Taxonomic Relationships Between WRB Solonetz and Solonchak Soils with Classification Units of Soil Taxonomy Szent István University Hungary

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomic Relationships Between WRB Solonetz and Solonchak Soils with Classification Units of Soil Taxonomy Szent István University Hungary Taxonomic relationships between WRB Solonetz and Solonchak soils with classification units of Soil Taxonomy Szent István University Hungary Erika Michéli, Vince Láng Szabolcs Szabari, Márta Fuchs Department of Soil Science and Agrochemistry Content of the presentation . Soil Taxonomy and the WRB (structure, principles) . Salt affected soils in ST and WRB (master properties, diagnostics, classification) . Numerical approach to evaluate taxonomic relationships (concept and centroid based calculations of taxonomic distances) . Results and recommendations The most commonly used systems The WRB and ST are both based on . diagnostic horizons, . properties, and . materials However the similarly named diagnostics are often different from their counterparts. Differences in structure and principles Number of categorical levels: . ST has 6 levels 4 defined by key . WRB has 2 levels in the system 1 defined by key On the highest level: . ST has 12 orders, . WRB has 32 reference soil groups (RSG) Soil moisture and temperature regimes: . The WRB has no direct info on those Salt affected soils in ST and the WRB master properties, diagnostics, classification Presence of soluble salts ST salic horizon ~ WRB salic horizon Soils with salic horizon Soils with salic horizon occur occur in suborder level in mostly in the Solonchak and Aridisols (Salids) and lower Solonetz RSGs. On lower level levels with salic, halic of other RSGs salic (epi, endo, modifiers hypo, hyper) qualifiers. Example ST and WRB diagnostics Ah1 Ah2 Salic horizon: 8 to 50 cm Calcic horizon: 8 to 120 cm Bwlk Lithological discontinuity: 45 cm, 80 cm Aquic condition 2Bwglk Gleyic colour pattern Stagnic colour pattern 3Crk Reducing conditions from 85 cm Inceptisol Solonchak weak development Presence of soluble salts aquic moisture regime salic horizon (15 dS m-1) salic horizon (30 dS m-1) gleyic, stagnic, red.cond calcic horizon calcic horizon mesic temp. regime none mixed none active none loamy siltic Loamy, mixed, active, mesic Calcic, Epistagnic, Endogleyic Typic Halaquept Solonchak (Siltic, Drainic) Presence of exchangeable Na and Mg ST natric horizon WRB natric horizon Soils with natric horizon Soils with natric horizon occur occur in great group and mostly in the Solonetz RSG. lower lower levels with In lower level units natric and natric and sodic modifiers sodic (endo, hypo) qualifiers Example ST & WRB diagnostics Ah1 Mollic 0- 60 cm E Natric 20 – 80 cm Btn1 Calcic horizon from 80 cm Aquic condition Btnl Gleyic colour pattern from 60 cm Reducing conditions from 80 cm Ckl1 Ckl2 Mollisols Solonetz mollic epipedon natric horizon aquic moisture regime gleyic, red.conditions natric horizon mollic horizon calcic horizon calcic horizon mesic temp. regime none mixed none active none loamy siltic Loamy, mixed, active, mesic Calcic, Mollic, Gleyic Typic Natraquoll Solonetz (Humic, Siltic) Numerical approach to study taxonomic relationships Distance methods Similarities and Dissimilarities (Distances) Similarities measure the relatedness of a sample pairs, i.e. they measure how close to samples are to each other. Dissimilarities (distances) measure the number of differences between a pair of samples. Minasny et al. (2009) introduced an attempt to calculate and visualize the taxonomic distances within the WRB Reference Soil Groups (RSGs). Láng at. al (2010) further developed and applied for correlation of soil units of different systems. In this study 37 great groups of the Mollisols and 7 WRB RSGs were studied with distance methods. Why Mollisols? Beacuse in the USC project we concetrated on Mollisols this summer (2011) „Criteria properties” or dominants identifiers, (that characterize and are generally used to classify the soils groups) were selected to determine the taxonomic distances. Simple Euclidean distances were calculated based - on conceptual code values of properties (32), and - on centroid values of the properties (37) 100 - surface - TR like mollic " albic fluvic argllic arenic cryic TR cryic TR gelic udic MR udic xeric MR xeric MR ustic natric hor natric mesic full MR aridic MR aquic andic " epistauration Histic horizon Histic "Vertic props" High ph and EC ph and High like to less than 18 cm than to lesslike mollic like to 18 cm 18 mollic to like redox colors in mollic in colorsredox Lithic contact in 50 cm 50 in contactLithic Calci, petrocalcic 50 Calci, reduced cond.with 50 cm cond.with reduced redox shallow@ features redox sodic at shallow ESP, SAR at shallowsodic Calci, petrocalcic @shallow Calci, BS% >50 in the subin>50 BS% mollic Duripanor durinodes within 100 cm 100 within durinodes Duripanor Contrasting layer or rock @ shallow@ rock or layer Contrasting aquic with in 50 or to contarsting layer to contarstingor 50 in with aquic 0,50 0,75 0,50 1,00 1,00 1,00 0,50 0,50 1,00 0,5 0,75 0,75 1,00 0,25 0,50 0,25 0,50 0,25 0,50 0,25 0,00 0,00 0,00 1,00 Natralbolls 0,25 0,25 0,25 0,25 0,50 0,00 0,50 0,50 0,75 0,75 0,50 1,00 1,00 1,00 0,50 0,50 1,00 1,00 0,5 0,25 0,00 0,25 0,50 0,25 0,50 0,25 0,50 0,25 0,00 0,00 0,00 1,00 Argialbolls 0,25 0,25 0,25 0,25 0,50 0,00 0,50 0,50 0,75 0,75 0,50 0,00 1,00 1,00 1,00 1,00 0,50 0,25 0,50 1,00 0,50 0,25 0,25 0,25 0,50 0,50 0,00 0,50 0,50 0,50 0,25 0,00 0,00 0,00 1,00 Cryaqolls 0,50 0,00 1,00 0,00 0,00 0,50 0,75 0,50 0,00 0,50 1,00 1,00 1,00 1,00 0,50 0,25 0,50 0,50 0,25 0,50 1,00 0,00 0,50 0,50 0,25 0,00 0,00 0,00 1,00 Duraquolls 0,50 0,25 0,25 0,25 0,00 0,50 0,50 0,50 0,50 0,50 0,50 0,25 1,00 1,00 1,00 1,00 1,00 0,50 0,75 0,75 1,00 0,25 0,50 0,00 0,25 0,50 0,50 0,25 0,50 0,00 0,00 1,00 Natraquolls 0,50 0,25 0,25 0,25 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,00 1,00 1,00 1,00 1,00 1,00 0,00 0,50 0,25 0,00 0,25 0,25 0,00 0,25 0,75 0,50 0,25 0,50 0,00 0,00 1,00 Calciaquolls 0,50 0,50 0,25 0,25 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,00 1,00 1,00 1,00 1,00 1,00 1,00 0,50 0,25 0,00 0,25 0,50 0,00 0,50 0,50 1,00 0,25 0,00 0,00 0,00 1,00 Argiaquolls 0,50 0,50 0,25 0,00 0,00 0,50 0,50 0,50 0,50 0,50 0,50 0,00 1,00 1,00 1,00 1,00 1,00 0,00 0,50 0,25 0,00 0,50 0,50 0,25 0,50 0,50 1,00 0,50 0,00 0,00 0,00 1,00 Epiaquolls 0,50 0,00 0,00 0,25 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,00 1,00 1,00 1,00 1,00 1,00 0,00 0,50 0,25 0,00 0,50 0,50 0,50 0,50 0,50 0,00 0,50 0,00 0,00 0,00 1,00 Endoaquolls 0,50 0,00 0,00 0,75 0,00 0,50 0,50 0,50 0,50 0,50 0,75 0,00 1,00 0,25 0,25 0,25 0,00 0,50 0,00 0,25 0,25 0,00 0,50 0,00 0,00 0,50 0,25 0,00 0,25 0,25 0,25 0,75 0,25 0,25 0,25 Cryrendolls 1,00 0,00 0,00 0,75 1,00 0,50 0,50 0,75 0,00 1,00 0,25 0,25 0,25 0,00 0,50 0,00 0,25 0,00 0,00 0,25 0,00 0,00 0,50 0,25 0,00 0,25 0,25 0,25 0,75 0,25 0,50 0,25 Haplrendolls 1,00 0,00 0,00 0,75 0,50 0,50 0,50 0,50 0,25 1,00 0,50 0,50 0,50 0,00 0,50 0,50 0,25 0,50 0,25 0,25 0,00 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 Haplogellols 0,50 0,50 0,50 0,50 0,00 0,00 0,00 1,00 0,50 0,50 0,50 0,00 1,00 0,50 0,50 0,50 0,00 0,50 0,50 0,50 0,50 0,50 1,00 0,25 0,50 0,25 0,25 0,50 0,50 0,50 0,50 Duricryolss Conceptual0,50 0,50 0,25 0,25 approach0,00 : 0,00 1,00 0,00 0,00 0,50 0,50 0,50 0,25 1,00 0,50 0,50 0,50 0,00 0,50 0,50 0,25 1,00 0,50 0,50 0,00 0,25 0,50 0,25 0,25 0,50 0,50 0,50 0,50 Natricryolls 0,50 0,50 0,25 0,25 0,00 1,00 0,00 0,00 0,50 0,50 0,50 0,00 1,00 0,50 0,50 0,50 0,00 1,00 0,25 0,25 0,00 0,50 0,25 0,00 0,25 0,00 0,25 0,25 0,50 0,50 0,50 0,50 Paleocryolls 0,00 0,00 0,00 0,00 0,00 1,00 0,00 0,00 0,50 0,50 0,50 0,00 1,00 0,50 0,50 0,50 0,00 1,00 0,25 0,25 0,00 0,50 0,25 0,00 0,25 0,50 0,25 0,25 0,50 0,50 0,50 0,50 Argicryolls 0,25 0,25 0,50 0,50 0,00 1,00 0,00 0,00 0,50 0,50 0,50 0,00 1,00 0,50 0,50 0,50 0,00 0,00 0,25 0,25 0,00 0,50 0,25 0,00 0,25 0,75 0,25 0,25 0,50 0,50 0,50 0,50 Calcicryolls 0,50 1,00 0,50 0,50 0,00 1,00 0,00 0,00 0,50 0,50 0,50 0,25 1,00 0,50 0,50 0,50 0,00 0,00 0,25 0,25 0,00 0,50 0,50 0,00 0,25 0,50 0,25 0,25 0,50 0,50 0,50 0,50 Haplocryolls 45 soil0,50 0,00 groups0,50 0,50 matched with0,00 1,00 0,00 0,00 0,50 0,50 0,50 0,00 1,00 0,25 0,25 0,25 0,00 0,50 0,50 0,25 0,50 0,00 0,25 1,00 0,25 0,50 25,00 0,25 0,75 0,25 0,25 0,25 Durixerolls 0,50 0,50 0,50 0,25 0,75 0,50 0,50 0,50 0,50 0,50 0,75 0,25 1,00 0,25 0,25 0,25 0,00 0,50 0,75 0,75 1,00 0,25 0,50 0,00 0,50 0,50 25,00 0,25 0,75 0,25 0,25 0,25 Natrixerolls 0,50 0,50 0,50 0,25 0,75 0,50 0,50 0,50 0,50 0,50 0,50 0,00 1,00 0,25 0,25 0,25 0,00 1,00 0,25 0,25 0,50 0,25 0,50 0,00 0,50 0,00 25,00 0,25 0,75 0,25 0,25 0,25 Palexerolls 0,00 0,00 0,00 0,00 0,75 0,50 0,50 0,50 0,50 0,50 0,50 0,00 1,00 0,25 0,25 0,25 0,00 0,00 0,25 0,25 0,00 0,25 0,50 0,00 0,50 0,75 25,00 0,25 0,75 0,25 0,25 0,25 Cacixerolls 0,50 0,75 0,75 0,50 0,75 0,50 0,50 0,50 0,50 0,50 320,50 0,00 properties1,00 0,50 0,50 0,50 (0,00 dominant1,00 0,25 0,25 0,00 0,25 0,50 0,25 0,50identifiers 0,50 25,00 0,25 0,75 0,25 0,25 )0,25 Aregixerolls 0,25 0,25 0,25 0,50 0,75 0,50 0,50 0,50 0,50 0,50 0,50 0,25 1,00 0,50 0,50 0,50 0,00 0,00 0,25 0,50 0,00 0,25 0,50 0,25 0,50 0,50 25,00 0,25 0,75 0,25 0,25 0,25 Haploxerolls 0,25 0,25 0,25 0,50 0,75 0,50 0,50 0,50 0,50 0,50 0,50 0,00 1,00 0,50 0,50 0,50 0,00 0,50 0,50 0,25 0,50 0,25 0,25 1,00 0,25 0,25 25,00 0,25 1,00 0,00 0,00 0,00 Durustolls 0,50 0,25 0,50 0,25 0,00 0,50 0,50 0,50 0,50 0,50 0,50 0,25 1,00 0,50 0,50 0,50 0,00 0,50 0,50 1,00 1,00 0,25 0,50 0,50 0,25 0,50 25,00 0,25 0,50 0,00 0,75 0,00 0,00 Natrustoll 0,50 0,25 0,50 0,25 0,50 0,50 0,50 0,50 0,50 0,50 0,00 1,00 0,50 0,50 0,50 0,00 0,00 0,25 0,75 0,00 0,25 0,50 0,00 0,25 0,75 25,00 0,25 0,50 0,75 0,00 0,00 Calciustolls 0,50 0,50 1,00 0,50 0,00 0,50 0,50 0,50 0,75 0,50 0,50 0,00 1,00 0,50 0,50 0,50 0,00 0,50 0,00 0,00 0,50 0,25 0,50 0,00 0,25 0,50
Recommended publications
  • Development Direction of the Soil-Formation Processes for Reclaimed Soda Solonetz-Solonchak Soils of the Ararat Valley During Their Cultivation
    Annals of Agrarian Science 16 (2018) 69e74 Contents lists available at ScienceDirect Annals of Agrarian Science journal homepage: http://www.journals.elsevier.com/annals-of-agrarian- science Development direction of the soil-formation processes for reclaimed soda solonetz-solonchak soils of the Ararat valley during their cultivation R.R. Manukyan National Agrarian University of Armenia, 74, Teryan Str., Yerevan, 0009, Armenia article info abstract Article history: The data of the article show that the long-term cultivation of reclaimed sodium solonetz-solonchak soils Received 29 May 2017 entails to further improvement of their properties and in many parameters of chemical compositions of Accepted 19 August 2017 soil solution and soil-absorbing complex they come closer to irrigated meadow-brown soils in the period Available online 6 February 2018 of 15e20 years of agricultural development. The analysis of the experimental research by the method of non-linear regression shows, that for the enhancement of some yield determining parameters to the Keywords: level of irrigated meadow-brown soils, a time period of 30e40 years of soil-formation processes is Soil-formation processes needed and longer time is necessary for humidification. The forecast of soil-formation processes for the Reclaimed soda solonetz-solonchaks fi Irrigated meadow-brown soils long-term period, allows to reveal the intensity and orientation of development of the speci ed pro- fi fi Multi-year cultivation cesses and to develop the scienti cally-justi ed actions for their further improvement. Improvement © 2018 Agricultural University of Georgia. Production and hosting by Elsevier B.V. This is an open access Forecasting article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
    [Show full text]
  • World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
    ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • The Digital Soil Map of the World
    THE DIGITAL SOIL MAP OF THE WORLD FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Version 3.6, completed January 2003 (C) FAO/UNESCO, 1995 All rights reserved worldwide. Background The present version (3.6) of the digitized Soil Map of the World has been cleaned of errors both in the database and in the lines constituting the digitized map itself. The original map sheets covering the Americas are in bipolar oblique conformal projection. The other sheets, covering Europe, Africa, Asia and Australasia, are based on the Miller oblated stereographic projection; a system consisting of three conformal projections centred on each continent, joined together in a continuous fashion by so-called "fill-in" projections. This allows a complete angular continuity between all sheets. The soil map was prepared using the topographic map series of the American Geographical Society of New York as a base at a nominal scale of 1:5 000 000. The base map comprises sixteen sheets; for the purpose of the Soil Map of the World the information has been redistributed over eighteen sheets in order to obtain sheets of equal size. A nineteenth sheet contains the legend. The digital database is in the Geographic projection. All maps were intersected with a template containing water related features (coastlines, lakes, islands, glaciers and double-lined rivers). This layer was superimposed on the soil map (the information is represented in the FAOSOIL item as: inland WATer, and GLaciers). The Soil Map of the World except for Africa was intersected with the Country Boundaries map from the World Data Bank II (with country boundaries updated to January 1994 at 1:3 000 000 scale), obtained from the US Government.
    [Show full text]
  • The Use of Proximal Soil Sensor Data Fusion and Digital Soil Mapping For
    The use of proximal soil sensor data fusion and digital soil mapping for precision agriculture Wenjun Ji, Viacheslav Adamchuk, Songchao Chen, Asim Biswas, Maxime Leclerc, Raphael Viscarra Rossel To cite this version: Wenjun Ji, Viacheslav Adamchuk, Songchao Chen, Asim Biswas, Maxime Leclerc, et al.. The use of proximal soil sensor data fusion and digital soil mapping for precision agriculture. Pedometrics 2017, Jun 2017, Wageningen, Netherlands. 298 p. hal-01601278 HAL Id: hal-01601278 https://hal.archives-ouvertes.fr/hal-01601278 Submitted on 2 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Abstract Book Pedometrics 2017 Wageningen, 26 June – 1 July 2017 2 Contents Evaluating Use of Ground Penetrating Radar and Geostatistic Methods for Mapping Soil Cemented Horizon .................................... 13 Digital soil mapping in areas of mussunungas: algoritmos comparission .......... 14 Sensing of farm and district-scale soil moisture content using a mobile cosmic ray probe (COSMOS Rover) .................................... 15 Proximal sensing of soil crack networks using three-dimensional electrical resistivity to- mography ......................................... 16 Using digital microscopy for rapid determination of soil texture and prediction of soil organic matter .....................................
    [Show full text]
  • Understanding the Environmental Background of an Invasive Plant
    plants Article Understanding the Environmental Background of an Invasive Plant Species (Asclepias syriaca) for the Future: An Application of LUCAS Field Photographs and Machine Learning Algorithm Methods Péter Szilassi 1,* ,Gábor Szatmári 2 ,László Pásztor 2 ,Mátyás Árvai 2,József Szatmári 1, Katalin Szitár 3 and Levente Papp 4 1 Department of Physical Geography and Geoinformatics, University of Szeged, Egyetem utca 2, 6722 Szeged, Hungary; [email protected] 2 Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Herman Ottó út 15, 1022 Budapest, Hungary; [email protected] (G.S.); [email protected] (L.P.); [email protected] (M.Á.) 3 Institute of Ecology and Botany, Centre for Ecological Research, Alkotmány u. 2-4, 2163 Vácrátót, Hungary; [email protected] 4 Department of Geoinformatics, University of Salzburg, Schillerstraße 30, 5020 Salzburg, Austria; [email protected] * Correspondence: [email protected] Received: 4 November 2019; Accepted: 10 December 2019; Published: 12 December 2019 Abstract: For developing global strategies against the dramatic spread of invasive species, we need to identify the geographical, environmental, and socioeconomic factors determining the spatial distribution of invasive species. In our study, we investigated these factors influencing the occurrences of common milkweed (Asclepias syriaca L.), an invasive plant species that is of great concern to the European Union (EU). In a Hungarian study area, we used country-scale soil and climate databases, as well as an EU-scale land cover databases (CORINE) for the analyses. For the abundance data of A. syriaca, we applied the field survey photos from the Land Use and Coverage Area Frame Survey (LUCAS) Land Cover database for the European Union.
    [Show full text]
  • List M - Soils - German and French Equivalents of English Terms
    LIST M - SOILS - GERMAN AND FRENCH EQUIVALENTS OF ENGLISH TERMS AMERICAN GERMAN FRENCH AMERICAN GERMAN FRENCH Acrisols Acrisol Sol-mediterraneen Gray podzolic soils Podsolierter grauer Podzol Albolls Boden Alfisols Gray warp soils Paternia Sol-peu-evolue or Alluvial soils Auen-Boden Sol-d’alluvions Sol-d’alluvions Alpine meadow soils Alpiner Wiesen- Sol-hydromorphe Gray wooded soils boden Ground-water podzols Gley-Podsol Podzol Andepts Ground-water Grundwasser- Laterite Andosols Andosol Sol-peu-evolue laterite soils Laterite roche- Grumosols Grumosol Vertisol volcanique Half bog soils Anmoor Tourbe Aqualfs Halomorphic soils Salz-Boden Sol-halomorphe Aquents Halosols Halosols Sal-halomorphe Aquepts Hemists Aquods High moor Hochmoor Tourbe Aquolls Histosols Aquox Humic gley soils Humus Gley Boden Aquults Sol-humique-a-gley Arctic tundra soils Arktische Tundra Sol-de-toundra Humic soils Humus-reiche- Sol-riche-en- Boden Boden humus Arenosols Arenosol Sol-brut sable Humods Arents Hydromorphic soils Hydromorpher- Sol-hydro- Argids Boden morphique Aridisols Inceptisols Azonal soils Roh-Boden Sol-brut Intrazonal soils Intrazonaler Boden Sol Black earth use Schwarzerde Chernozem Kastanozems Chernozems Krasnozems Krasnozem Krasnozem Bog soils Moorboden Tourbe laterites Laterit-Boden Sol-lateritique Boreal frozen taiga Sol-gele Latosols Latosol Sol-ferralitique soils Lithosols Gesteins-roh-Boden Sol-squelettique Boreal taiga and Sol Low-humic gley soils forest soils Luvisols Luvisols Sol lessivage Brown desert steppe Burozem Sierozem Mediterranean
    [Show full text]
  • Soilgrids 2.0: Producing Soil Information for the Globe with Quantified Spatial Uncertainty
    SOIL, 7, 217–240, 2021 https://doi.org/10.5194/soil-7-217-2021 © Author(s) 2021. This work is distributed under SOIL the Creative Commons Attribution 4.0 License. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty Laura Poggio, Luis M. de Sousa, Niels H. Batjes, Gerard B. M. Heuvelink, Bas Kempen, Eloi Ribeiro, and David Rossiter ISRIC – World Soil Information, Wageningen, the Netherlands Correspondence: Laura Poggio ([email protected]) Received: 14 October 2020 – Discussion started: 9 November 2020 Revised: 9 April 2021 – Accepted: 18 April 2021 – Published: 14 June 2021 Abstract. SoilGrids produces maps of soil properties for the entire globe at medium spatial resolution (250 m cell size) using state-of-the-art machine learning methods to generate the necessary models. It takes as inputs soil observations from about 240 000 locations worldwide and over 400 global environmental covariates describing vegetation, terrain morphology, climate, geology and hydrology. The aim of this work was the production of global maps of soil properties, with cross-validation, hyper-parameter selection and quantification of spatially explicit uncertainty, as implemented in the SoilGrids version 2.0 product incorporating state-of-the-art practices and adapting them for global digital soil mapping with legacy data. The paper presents the evaluation of the global predictions produced for soil organic carbon content, total nitrogen, coarse fragments, pH (water), cation exchange capacity, bulk density and texture fractions at six standard depths (up to 200 cm). The quantitative evaluation showed metrics in line with previous global, continental and large-region studies.
    [Show full text]
  • Digital Soil Mapping As a Tool for Improved Road and Game Drive Management Within Phinda Private Game Reserve, Kwa-Zulu Natal
    University of South Africa ― Fourie, P.J. (2020) DIGITAL SOIL MAPPING AS A TOOL FOR IMPROVED ROAD AND GAME DRIVE MANAGEMENT WITHIN PHINDA PRIVATE GAME RESERVE, KWA-ZULU NATAL by Petrus Johannes Fourie Submitted in accordance with the requirements For the application in the degree of Masters of Environmental Science in the DEPARTMENT OF AGRICULTURAL AND ENVIRONMENTAL SCIENCES at the UNIVERSITY OF SOUTH AFRICA Supervisor Dr G.P. Nortjé Co-supervisor Dr George van Zijl June 2020 i University of South Africa ― Fourie, P.J. (2020) Declaration I, Petrus Johannes Fourie, hereby declare that the dissertation/ thesis, which I hereby submit for the degree of Master of Environmental Science at the University of South Africa, is my own work and has not previously been submitted by me for a degree at this or any other institution. I declare that the dissertation/ thesis does not contain any written work presented by other persons whether written, pictures, graphs or data or any other information without acknowledging the source. I declare that where words from a written source have been used, the words have been paraphrased and referenced. Where exact words from a source have been used, the words have been placed inside quotation marks and referenced. I declare that I have not copied and pasted any information from the Internet, without specifi- cally acknowledging the source and have inserted appropriate references to these sources in the reference section of the dissertation or thesis. I declare that during my study I adhered to the Research Ethics Policy of the University of South Africa, received ethics approval for the duration of my study prior to the commencement of data gathering, and have not acted outside the approval conditions.
    [Show full text]
  • Organic Matter Dynamics Along a Salinity Gradient in Siberian Steppe Soils
    Organic matter dynamics along a salinity gradient in Siberian steppe soils Norbert Bischoff1, Robert Mikutta2, Olga Shibistova1,3, Reiner Dohrmann4, Daniel Herdtle1, Lukas Gerhard1, Franziska Fritzsche1, Alexander Puzanov5, Marina Silanteva6, Anna 5 Grebennikova6, Georg Guggenberger1 1Institute of Soil Science, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany 2Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle (Saale), Germany 10 3VN Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50, 660036 Krasnoyarsk, Russian Federation 4Federal Institute for Geosciences and Natural Resources, Stilleweg 2, 30655 Hannover, Germany 5Institute for Water and Environmental Problems, Siberian Branch of the Russian Academy of Sciences, Molodezhnaya Street 1, 656038 Barnaul, Russian Federation 15 6Faculty of Biology, Altai State University, Prospekt Lenina 61a, 656049 Barnaul, Russian Federation Correspondence to: Norbert Bischoff ([email protected]) 1 Abstract Salt-affected soils will become more frequent in the next decades as arid and semi-arid ecosystems are predicted to expand as a result of climate change. Nevertheless, little is known about organic matter (OM) dynamics in these soils, though OM is crucial for soil fertility and represents an important carbon sink. We aimed at 5 investigating OM dynamics along a salinity and sodicity gradient in soils of the south-western Siberian Kulunda steppe (Kastanozem, Non-sodic Solonchak, Sodic Solonchak) by assessing the organic carbon (OC) stocks, the quantity and quality of particulate and mineral-associated OM in terms of non-cellulosic neutral sugar contents and carbon isotopes (δ13C, 14C activity), and the microbial community composition based on phospholipid fatty acid (PLFA) patterns.
    [Show full text]
  • Fuzzy Logic Expert System for Classifying Solonchaks of Algeria
    Hindawi Applied and Environmental Soil Science Volume 2018, Article ID 8741567, 11 pages https://doi.org/10.1155/2018/8741567 Research Article Fuzzy Logic Expert System for Classifying Solonchaks of Algeria Samir Hadj Miloud ,1,2 Kaddour Djili,1 and Mohamed Benidir3 1Soil Science Department, Higher National Agronomic School (ENSA-ES1603), BP 16200 El Harrach, Algeria 2Department of Agronomics, Faculty of Natural Science and Life, University Saad Dahlab, Soumaˆa, BP 270 Blida, Algeria 3Unit of Se´tif, Institut National de la Recherche Agronomique (INRAA), El Harrach, Algeria Correspondence should be addressed to Samir Hadj Miloud; [email protected] Received 29 November 2017; Accepted 13 June 2018; Published 8 July 2018 Academic Editor: Claudio Cocozza Copyright © 2018 Samir Hadj Miloud et al. +is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Under arid and semiarid regions of the North of Africa, the soils considered as Solonchaks contain both calcium carbonate and gypsum. When these elements are presented at high quantities, these Solonchaks are getting close to Calcisol or Gypsisol. +e World Reference Base (WRB) for soil classification does not take into account the soil as a continuum. Instead, this international soil system classification is based on threshold values that define hierarchical diagnostic criteria. Consequently, the distinction between Solonchaks, Calcisol, and Gypsisol is still not clear. To avoid this situation, fuzzy logic based on the Mamdani inference system (MFIS) was used to determine to what extent soil classified as Solonchak in WRB can interfere with Calcisols and Gypsisols.
    [Show full text]
  • Fire Effects Guide This Page Was Last Modified 06/21/01 |Disclaimer| | Privacy| | Copyright| |Webmaster|
    National Wildfire Coordinating Group Fire Effects Guide This page was last modified 06/21/01 |Disclaimer| | Privacy| | Copyright| |Webmaster| Home Preface FIRE EFFECTS GUIDE Objectives Fire Behavior Fuels Sponsored by: Air Quality Soils & Water Plants National Wildlife Coordinating Group Wildlife Cultural Res. Fire Use Working Team Grazing Mgmt. Evaluation Copies of the guide (NFES 2394) can be ordered form: Data Analysis Computer National Interagency Fire Center Soft. Great Basin Area Cache Glossary 3833 S. Development Ave. Bibliography Boise ID 83702 Contributions National Wildfire Coordinating Group Fire Effects Guide This page was last modified 06/20/01 |Disclaimer| | Privacy| | Copyright| |Webmaster| Home PREFACE Preface Objectives by Dr. Bob Clark and Melanie Miller Fire Behavior Fuels A. Purpose Air Quality Soils & Water Plants The Federal government manages a variety of ecosystems across the Wildlife United States, including deserts, grasslands, tundra, shrublands, Cultural Res. forestlands, estuaries, and riparian zones. These ecosystems range Grazing from arid to humid, warm to cold, and sea level to over 10,000 feet Mgmt. elevation. Fires naturally occur in almost all of these ecosystems, with Evaluation fire characteristics determined by climate, vegetation, and terrain. Data Analysis Computer The purposes of this Guide are to summarize available information on Soft. fire effects principles and processes, provide references for additional Glossary information, and provide guidelines for the collection, analysis, and Bibliography evaluation of wild and prescribed fire effects data. Basic mechanisms of Contributions fire effects are described so that the reader will be able to understand and interpret fire effects literature, and evaluate observed results that conflict with those presented in published reports.
    [Show full text]
  • Lecture Notes on the Major Soils of the World
    LECTURE NOTES ON THE GEOGRAPHY, FORMATION, PROPERTIES AND USE OF THE MAJOR SOILS OF THE WORLD P.M. Driessen & R. Dudal (Eds) in Q AGRICULTURAL KATHOLIEKE 1 UNIVERSITY UNIVERSITEIT ^.. WAGENINGEN LEUVEN \^ ivr^ - SI I 82 o ) LU- w*y*'tinge n ökSjuiOTHEEK ÎCANDBOUWUNWERSIIEI^ WAGENINGEN TABLE OF CONTENTS PREFACE INTRODUCTION The FAO-Unesco classificationo f soils 3 Diagnostichorizon s anddiagnosti cpropertie s 7 Key toMajo r SoilGrouping s 11 Correlation 14 SET 1. ORGANIC SOILS Major SoilGrouping :HISTOSOL S 19 SET 2. MINERAL SOILS CONDITIONED BYHUMA N INFLUENCES Major SoilGrouping :ANTHROSOL S 35 SET 3. MINERAL SOILS CONDITIONED BYTH E PARENT MATERIAL Major landforms involcani c regions 43 Major SoilGrouping :ANDOSOL S 47 Major landforms inregion swit h sands 55 Major SoilGrouping :ARENOSOL S 59 Major landforms insmectit eregion s 65 Major SoilGrouping :VERTISOL S 67 SET 4. MINERAL SOILS CONDITIONED BYTH E TOPOGRAPHY/PHYSIOGRAPHY Major landforms inalluvia l lowlands 83 Major SoilGroupings :FLUVISOL S 93 (with specialreferenc e toThioni c Soils) GLEYSOLS 105 Major landforms inerodin gupland s 111 Major SoilGroupings :LEPTOSOL S 115 REGOSOLS 119 SET 5. MINERAL SOILS CONDITIONED BYTHEI RLIMITE D AGE Major SoilGrouping : CAMBISOLS 125 SET 6. MINERAL SOILS CONDITIONED BYA WE T (SUB)TROPICAL CLIMATE Major landforrasi ntropica l regions 133 Major SoilGroupings :PLINTHOSOL S 139 FERRALSOLS 147 NITISOLS 157 ACRISOLS 161 ALISOLS 167 LIXISOLS 171 SET 7. MINERAL SOILS CONDITIONED BYA (SEMI-)AR-ID CLIMATE Major landforms inari d regions 177 Major SoilGroupings :SOLONCHAK S 181 SOLONETZ 191 GYPSISOLS 197 CALCISOLS 203 SET 8. MINERAL SOILS CONDITIONED BYA STEPPIC CLIMATE Major landforms instepp e regions 211 Major Soil Groupings:KASTANOZEM S 215 CHERNOZEMS 219 PHAEOZEMS 227 GREYZEMS 231 SET 9.
    [Show full text]