562 a 22Q11.2 Deletion That Excludes UFD1L and CDC45L in a Patient

Total Page:16

File Type:pdf, Size:1020Kb

562 a 22Q11.2 Deletion That Excludes UFD1L and CDC45L in a Patient 562 Letters to the Editor L, Schwartz C, et al. (1997) Determination of the genomic phenotype (Shaikh et al. 1999; Yamagishi et al. 1999). structure of the XNP/ATR-X gene, encoding a potential zinc- However, several of the aforementioned patients (some finger helicase. Genomics 43:149–155 of whom have cardiac and craniofacial defects) have Villard L, Saugier-Veber P, Gecz J, Matte´i JF, Munnich A, Lyon- deletions that do not include the region containing these net S, Fonte´s M (1996b) XNP mutation in a large family genes. These observations suggest that additional se- with Juberg-Marsidi syndrome. Nat Genet 12:359–360 quences within the TDR affect early craniofacial and Villard L, Toutain A, Lossi AM, Gecz J, Houdayer C, Moraine C, Fonte´s M (1996c) Splicing mutation in the ATR-X gene cardiac morphogenesis. Additionally, a patient with fea- can lead to a mental retardation phenotype without alpha- tures of DGS and with a microdeletion that falls outside thalassemia. Am J Hum Genet 58:499–505 the TDR but that does not overlap with any of the known deletions was recently described (Rauch et al. Address for correspondence and reprints: Dr. M. Fonte´s, INSERM U491, 1999). This patient had craniofacial abnormalities and Faculte´deMe´decine La Timone, 27 Boulevard J. Moulin 13385 Marseille Cedex 5, France; E-mail: [email protected] an interrupted aortic arch (type B) with truncus arter- *The first two authors contributed equally to this work. iosus, the same defect seen in the patient described by ᭧ 1999 by The American Society of Human Genetics. All rights reserved. Yamagishi et al. (1999). The report by Rauch et al. fur- 0002-9297/99/6502-0033$02.00 ther emphasizes the likelihood that the 22q11.2-related cardiac defects are unlikely to result from defects in- volving a single gene within the TDR. We have identified a patient, CH98-18 (Emanuel et Am. J. Hum. Genet. 65:562–566, 1999 al. 1998), with a novel deletion of chromosome 22q11.2. His deletion is distal to the usual 3-Mb deletion found in most patients with VCFS and appears to overlap with A 22q11.2 Deletion That Excludes UFD1L and a portion of the deleted region described by Rauch et CDC45L in a Patient with Conotruncal and al. (1999). The deletion does not overlap with any Craniofacial Defects of the previously described “minimal critical regions” for VCFS/DGS. The patient was born to a 33-year-old To the Editor: mother at 35 wk gestation. The pregnancy was com- Microdeletions of chromosome 22q11.2 occur with a plicated by a weight gain of 70 lbs and premature rup- high frequency in the general population, with an esti- ture of membranes. The baby was delivered by cesarean mated incidence of 1/3,000–1/4,000 (Burn and Good- section, because of breech presentation, with Apgar ship 1996). They have been shown to be associated with scores of 7 at 1 min and 8 at 5 min. Physical examination the malformation phenotypes of velocardiofacial syn- at birth was notable for an appropriate-for-gestational- drome (VCFS [MIM 192430]), DiGeorge syndrome age infant with hypertelorism, posteriorly rotated ears, (DGS [MIM 188400]), and conotruncal anomaly face micrognathia, a loud cardiac murmur, hypospadias, de- syndrome (CAFS [MIM 217095]) (Emanuel et al. scended testes, single palmar creases, and 5th-finger cli- 1999a). Deletions of this region have also been dem- nodactyly bilaterally. Renal and cranial ultrasounds onstrated in some patients with the autosomal dominant were normal. Echocardiography showed the presence of form of Opitz G/BBB syndrome (MIM 145410) truncus arteriosus type II and a ventricular septal defect. (McDonald-McGinn et al. 1995). Significant phenotypic Borderline hypocalcemia was also present. The patient overlap is found among these entities, including cono- had surgical repair of his truncus arteriosus at age 3 wk truncal cardiac defects, craniofacial anomalies, learning and a replacement graft at age 7 mo. disabilities, and cleft palate. The spectrum of clinical Motor development was normal. The patient sat at findings shows considerable variability, even within fam- age 6 mo and walked at age 14 mo. However, he had ilies (McLean et al. 1993). expressive-speech delay, speaking his first words at age Although the overwhelming majority (185%) of pa- 21 mo. At age 26 mo, he had speech appropriate for an tients have deletions of the same ∼3-Mb region (Emanuel 18-month-old. During a recent physical examination at et al. 1999a), several reports have described patients age 26 mo (fig. 1), short stature, microcephaly, a prom- with atypical, shorter deleted segments nested within the inent glabella, partially attached earlobes, a broad nasal large typically deleted region (TDR) (Levy et al. 1995; bridge, a broad nasal tip with a crease, hypoplastic nasal Kurahashi et al. 1996; O’Donnell et al. 1997; McQuade alae, anteverted nares, a featureless philtrum, a down- et al. 1999). Recently, a small, 20-kb deletion within the turned mouth, a bifid uvula, and normal hearing and TDR was reported in a patient with a classic VCFS/DGS vision were noted. Endocrine evaluation including thy- phenotype. This smaller deletion disrupts the UFD1L roid-function and growth-hormone panels was unre- and CDC45L genes, the products of which (in particular, markable. Immunologic studies including surface mark- UFD1L) have been suggested to play important roles in ers for T-cell, B-cell, and NK lineages, myeloid markers, craniofacial and cardiac development resulting in the leukocyte adhesion, and Wiskott-Aldrich–associated Letters to the Editor 563 Figure 1 Photographs of patient CH98-18 at age 26 mo. Note hypertelorism, broad nose, and micrognathia. proteins were all normal. Proliferative responses to mito- in the mechanism etiologic for the 22q11.2 deletions gen-stimulation tests were also normal, as were function- (Emanuel et al. 1998, 1999b; Edelmann et al. 1999). al-antibody responses. We predicted, on the basis of the presence of additional GTG-banded chromosomes prepared directly from BCRL and GGTL duplicated sequences distal to the peripheral-blood lymphocytes showed a normal 46,XY TDR, that CH98-18’s deletion might involve one of karyotype, and FISH was negative for a deletion when these elements. Thus, the extent of his deletion was inves- the N25 (Oncor) probe was used (fig. 2A). In addition, tigated on the basis of the map of the region immediately CH98-18 did not have a deletion for a number of other distal to the TDR. This region contains the immuno- cosmid-based FISH markers within the TDR, including globulin-l light-chain locus (IGLL), within which are D22S788, ZNF74, HCF2, and cHKAD26 (fig. 2B) located BCRL4 and a copy of GGTL (Kawasaki et al. (Emanuel et al. 1998). With the exception of cHKAD26, 1995). The IGLL locus has been completely character- cosmids used for FISH were isolated by colony hybrid- ized in a cosmid contig (Kawasaki et al. 1995) and has ization from the chromosome 22–specific cosmid library been sequenced (Kawasaki et al. 1997). Using the cosmid (LL22NCO3) generated at the Lawrence Livermore Lab- and sequence reagents, we moved distally from D22S801 oratories. The cosmid that contains the cHKAD26 locus (LN80) into the IGLL to detect the deletion end point was provided by the Japanese Cancer Research Re- (DEP). To insure that the germline genomic configura- sources Bank. A cosmid, 83C5, containing the portions tion of this region was being investigated, all studies of the UFD1L and CDC45L genes deleted in the patient were performed on cultured peripheral-blood lympho- of Yamagishi et al. (Shaikh et al. 1999) was also used cytes. We determined that, although cosmid 61E11 is for FISH and was not deleted (data not shown). We deleted, 102D1 is the first cosmid not deleted in CH98- determined that a cosmid located distally in the TDR 18 (fig. 2A and B). In the sequenced contig, these cos- (107D7) was not deleted (fig. 2B). Because the clinical mids are separated by ∼40 kb that contain BCRL4 and findings in the patient, including truncus arteriosus, a GGTL. Using DNA sequence information for 102D1, bifid uvula, hypoplastic alar nasi, and a history of hy- we designed PCR-based 2.0-kb FISH probes and deter- pocalcemia, were consistent with those seen in VCFS, mined that both ends of this cosmid, which is immedi- additional analysis was undertaken. Use of a series of ately distal to the BCRL4/GGTL duplicated sequence in cosmid and bacterial artificial-chromosome–derived the IGLL locus, are present (GenBank). These probes are probes for FISH demonstrated, initially with a cosmid present, then, on both homologues. Results for one of for locus D22S801, that a deletion adjacent to the TDR these probes are shown in figure 2A. Thus, our patient’s was present (fig. 2A,b and B). Both of CH98-18’s par- telomeric DEP involves a duplicated-sequence block that ents were analyzed by FISH with the cosmid for contains BCRL4 and GGTL sequences. The presence of D22S801 and were found not to have a deletion, indi- a DEP in the vicinity of the BCRL4/GGTL duplication cating a de novo origin of the deletion. suggests unequal crossing-over in the formation of the We and others have implicated blocks of duplicated patient’s deletion. Additional cosmids distal to 102D1 DNA sequence containing BCRL and GGTL elements were examined by FISH, and all were present on both Figure 2 A, Dual-color FISH for DEP positioning in patient CH98-18. All metaphase spreads are hybridized with a control cosmid containing the distal marker D22S39. D22S39 was biotinylated and detected with avidin-FITC to identify chromosome 22 (seen at the telomeric end of chromosome 22, in all panels [green]).
Recommended publications
  • New Approaches to Functional Process Discovery in HPV 16-Associated Cervical Cancer Cells by Gene Ontology
    Cancer Research and Treatment 2003;35(4):304-313 New Approaches to Functional Process Discovery in HPV 16-Associated Cervical Cancer Cells by Gene Ontology Yong-Wan Kim, Ph.D.1, Min-Je Suh, M.S.1, Jin-Sik Bae, M.S.1, Su Mi Bae, M.S.1, Joo Hee Yoon, M.D.2, Soo Young Hur, M.D.2, Jae Hoon Kim, M.D.2, Duck Young Ro, M.D.2, Joon Mo Lee, M.D.2, Sung Eun Namkoong, M.D.2, Chong Kook Kim, Ph.D.3 and Woong Shick Ahn, M.D.2 1Catholic Research Institutes of Medical Science, 2Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul; 3College of Pharmacy, Seoul National University, Seoul, Korea Purpose: This study utilized both mRNA differential significant genes of unknown function affected by the display and the Gene Ontology (GO) analysis to char- HPV-16-derived pathway. The GO analysis suggested that acterize the multiple interactions of a number of genes the cervical cancer cells underwent repression of the with gene expression profiles involved in the HPV-16- cancer-specific cell adhesive properties. Also, genes induced cervical carcinogenesis. belonging to DNA metabolism, such as DNA repair and Materials and Methods: mRNA differential displays, replication, were strongly down-regulated, whereas sig- with HPV-16 positive cervical cancer cell line (SiHa), and nificant increases were shown in the protein degradation normal human keratinocyte cell line (HaCaT) as a con- and synthesis. trol, were used. Each human gene has several biological Conclusion: The GO analysis can overcome the com- functions in the Gene Ontology; therefore, several func- plexity of the gene expression profile of the HPV-16- tions of each gene were chosen to establish a powerful associated pathway, identify several cancer-specific cel- cervical carcinogenesis pathway.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • UFD1 Mouse Monoclonal Antibody [Clone ID: OTI4C7] Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA804306 UFD1 Mouse Monoclonal Antibody [Clone ID: OTI4C7] Product data: Product Type: Primary Antibodies Clone Name: OTI4C7 Applications: IHC, WB Recommended Dilution: WB 1:2000, IHC 1:150 Reactivity: Human Host: Mouse Isotype: IgG1 Clonality: Monoclonal Immunogen: Full length human recombinant protein of human UFD1L (NP_005650) produced in E.coli. Formulation: PBS (PH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Concentration: 1 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 34.3 kDa Gene Name: ubiquitin fusion degradation 1 like (yeast) Database Link: NP_005650 Entrez Gene 7353 Human Q92890 Background: The protein encoded by this gene forms a complex with two other proteins, nuclear protein localization-4 and valosin-containing protein, and this complex is necessary for the degradation of ubiquitinated proteins. In addition, this complex controls the disassembly of the mitotic spindle and the formation of a closed nuclear envelope after mitosis. Mutations in this gene have been associated with Catch 22 syndrome as well as cardiac and craniofacial defects. Alternative splicing results in multiple transcript variants encoding different isoforms. A related pseudogene has been identified on chromosome 18. [provided by RefSeq, Jun 2009] This product is to be used for laboratory only.
    [Show full text]
  • Discovery of a Molecular Glue That Enhances Uprmt to Restore
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.431525; this version posted February 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Discovery of a molecular glue that enhances UPRmt to restore proteostasis via TRKA-GRB2-EVI1-CRLS1 axis Authors: Li-Feng-Rong Qi1, 2 †, Cheng Qian1, †, Shuai Liu1, 2†, Chao Peng3, 4, Mu Zhang1, Peng Yang1, Ping Wu3, 4, Ping Li1 and Xiaojun Xu1, 2 * † These authors share joint first authorship Running title: Ginsenoside Rg3 reverses Parkinson’s disease model by enhancing mitochondrial UPR Affiliations: 1 State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China. 2 Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China. 3. National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China 4. Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, 201204, China. Corresponding author: Ping Li, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China. Email: [email protected], Xiaojun Xu, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China. Telephone number: +86-2583271203, E-mail: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.431525; this version posted February 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • A Catalog of Hemizygous Variation in 127 22Q11 Deletion Patients
    A catalog of hemizygous variation in 127 22q11 deletion patients. Matthew S Hestand, KU Leuven, Belgium Beata A Nowakowska, KU Leuven, Belgium Elfi Vergaelen, KU Leuven, Belgium Jeroen Van Houdt, KU Leuven, Belgium Luc Dehaspe, UZ Leuven, Belgium Joshua A Suhl, Emory University Jurgen Del-Favero, University of Antwerp Geert Mortier, Antwerp University Hospital Elaine Zackai, The Children's Hospital of Philadelphia Ann Swillen, KU Leuven, Belgium Only first 10 authors above; see publication for full author list. Journal Title: Human Genome Variation Volume: Volume 3 Publisher: Nature Publishing Group: Open Access Journals - Option B | 2016-01-14, Pages 15065-15065 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.1038/hgv.2015.65 Permanent URL: https://pid.emory.edu/ark:/25593/rncxx Final published version: http://dx.doi.org/10.1038/hgv.2015.65 Copyright information: © 2016 Official journal of the Japan Society of Human Genetics This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). Accessed September 28, 2021 7:41 PM EDT OPEN Citation: Human Genome Variation (2016) 3, 15065; doi:10.1038/hgv.2015.65 Official journal of the Japan Society of Human Genetics 2054-345X/16 www.nature.com/hgv ARTICLE A catalog of hemizygous variation in 127 22q11 deletion patients Matthew S Hestand1, Beata A Nowakowska1,2,Elfi Vergaelen1, Jeroen Van Houdt1,3, Luc Dehaspe3, Joshua A Suhl4, Jurgen Del-Favero5, Geert Mortier6, Elaine Zackai7,8, Ann Swillen1, Koenraad Devriendt1, Raquel E Gur8, Donna M McDonald-McGinn7,8, Stephen T Warren4, Beverly S Emanuel7,8 and Joris R Vermeesch1 The 22q11.2 deletion syndrome is the most common microdeletion disorder, with wide phenotypic variability.
    [Show full text]
  • UFD1 Rabbit Polyclonal Antibody – TA308249 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA308249 UFD1 Rabbit Polyclonal Antibody Product data: Product Type: Primary Antibodies Applications: IF, IHC, WB Recommended Dilution: ICC/IF:1:100-1:1000; IHC:1:100-1:1000; WB:1:5000-1:20000 Reactivity: Human (Predicted: Rhesus Monkey) Host: Rabbit Isotype: IgG Clonality: Polyclonal Immunogen: Recombinant fragment corresponding to a region within amino acids 1 and 307 of UFD1L (Uniprot ID#Q92890) Formulation: 0.1M Tris, 0.1M Glycine, 10% Glycerol (pH7). 0.01% Thimerosal was added as a preservative. Concentration: lot specific Purification: Purified by antigen-affinity chromatography. Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 35 kDa Gene Name: ubiquitin fusion degradation 1 like (yeast) Database Link: NP_001030324 Entrez Gene 7353 Human Q92890 Background: The protein encoded by this gene forms a complex with two other proteins, NPL4 and VCP, that is necessary for the degradation of ubiquitinated proteins. In addition, this complex controls the disassembly of the mitotic spindle and the formation of a closed nuclear envelope after mitosis. Mutations in this gene have been associated with Catch 22 syndrome as well as cardiac and craniofacial defects. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq] Synonyms: UFD1 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 3 UFD1 Rabbit Polyclonal Antibody – TA308249 Note: Seq homology of immunogen across species: Rhesus Monkey (100%) Product images: Sample (30 ug of whole cell lysate).
    [Show full text]
  • Structural and Functional Analysis of Disease-Linked P97 Atpase Mutant Complexes
    International Journal of Molecular Sciences Article Structural and Functional Analysis of Disease-Linked p97 ATPase Mutant Complexes Purbasha Nandi 1,† , Shan Li 2,† , Rod Carlo A. Columbres 2, Feng Wang 2, Dewight R. Williams 3, Yu-Ping Poh 2, Tsui-Fen Chou 2,* and Po-Lin Chiu 1,* 1 Biodesign Center for Applied Structural Discovery, School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA; [email protected] 2 Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; lfl[email protected] (S.L.); [email protected] (R.C.A.C.); [email protected] (F.W.); [email protected] (Y.-P.P.) 3 Eyring Materials Center, Arizona State University, Tempe, AZ 85287, USA; [email protected] * Correspondence: [email protected] (T.-F.C.); [email protected] (P.-L.C.) † These authors contributed equally to this work. Abstract: IBMPFD/ALS is a genetic disorder caused by a single amino acid mutation on the p97 ATPase, promoting ATPase activity and cofactor dysregulation. The disease mechanism underlying p97 ATPase malfunction remains unclear. To understand how the mutation alters the ATPase regulation, we assembled a full-length p97R155H with its p47 cofactor and first visualized their structures using single-particle cryo-EM. More than one-third of the population was the dodecameric form. Nucleotide presence dissociates the dodecamer into two hexamers for its highly elevated R155H function. The N-domains of the p97 mutant all show up configurations in ADP- or ATPgS- bound states. Our functional and structural analyses showed that the p47 binding is likely to impact Citation: Nandi, P.; Li, S.; Columbres, the p97R155H ATPase activities via changing the conformations of arginine fingers.
    [Show full text]
  • Modeling Chromosomes in Mouse to Explore the Function of Genes
    Review Modeling Chromosomes in Mouse to Explore the Function of Genes, Genomic Disorders, and Chromosomal Organization Ve´ronique Brault, Patricia Pereira, Arnaud Duchon, Yann He´rault* ABSTRACT chromosomes using microcell-mediated chromosome transfer (MMCT) offers the opportunity to study the function ne of the challenges of genomic research after the of large genes or clusters of genes and provides more and completion of the human genome project is to more mouse models to study human pathologies such as O assign a function to all the genes and to understand contiguous gene syndromes. In this review, we describe the their interactions and organizations. Among the various panel of techniques available for chromosome engineering in techniques, the emergence of chromosome engineering tools the mouse, some of their applications for studying gene with the aim to manipulate large genomic regions in the function and genomic organization and for modeling human mouse model offers a powerful way to accelerate the diseases, and the implications for future research. discovery of gene functions and provides more mouse models to study normal and pathological developmental processes Chemical and Radiation-Induced Chromosome associated with aneuploidy. The combination of gene Rearrangements targeting in ES cells, recombinase technology, and other Historically, various types of rearrangements including techniques makes it possible to generate new chromosomes deletions, inversions, and reciprocal translocations were carrying specific and defined deletions, duplications, obtained through irradiation or chemical mutagenesis. Such inversions, and translocations that are accelerating functional chromosomal configurations are important tools for looking analysis. This review presents the current status of at recessive lethal mutations in mice [16] or to obtain mouse chromosome engineering techniques and discusses the models of partial aneuploidy.
    [Show full text]
  • S12920-021-01005-X.Pdf
    Tkatchenko and Tkatchenko BMC Med Genomics (2021) 14:153 https://doi.org/10.1186/s12920-021-01005-x RESEARCH Open Access Genome-wide analysis of retinal transcriptome reveals common genetic network underlying perception of contrast and optical defocus detection Tatiana V. Tkatchenko1 and Andrei V. Tkatchenko1,2,3* Abstract Background: Refractive eye development is regulated by optical defocus in a process of emmetropization. Excessive exposure to negative optical defocus often leads to the development of myopia. However, it is still largely unknown how optical defocus is detected by the retina. Methods: Here, we used genome-wide RNA-sequencing to conduct analysis of the retinal gene expression network underlying contrast perception and refractive eye development. Results: We report that the genetic network subserving contrast perception plays an important role in optical defo- cus detection and emmetropization. Our results demonstrate an interaction between contrast perception, the retinal circadian clock pathway and the signaling pathway underlying optical defocus detection. We also observe that the relative majority of genes causing human myopia are involved in the processing of optical defocus. Conclusions: Together, our results support the hypothesis that optical defocus is perceived by the retina using con- trast as a proxy and provide new insights into molecular signaling underlying refractive eye development. Keywords: Refractive eye development, Myopia, Contrast perception, Optical defocus, Circadian rhythms, Signaling pathways, Gene expression profling, Genetic network, RNA-seq Background compensate for imposed defocus very accurately by Refractive eye development is controlled by both envi- modulating the growth of the posterior segment of the ronmental and genetic factors, which determine the eye via a developmental mechanism called bidirectional optical geometry of the eye and its refractive state by a emmetropization by the sign of optical defocus (BESOD), process called emmetropization [1–8].
    [Show full text]
  • Datasheet: VMA00205KT Product Details
    Datasheet: VMA00205KT Description: UFD1L ANTIBODY WITH CONTROL LYSATE Specificity: UFD1L Format: Purified Product Type: PrecisionAb™ Monoclonal Clone: OTI3F1 Isotype: IgG1 Quantity: 2 Westerns Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Species Cross Reacts with: Mouse, Rat Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Preparation 20μl Mouse monoclonal antibody purified by affinity chromatography from ascites. Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers 1% Bovine Serum Albumin 50% Glycerol Immunogen Full length recombinant human UFD1L (NP_005650) produced in E. coli External Database Links UniProt: Q92890 Related reagents Entrez Gene: 7353 UFD1L Related reagents Page 1 of 3 Specificity Mouse anti Human UFD1L antibody recognizes UFD1L, also known as UB fusion protein 1 and ubiquitin fusion degradation protein 1 homolog. The protein encoded by the UFD1L gene forms a complex with two other proteins, nuclear protein localization-4 and valosin-containing protein, and this complex is necessary for the degradation of ubiquitinated proteins.
    [Show full text]
  • STAT3 Targets Suggest Mechanisms of Aggressive Tumorigenesis in Diffuse Large B Cell Lymphoma
    STAT3 Targets Suggest Mechanisms of Aggressive Tumorigenesis in Diffuse Large B Cell Lymphoma Jennifer Hardee*,§, Zhengqing Ouyang*,1,2,3, Yuping Zhang*,4 , Anshul Kundaje*,†, Philippe Lacroute*, Michael Snyder*,5 *Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305; §Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520; and †Department of Computer Science, Stanford University School of Engineering, Stanford, CA 94305 1The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030 2Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269 3Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030 4Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT 06520 5Corresponding author: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305. Email: [email protected] DOI: 10.1534/g3.113.007674 Figure S1 STAT3 immunoblotting and immunoprecipitation with sc-482. Western blot and IPs show a band consistent with expected size (88 kDa) of STAT3. (A) Western blot using antibody sc-482 versus nuclear lysates. Lanes contain (from left to right) lysate from K562 cells, GM12878 cells, HeLa S3 cells, and HepG2 cells. (B) IP of STAT3 using sc-482 in HeLa S3 cells. Lane 1: input nuclear lysate; lane 2: unbound material from IP with sc-482; lane 3: material IP’d with sc-482; lane 4: material IP’d using control rabbit IgG. Arrow indicates the band of interest. (C) IP of STAT3 using sc-482 in K562 cells. Lane 1: input nuclear lysate; lane 2: material IP’d using control rabbit IgG; lane 3: material IP’d with sc-482.
    [Show full text]
  • Table S1. 103 Ferroptosis-Related Genes Retrieved from the Genecards
    Table S1. 103 ferroptosis-related genes retrieved from the GeneCards. Gene Symbol Description Category GPX4 Glutathione Peroxidase 4 Protein Coding AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2 Protein Coding TP53 Tumor Protein P53 Protein Coding ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4 Protein Coding SLC7A11 Solute Carrier Family 7 Member 11 Protein Coding VDAC2 Voltage Dependent Anion Channel 2 Protein Coding VDAC3 Voltage Dependent Anion Channel 3 Protein Coding ATG5 Autophagy Related 5 Protein Coding ATG7 Autophagy Related 7 Protein Coding NCOA4 Nuclear Receptor Coactivator 4 Protein Coding HMOX1 Heme Oxygenase 1 Protein Coding SLC3A2 Solute Carrier Family 3 Member 2 Protein Coding ALOX15 Arachidonate 15-Lipoxygenase Protein Coding BECN1 Beclin 1 Protein Coding PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 Protein Coding SAT1 Spermidine/Spermine N1-Acetyltransferase 1 Protein Coding NF2 Neurofibromin 2 Protein Coding YAP1 Yes1 Associated Transcriptional Regulator Protein Coding FTH1 Ferritin Heavy Chain 1 Protein Coding TF Transferrin Protein Coding TFRC Transferrin Receptor Protein Coding FTL Ferritin Light Chain Protein Coding CYBB Cytochrome B-245 Beta Chain Protein Coding GSS Glutathione Synthetase Protein Coding CP Ceruloplasmin Protein Coding PRNP Prion Protein Protein Coding SLC11A2 Solute Carrier Family 11 Member 2 Protein Coding SLC40A1 Solute Carrier Family 40 Member 1 Protein Coding STEAP3 STEAP3 Metalloreductase Protein Coding ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 Protein
    [Show full text]