Lifs: an Attribute-Rich File System for Storage Class Memories

Total Page:16

File Type:pdf, Size:1020Kb

Lifs: an Attribute-Rich File System for Storage Class Memories LiFS: An Attribute-Rich File System for Storage Class Memories SashaAmes NikhilBobb KevinM.Greenan OwenS.Hofmann Mark W. Storer Carlos Maltzahn Ethan L. Miller Scott A. Brandt Storage Systems Research Center Computer Science Department University of California, Santa Cruz Abstract find what one really wants. This problem has been ad- dressed on the web with the development of search en- As the number and variety of files stored and accessed by gines, and it is now often harder to find information on a typical user has dramatically increased, existing file sys- one’s own hard drive than on the web. tem structures have begun to fail as a mechanism for man- To address this shortcoming, application developers aging all of the informationcontained in those files. Many have been forced to develop their own metadata infras- applications—email clients, multimedia management ap- tructures. Email applications, digital photo albums, dig- plications, and desktop search engines are examples— ital music applications, desktop search applications, and have been forced to develop their own richer metadata many others have their own file system metadata to enable infrastructures. While effective, these solutions are gener- the organizing, searching, browsing, viewing/playing, an- ally non-standard, non-portable, non-sharable across ap- notating, and generally working with specific types of plications, users or platforms, proprietary, and potentially files. Many of these applications have special-purpose inefficient. In the interest of providing a rich, efficient, code for dealing with the specific properties of the type of shared file system metadata infrastructure, we have devel- data they manage, but they also include code that is not oped the Linking File System (LiFS). Taking advantage data-specific for organizing, annotating, browsing, etc. of non-volatile storage class memories, LiFS supports a Because this code was developed as part of an application, wide variety of user and application metadata needs while it rarely adheres to any standard, is often not portable, it efficiently supporting traditional file system operations. is difficult to share between applications, users, or plat- forms, it is typically owned by the company that devel- 1 Introduction oped it, and it is potentially inefficient. Key functions of the operating system are to efficiently File system interfaces have changed relatively little in the provide services that are used by a variety of applications, three decades since the UNIX file system was first intro- to abstract away low-level details by providing a use- duced. Metadata in standard file systems includes direc- ful high-level API, and to facilitate sharing of resources tory hierarchies and some fixed per-file attributes includ- used by multiple users and applications. The wide vari- ing file name, permissions, size, and access/modification ety of applications developing their own file system meta- times. While primitive, these interfaces have served well. data infrastructure shows the need for this infrastructure In the same time frame, demandson the storage subsys- to be provided by the file system. Recently, researchers tem have increased both quantitatively and qualitatively. (ourselves included) have taken steps in that direction Storage systems have grown, the amount of storage ac- by including additional per-file metadata in the form of cessed by individual users has increased, and the variety hkey,valuei pairs. While useful, this is inadequate to of data stored has grown dramatically. General-purpose support the needs of the wide variety of applications de- file systems are now used to store tremendous volumes of scribed above. text documents, web pages, application programs, email We present the Linking File System (LiFS). In addi- files, calendars, contacts, music files, movies, and many tion to the standard file system operations, LiFS pro- other types of data. Although current file systems are rel- vides searchable application-defined file attributes and at- atively effective at reliably storing the data, the increasing tributed links between files. File attributes are in the form size and complexity of the information stored has made of application-defined hkey,valuei pairs. Links are ex- management and retrieval of the information problematic. plicit relationships between files that can themselves have Simply stated, with so much information, it is difficult to attributes expressed as hkey,valuei pairs to express the na- ture of the relationship created by the link. These simple 2.1 Information Management additions dramatically change the nature of file systems, enabling a wide variety of operations, providing a rich, 2.1.1 Searching shared metadata infrastructure, and allowing applications Finding data on the vast World-wide Web is often eas- to focus on managing application-specific data instead of ier than finding the same content on a local hard drive. managing things that are best managed by the file system. The same search engine technology that does well on In LiFS, all files may contain data and links to other the Internet typically performs poorly when applied to files. Thus, a traditional data file is one with contents and enterprise-level file systems. To our knowledge both of no links, and a traditionaldirectoryis one with no contents these statements are only based on anecdotal albeit com- and directory containment links to other files. Many more mon evidence but can be plausibly explained: web links interesting examples are possible. For example, a .c file convey relevance and semantic information that turns out can contain links to the .h files it includes. An executable to be very useful for searching and presenting search re- can contain links to its source .c files, the compiler used sults [36]. However, traditional file systems only convey to generate it, and the library files on which it depends. relationships among files through the hierarchical direc- A document can contain a link to the application used to tory system. edit and view it. With respect to the application-specific Hierarchical directories are actually a compromise be- infrastructures mentioned above, an email client, a digital tween the need of users to organize their data on one hand photo album, and a music player now all need only pro- and file system designers who aim to reduce the cost of vide a GUI for managing their specific type of data and maintaining metadata on the other. This dearth of rela- manipulating the attributes of and relationships among the tionships between files is the primary reason that finding files they each manage, and the file system can take care data in enterprise-wide file systems or even in local file of storing the attributes and relationships and efficiently systems appears to be harder than on the Internet. supporting their manipulation, search, and other actions. There is in fact a wealth of explicit and implicit re- lationships among files. Because hierarchical directo- LiFS is enabled by storage class memories—non- ries make it difficult to express explicit relationships, this volatile, byte-addressable RAM—by making the reading, information often ends up being stored in application- writing, indexing, and searching of such rich metadata fast specific files and obscured by proprietary file formats. and efficient. Our prototype is designed with MRAM in There are also implicit relationships such as provenance, mind, but is implementedin Linux using standard DRAM. application and data dependencies, as well as contextsthat Our results demonstrate that the performance of LiFS may span applications; this information is typically not is comparable to, if not better than, that of other Linux recorded at all. However, maintaining provenance and file systems, while providing far richer metadata seman- context relationships enables powerful search capabilities. tics. As a proof-of-concept we have implemented a sim- For example, two downloaded files that are in some way ple browser that functions alternatively as a file system related on the web, e. g., originating from the same web browser, an email browser, a digital photo browser, or a site, normally are stripped from their context when stored music browser, depending upon the files and links con- on a local file system. Provenancepreserves their relation- tained in the file system hierarchy it is exploring. The ships and provides important clues to context-sensitive following sections examine some motivating examples in searches. more detail, discuss the LiFS design, present the details The history of Internet search engines shows a progres- of our LiFS implementation, and show the performance sion of increasingly sophisticated ways of mining rela- of LiFS in various scenarios. tionships, extending successful searching even to docu- ments with content obscured by proprietary formats. The introduction of rich relationships for files will allow the successful use of advanced search technologies within 2 Motivating Examples personal or enterprise-wide file systems. 2.1.2 Repository Sharing Relational links and attributes are surprisingly useful. In this section we will illustrate their utility in finding and or- Because applications are often the sole maintainer of ganizing information and in coping with change in com- meaningful relationships among files, repositories are of- puting infrastructure. These areas are of particular interest ten partitioned. As a result, each repository can only in the context of rapid growth of personal and enterprise- be accessed by one application and relationships that
Recommended publications
  • Development of a Verified Flash File System ⋆
    Development of a Verified Flash File System ? Gerhard Schellhorn, Gidon Ernst, J¨orgPf¨ahler,Dominik Haneberg, and Wolfgang Reif Institute for Software & Systems Engineering University of Augsburg, Germany fschellhorn,ernst,joerg.pfaehler,haneberg,reifg @informatik.uni-augsburg.de Abstract. This paper gives an overview over the development of a for- mally verified file system for flash memory. We describe our approach that is based on Abstract State Machines and incremental modular re- finement. Some of the important intermediate levels and the features they introduce are given. We report on the verification challenges addressed so far, and point to open problems and future work. We furthermore draw preliminary conclusions on the methodology and the required tool support. 1 Introduction Flaws in the design and implementation of file systems already lead to serious problems in mission-critical systems. A prominent example is the Mars Explo- ration Rover Spirit [34] that got stuck in a reset cycle. In 2013, the Mars Rover Curiosity also had a bug in its file system implementation, that triggered an au- tomatic switch to safe mode. The first incident prompted a proposal to formally verify a file system for flash memory [24,18] as a pilot project for Hoare's Grand Challenge [22]. We are developing a verified flash file system (FFS). This paper reports on our progress and discusses some of the aspects of the project. We describe parts of the design, the formal models, and proofs, pointing out challenges and solutions. The main characteristic of flash memory that guides the design is that data cannot be overwritten in place, instead space can only be reused by erasing whole blocks.
    [Show full text]
  • STAT 625: Statistical Case Studies 1 Our Computing Environment(S)
    John W. Emerson, Department of Statistics, Yale University © 2013 1 STAT 625: Statistical Case Studies John W. Emerson Yale University Abstract This term, I’ll generally present brief class notes and scripts, but much of the lecture material will simply be presented in class and/or available online. However, student participation is a large part of this course, and at any time I may call upon any of you to share some of your work. Be prepared. This won’t be a class where you sit and absorb material. I strongly encourage you to work with other students; you can learn a lot from each other. To get anything out of this course you’ll need to put in the time for the sake of learning and strengthening your skills, not for the sake of jumping through the proverbial hoop. Lesson 1: Learning how to communicate. This document was created using LATEX and Sweave (which is really an R package). There are some huge advantages to a workflow like this, relating to a topic called reproducible research. Here’s my thought: pay your dues now, reap the benefits later. Don’t trust me on everything, but trust me on this. A sister document was created using R Markdown and the markdown package, and this is also acceptable. Microsoft Office is not. So, in today’s class I’ll show you how I produced these documents and I’ll give you the required files. I recommend you figure out how to use LATEX on your own computer. You already have Sweave, because it comes with R.
    [Show full text]
  • System Calls and I/O
    System Calls and I/O CS 241 January 27, 2012 Copyright ©: University of Illinois CS 241 Staff 1 This lecture Goals Get you familiar with necessary basic system & I/O calls to do programming Things covered in this lecture Basic file system calls I/O calls Signals Note: we will come back later to discuss the above things at the concept level Copyright ©: University of Illinois CS 241 Staff 2 System Calls versus Function Calls? Copyright ©: University of Illinois CS 241 Staff 3 System Calls versus Function Calls Function Call Process fnCall() Caller and callee are in the same Process - Same user - Same “domain of trust” Copyright ©: University of Illinois CS 241 Staff 4 System Calls versus Function Calls Function Call System Call Process Process fnCall() sysCall() OS Caller and callee are in the same Process - Same user - OS is trusted; user is not. - Same “domain of trust” - OS has super-privileges; user does not - Must take measures to prevent abuse Copyright ©: University of Illinois CS 241 Staff 5 System Calls System Calls A request to the operating system to perform some activity System calls are expensive The system needs to perform many things before executing a system call The computer (hardware) saves its state The OS code takes control of the CPU, privileges are updated. The OS examines the call parameters The OS performs the requested function The OS saves its state (and call results) The OS returns control of the CPU to the caller Copyright ©: University of Illinois CS 241 Staff 6 Steps for Making a System Call
    [Show full text]
  • Enhancing the Accuracy of Synthetic File System Benchmarks Salam Farhat Nova Southeastern University, [email protected]
    Nova Southeastern University NSUWorks CEC Theses and Dissertations College of Engineering and Computing 2017 Enhancing the Accuracy of Synthetic File System Benchmarks Salam Farhat Nova Southeastern University, [email protected] This document is a product of extensive research conducted at the Nova Southeastern University College of Engineering and Computing. For more information on research and degree programs at the NSU College of Engineering and Computing, please click here. Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd Part of the Computer Sciences Commons Share Feedback About This Item NSUWorks Citation Salam Farhat. 2017. Enhancing the Accuracy of Synthetic File System Benchmarks. Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, College of Engineering and Computing. (1003) https://nsuworks.nova.edu/gscis_etd/1003. This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Enhancing the Accuracy of Synthetic File System Benchmarks by Salam Farhat A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor in Philosophy in Computer Science College of Engineering and Computing Nova Southeastern University 2017 We hereby certify that this dissertation, submitted by Salam Farhat, conforms to acceptable standards and is fully adequate in scope and quality to fulfill the dissertation requirements for the degree of Doctor of Philosophy. _____________________________________________ ________________ Gregory E. Simco, Ph.D. Date Chairperson of Dissertation Committee _____________________________________________ ________________ Sumitra Mukherjee, Ph.D. Date Dissertation Committee Member _____________________________________________ ________________ Francisco J.
    [Show full text]
  • DASH: Database Shadowing for Mobile DBMS
    DASH: Database Shadowing for Mobile DBMS Youjip Won1 Sundoo Kim2 Juseong Yun2 Dam Quang Tuan2 Jiwon Seo2 1KAIST, Daejeon, Korea 2Hanyang University, Seoul, Korea [email protected] [email protected] ABSTRACT 1. INTRODUCTION In this work, we propose Database Shadowing, or DASH, Crash recovery is a vital part of DBMS design. Algorithms which is a new crash recovery technique for SQLite DBMS. for crash recovery range from naive full-file shadowing [15] DASH is a hybrid mixture of classical shadow paging and to the sophisticated ARIES protocol [38]. Most enterprise logging. DASH addresses four major issues in the current DBMS's, e.g., IBM DB2, Informix, Micrsoft SQL and Oracle SQLite journal modes: the performance and write amplifi- 8, use ARIES or its variants for efficient concurrency control. cation issues of the rollback mode and the storage space re- SQLite is one of the most widely used DBMS's. It is quirement and tail latency issues of the WAL mode. DASH deployed on nearly all computing platform such as smart- exploits two unique characteristics of SQLite: the database phones (e.g, Android, Tizen, Firefox, and iPhone [52]), dis- files are small and the transactions are entirely serialized. tributed filesystems (e.g., Ceph [58] and Gluster filesys- DASH consists of three key ingredients Aggregate Update, tem [1]), wearable devices (e.g., smart watch [4, 21]), and Atomic Exchange and Version Reset. Aggregate Update elim- automobiles [19, 55]. As a library-based embedded DBMS, inates the redundant write overhead and the requirement to SQLite deliberately adopts a basic transaction management maintain multiple snapshots both of which are inherent in and crash recovery scheme.
    [Show full text]
  • Redbooks Paper Linux on IBM Zseries and S/390
    Redbooks Paper Simon Williams Linux on IBM zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN Preface This Redpaper provides information to help readers plan for and exploit Internet Protocol (IP) broadcast support that was made available to z/VM Guest LAN environments with the introduction of the z/VM 4.3 Operating System. Using IP broadcast support, Linux guests can for the first time use DHCP to lease an IP address dynamically from a DHCP server in a z/VM Guest LAN environment. This frees the administrator from the previous method of having to hardcode an IP address for every Linux guest in the system. This new feature enables easier deployment and administration of large-scale Linux environments. Objectives The objectives of this paper are to: Review the z/VM Guest LAN environment Explain IP broadcast Introduce the Dynamic Host Configuration Protocol (DHCP) Explain how DHCP works in a z/VM Guest LAN Describe how to implement DHCP in a z/VM Guest LAN environment © Copyright IBM Corp. 2003. All rights reserved. ibm.com/redbooks 1 z/VM Guest LAN Attention: While broadcast support for z/VM Guest LANs was announced with the base z/VM 4.3 operating system, the user must apply the PTF for APAR VM63172. This APAR resolves several issues which have been found to inhibit the use of DHCP by Linux-based applications running over the z/VM Guest LAN (in simulated QDIO mode). Introduction Prior to z/VM 4.2, virtual connectivity options for connecting one or more virtual machines (VM guests) was limited to virtual channel-to-channel adapters (CTCA) and the Inter-User Communications Vehicle (IUCV) facility.
    [Show full text]
  • 11.7 the Windows 2000 File System
    830 CASE STUDY 2: WINDOWS 2000 CHAP. 11 11.7 THE WINDOWS 2000 FILE SYSTEM Windows 2000 supports several file systems, the most important of which are FAT-16, FAT-32, and NTFS (NT File System). FAT-16 is the old MS-DOS file system. It uses 16-bit disk addresses, which limits it to disk partitions no larger than 2 GB. FAT-32 uses 32-bit disk addresses and supports disk partitions up to 2 TB. NTFS is a new file system developed specifically for Windows NT and car- ried over to Windows 2000. It uses 64-bit disk addresses and can (theoretically) support disk partitions up to 264 bytes, although other considerations limit it to smaller sizes. Windows 2000 also supports read-only file systems for CD-ROMs and DVDs. It is possible (even common) to have the same running system have access to multiple file system types available at the same time. In this chapter we will treat the NTFS file system because it is a modern file system unencumbered by the need to be fully compatible with the MS-DOS file system, which was based on the CP/M file system designed for 8-inch floppy disks more than 20 years ago. Times have changed and 8-inch floppy disks are not quite state of the art any more. Neither are their file systems. Also, NTFS differs both in user interface and implementation in a number of ways from the UNIX file system, which makes it a good second example to study. NTFS is a large and complex system and space limitations prevent us from covering all of its features, but the material presented below should give a reasonable impression of it.
    [Show full text]
  • Partitioner Och Filsystem 2
    Partitioner och filsystem 2 File systems FAT Unix-like NTFS Vad är ett filsystem? • Datorer behöver en metod för att lagra och hämta data… • Referensmodell för filsystem (Carrier) – Filsystem kategori • Layout och storleksinformation – Innehålls kategori • Kluster och block – data enheter – Metadata kategori • Tidsinformation, storlek, access kontroll • Adresser till allokerade data enheter – Filnamn kategori • Oftast ihop-kopplad med metadata – Applikations kategori • Quota • Journaler • De modernaste påminner mycket om relations databaser Windows • NTFS (New Technology File System) – 6 versioner finns, de nyaste är v3.0 (Windows 2000) och v3.1 (XP, 2003, Vista, 2008, 7), kallas även 5.0, 5.1, 5.2, 6.0 och 6.1 (efter OS version) – Stöd för unicode, säkerhet, mm. - är mycket mer komplext än FAT! – http://en.wikipedia.org/wiki/Ntfs • FAT 12/16/32, VFAT (långa filnamn i Win95) – Används fortfarande men är inte effektivt för större lagringskapaciteter (klusterstorleken) – Långsammare access än NTFS • Windows Future Storage (WinFS) inställt projekt, enligt rykten var det en SQL-databas som ligger ovanpå ett NTFS filsystem – Läs mer på: http://www.ntfs.com/ – Och: http://en.wikipedia.org/wiki/WinFS FAT12, 16 och 32 • FAT12, finns på floppy diskar – Begränsad lagringskapacitet – Designat för MS-DOS 1.0 • FAT16, var designat för större diskar – Äldre OS använde detta • MS-DOS 3.0, Win95 OSR1, NT 3.5 och NT 4.0 – Max diskstorlek 2 GB • FAT32 kom när diskar större än 2GB kom – Vissa äldre och alla nya OS kan använda FAT32 • Windows 98/Me/2000/XP/2003/Vista/7 och 2008 • Begränsningar med FAT32 – Största formaterabara volymen är 32GB (större volymer kan dock användas, < 16 TiB) – Begränsade features vad gäller komprimering, kryptering, säkerhet och hastighet jämfört mot NTFS • http://en.wikipedia.org/wiki/FAT_file_system exFAT • exFAT (Extended File Allocation Table, a.k.a.
    [Show full text]
  • [13주차] Sysfs and Procfs
    1 7 Computer Core Practice1: Operating System Week13. sysfs and procfs Jhuyeong Jhin and Injung Hwang Embedded Software Lab. Embedded Software Lab. 2 sysfs 7 • A pseudo file system provided by the Linux kernel. • sysfs exports information about various kernel subsystems, HW devices, and associated device drivers to user space through virtual files. • The mount point of sysfs is usually /sys. • sysfs abstrains devices or kernel subsystems as a kobject. Embedded Software Lab. 3 How to create a file in /sys 7 1. Create and add kobject to the sysfs 2. Declare a variable and struct kobj_attribute – When you declare the kobj_attribute, you should implement the functions “show” and “store” for reading and writing from/to the variable. – One variable is one attribute 3. Create a directory in the sysfs – The directory have attributes as files • When the creation of the directory is completed, the directory and files(attributes) appear in /sys. • Reference: ${KERNEL_SRC_DIR}/include/linux/sysfs.h ${KERNEL_SRC_DIR}/fs/sysfs/* • Example : ${KERNEL_SRC_DIR}/kernel/ksysfs.c Embedded Software Lab. 4 procfs 7 • A special filesystem in Unix-like operating systems. • procfs presents information about processes and other system information in a hierarchical file-like structure. • Typically, it is mapped to a mount point named /proc at boot time. • procfs acts as an interface to internal data structures in the kernel. The process IDs of all processes in the system • Kernel provides a set of functions which are designed to make the operations for the file in /proc : “seq_file interface”. – We will create a file in procfs and print some data from data structure by using this interface.
    [Show full text]
  • “Application - File System” Divide with Promises
    Bridging the “Application - File System” divide with promises Raja Bala Computer Sciences Department University of Wisconsin, Madison, WI [email protected] Abstract that hook into the file system and the belief that the underlying file system is the best judge File systems today implement a limited set of when it comes to operations with files. Unfor- abstractions and semantics wherein applications tunately, the latter isn’t true, since applications don’t really have much of a say. The generality know more about their behavior and what they of these abstractions tends to curb the application need or do not need from the file system. Cur- performance. In the global world we live in, it seems rently, there is no real mechanism that allows reasonable that applications are treated as first-class the applications to communicate this informa- citizens by the file system layer. tion to the file system and thus have some degree In this project, we take a first step towards that goal of control over the file system functionality. by leveraging promises that applications make to the file system. The promises are then utilized to deliver For example, an application that never ap- a better-tuned and more application-oriented file pends to any of the files it creates has no means system. A very simple promise, called unique-create of conveying this information to the file sys- was implemented, wherein the application vows tem. Most file systems inherently assume that never to create a file with an existing name (in a it is good to preallocate extra blocks to a file, directory) which is then used by the file system so that when it expands, the preallocated blocks to speedup creation time.
    [Show full text]
  • CS 152: Computer Systems Architecture Storage Technologies
    CS 152: Computer Systems Architecture Storage Technologies Sang-Woo Jun Winter 2019 Storage Used To be a Secondary Concern Typically, storage was not a first order citizen of a computer system o As alluded to by its name “secondary storage” o Its job was to load programs and data to memory, and disappear o Most applications only worked with CPU and system memory (DRAM) o Extreme applications like DBMSs were the exception Because conventional secondary storage was very slow o Things are changing! Some (Pre)History Magnetic core memory Rope memory (ROM) 1960’s Drum memory 1950~1970s 72 KiB per cubic foot! 100s of KiB (1024 bits in photo) Hand-woven to program the 1950’s Apollo guidance computer Photos from Wikipedia Some (More Recent) History Floppy disk drives 1970’s~2000’s 100 KiBs to 1.44 MiB Hard disk drives 1950’s to present MBs to TBs Photos from Wikipedia Some (Current) History Solid State Drives Non-Volatile Memory 2000’s to present 2010’s to present GB to TBs GBs Hard Disk Drives Dominant storage medium for the longest time o Still the largest capacity share Data organized into multiple magnetic platters o Mechanical head needs to move to where data is, to read it o Good sequential access, terrible random access • 100s of MB/s sequential, maybe 1 MB/s 4 KB random o Time for the head to move to the right location (“seek time”) may be ms long • 1000,000s of cycles! Typically “ATA” (Including IDE and EIDE), and later “SATA” interfaces o Connected via “South bridge” chipset Ding Yuan, “Operating Systems ECE344 Lecture 11: File
    [Show full text]
  • Refs: Is It a Game Changer? Presented By: Rick Vanover, Director, Technical Product Marketing & Evangelism, Veeam
    Technical Brief ReFS: Is It a Game Changer? Presented by: Rick Vanover, Director, Technical Product Marketing & Evangelism, Veeam Sponsored by ReFS: Is It a Game Changer? OVERVIEW Backing up data is more important than ever, as data centers store larger volumes of information and organizations face various threats such as ransomware and other digital risks. Microsoft’s Resilient File System or ReFS offers a more robust solution than the old NT File System. In fact, Microsoft has stated that ReFS is the preferred data volume for Windows Server 2016. ReFS is an ideal solution for backup storage. By utilizing the ReFS BlockClone API, Veeam has developed Fast Clone, a fast, efficient storage backup solution. This solution offers organizations peace of mind through a more advanced approach to synthetic full backups. CONTEXT Rick Vanover discussed Microsoft’s Resilient File System (ReFS) and described how Veeam leverages this technology for its Fast Clone backup functionality. KEY TAKEAWAYS Resilient File System is a Microsoft storage technology that can transform the data center. Resilient File System or ReFS is a valuable Microsoft storage technology for data centers. Some of the key differences between ReFS and the NT File System (NTFS) are: ReFS provides many of the same limits as NTFS, but supports a larger maximum volume size. ReFS and NTFS support the same maximum file name length, maximum path name length, and maximum file size. However, ReFS can handle a maximum volume size of 4.7 zettabytes, compared to NTFS which can only support 256 terabytes. The most common functions are available on both ReFS and NTFS.
    [Show full text]