parallel explanations in terms of nonlinear dynamics and chaos. These include the mocking up of exponential decay in closed systems, possible nonlinear exten- sions of Bell’s inequalities, spontaneous symmetry breaking and the existence of intrinsically preferred internal oscillation modes (quantization) in nonlinear systems, and perhaps even the produc- tion of diffraction-like patterns by “order in chaos.” The existence of such parallel explanations leads to an empirical, quasi- experimental approach to the question of whether or not there might be fundamental nonlinearities underlying quantum mechan- ics. This will be contrasted with recent more theoretical ap- proaches, in which nonlinear extensions have been proposed rather as corrections to a fundamentally linear quantum mechanics. Sources of nonlinearity, such as special relativity and the mea- surement process itself, will be investigated, as will possible impli- cations of nonlinearities for entanglement and decoherence. It is conceivable that in their debates both Einstein and Bohr could have been right—for chaos provides the fundamental determinism fa- vored by Einstein, yet for practical measurements it requires the probabilistic interpretation of the Bohr school. 2 I. Introduction Ever since the renaissance of science with Galileo and Newton, scientists— and physicists, in particular—have been unabashed reductionists. Complex prob- lems have been disassembled into their simpler and more readily analyzable com- ponent parts, which have been further dissected and analyzed, without foreseeable end.
    [Show full text]
  • About the Concept of Quantum Chaos
    entropy Concept Paper About the Concept of Quantum Chaos Ignacio S. Gomez 1,*, Marcelo Losada 2 and Olimpia Lombardi 3 1 National Scientific and Technical Research Council (CONICET), Facultad de Ciencias Exactas, Instituto de Física La Plata (IFLP), Universidad Nacional de La Plata (UNLP), Calle 115 y 49, 1900 La Plata, Argentina 2 National Scientific and Technical Research Council (CONICET), University of Buenos Aires, 1420 Buenos Aires, Argentina; [email protected] 3 National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Larralde 3440, 1430 Ciudad Autónoma de Buenos Aires, Argentina; olimpiafi[email protected] * Correspondence: nachosky@fisica.unlp.edu.ar; Tel.: +54-11-3966-8769 Academic Editors: Mariela Portesi, Alejandro Hnilo and Federico Holik Received: 5 February 2017; Accepted: 23 April 2017; Published: 3 May 2017 Abstract: The research on quantum chaos finds its roots in the study of the spectrum of complex nuclei in the 1950s and the pioneering experiments in microwave billiards in the 1970s. Since then, a large number of new results was produced. Nevertheless, the work on the subject is, even at present, a superposition of several approaches expressed in different mathematical formalisms and weakly linked to each other. The purpose of this paper is to supply a unified framework for describing quantum chaos using the quantum ergodic hierarchy. Using the factorization property of this framework, we characterize the dynamical aspects of quantum chaos by obtaining the Ehrenfest time. We also outline a generalization of the quantum mixing level of the kicked rotator in the context of the impulsive differential equations. Keywords: quantum chaos; ergodic hierarchy; quantum ergodic hierarchy; classical limit 1.
    [Show full text]
  • Quantum Information Processing with Superconducting Circuits: a Review
    Quantum Information Processing with Superconducting Circuits: a Review G. Wendin Department of Microtechnology and Nanoscience - MC2, Chalmers University of Technology, SE-41296 Gothenburg, Sweden Abstract. During the last ten years, superconducting circuits have passed from being interesting physical devices to becoming contenders for near-future useful and scalable quantum information processing (QIP). Advanced quantum simulation experiments have been shown with up to nine qubits, while a demonstration of Quantum Supremacy with fifty qubits is anticipated in just a few years. Quantum Supremacy means that the quantum system can no longer be simulated by the most powerful classical supercomputers. Integrated classical-quantum computing systems are already emerging that can be used for software development and experimentation, even via web interfaces. Therefore, the time is ripe for describing some of the recent development of super- conducting devices, systems and applications. As such, the discussion of superconduct- ing qubits and circuits is limited to devices that are proven useful for current or near future applications. Consequently, the centre of interest is the practical applications of QIP, such as computation and simulation in Physics and Chemistry. Keywords: superconducting circuits, microwave resonators, Josephson junctions, qubits, quantum computing, simulation, quantum control, quantum error correction, superposition, entanglement arXiv:1610.02208v2 [quant-ph] 8 Oct 2017 Contents 1 Introduction 6 2 Easy and hard problems 8 2.1 Computational complexity . .9 2.2 Hard problems . .9 2.3 Quantum speedup . 10 2.4 Quantum Supremacy . 11 3 Superconducting circuits and systems 12 3.1 The DiVincenzo criteria (DV1-DV7) . 12 3.2 Josephson quantum circuits . 12 3.3 Qubits (DV1) .
    [Show full text]
  • Redalyc.Quantum Chaos, Dynamical Stability and Decoherence
    Brazilian Journal of Physics ISSN: 0103-9733 [email protected] Sociedade Brasileira de Física Brasil Casati, Giulio; Prosen, Tomaz Quantum chaos, dynamical stability and decoherence Brazilian Journal of Physics, vol. 35, núm. 2A, june, 2005, pp. 233-241 Sociedade Brasileira de Física Sâo Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=46435206 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Brazilian Journal of Physics, vol. 35, no. 2A, June, 2005 233 Quantum Chaos, Dynamical Stability and Decoherence Giulio Casati1;2;3 and Tomazˇ Prosen4 1 Center for Nonlinear and Complex Systems, Universita’ degli Studi dell’Insubria, 22100 Como, Italy 2 Istituto Nazionale per la Fisica della Materia, unita’ di Como, 22100 Como, Italy, 3 Istituto Nazionale di Fisica Nucleare, sezione di Milano, 20133 Milano, Italy, 4 Department of Physics, Faculty of mathematics and physics, University of Ljubljana, 1000 Ljubljana, Slovenia, Received on 20 February, 2005 We discuss the stability of quantum motion under system’s perturbations in the light of the corresponding classical behavior. In particular we focus our attention on the so called “fidelity” or Loschmidt echo, its rela- tion with the decay of correlations, and discuss the quantum-classical correspondence. We then report on the numerical simulation of the double-slit experiment, where the initial wave-packet is bounded inside a billiard domain with perfectly reflecting walls. If the shape of the billiard is such that the classical ray dynamics is reg- ular, we obtain interference fringes whose visibility can be controlled by changing the parameters of the initial state.
    [Show full text]