TR-446: 1-Trans-Delta9-Tetrahydrocannabinol (CASRN 1972-08-3) in F344 Rats and B6c3f1mice (Gavage Studies)

Total Page:16

File Type:pdf, Size:1020Kb

TR-446: 1-Trans-Delta9-Tetrahydrocannabinol (CASRN 1972-08-3) in F344 Rats and B6c3f1mice (Gavage Studies) NATIONAL TOXICOLOGYPROGRAM Technical Report Series No. 446 TOXICOLOGY AND CARCINOGENESIS STUDIES OF 1-TRANS-DELTA'=TETRAHYDROCANNABINOL (CAS NO. 1972-08-3) IN F344/N RATS AND B6C3F, MICE (GAVAGE STUDIES) U.S. DEPARTMENT 1OF HEALTH AND HUMAS SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancir Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals. The prechronic and chronic studies were conducted in compliance with Food and Drug Administration (FDA) Good Laboratory Practice Regulations, and all aspects of the chronic studies were subjected to retrospective quality assurance audits before being presented for public review. These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for NTP toxicology and carcinogenesis studies are chosen primarily on the bases of human exposure, level of production, and chemical structure. The interpretive conclusions presented in this Technical Report are based only on the results of these NTP studies. Extrapolation of these results to other species and quantitative risk anlayses for humans require wider analyses beyond the purview of these studies. Selection per se is not an indicator of a chemical's carcinogenic potential. These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge while supplies last from NTP Central Data Management, NIEHS, P.O. Box 12233, MD El-02, Research Triangle Park, NC 27709 (919-541-3419). Listings of all published NTP reports and ongoing studies are also available from NTP Central Data Management. The Abstracts and other study information for 2-year studies are also available at the NTP's World Wide Web site: http://ntp-server.niehs.nih.gov. NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF 1-TRANS-DELTA9-TETRAHYDROCANNABINOL (CAS NO. 1972-08-3) IN F344/N RATS AND B6C3Fl MICE (GAVAGE STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 November 1996 NTP TR 446 NIH Publication No. 97-3362 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health 2 1-Trans-Delta9-Tetrahydrocannabinol,NTP TR 446 CONTRIBUTORS National Toxicology Program NTP Pathology Working Group Evaluated and interpreted results and reported findings Evaluated slides, prepared pathology report on rats (13 October 1992) P.C. Chan, Ph.D., StudyScientist G.A. Boorman, D.V.M., Ph.D. J.C. Seely, D.V.M., Chairperson D.A. Bridge, B.S. PATHCO, Inc. J.R. Bucher, Ph.D. D. Dixon, D.V.M., Ph.D. National Toxicology Program M.R. Elwell, D.V.M., Ph.D. J.R. Hailey, D.V.M. T.J. Goehl, Ph.D. National Toxicology Program J.K. Haseman, Ph.D. B.F. Hamilton, D.V.M., Ph.D. G.N. Rao, D.V.M., Ph.D. Experimental Pathology Laboratories, Inc. J.H. Roycroft, Ph.D. C.C. Shackelford, D.V.M., M.S., Ph.D. R.C. Sills, D.V.M., Ph.D. National Toxicology Program G.S. Travlos, D.V.M. R.C. Sills, D.V.M., Ph.D. D.B. Walters, Ph.D. National Toxicology Program KL. Witt, M.S., Oak Ridge Associated Universities Evaluated slides, prepared pathology report on mice (30Ju& 1992) SRI International J.C. Seely, D.V.M., Chairperson Conducted 13- and 22-week studies, evaluated pathology findings PATHCO, Inc. R. Cattley, V.M.D., Ph.D. T.A. Jorgenson, M.S., Principal Investigator Chemical Industly Institute of Toxicology E.F. Meierhenry, Ph.D. B.F. Hamilton, D.V.M., Ph.D. R.J. Spanggord, Ph.D. Experimental Pathology Laboratories, Inc. C.C. Shackelford, D.V.M., M.S., Ph.D. National Toxicology Program R.C. Sills, D.V.M., Ph.D. TSI Mason Research Institute National Toxicology Program Conducted 2-year studies, evaluated pathology findings A.G. Braun, Sc.D., PrincipalInvestigator Analytical Sciences, Inc. F.A. Voelker, M.S., D.V.M. Provided statistical analyses M.E.P. Goad, D.V.M., Ph.D. R.W. Morris, M.S, Principal Investigator N.G. Mintz, B.S. Experimental Pathology Laboratories, Inc. S. Rosenblum, M.S. Provided pathology quality assurance J.F. Hardisty, D.V.M., PrincipalInvestigator Biotechnical Services, Inc. B.F. Hamilton, D.V.M., Ph.D. Prepared Technical Report D.D. Lambright, Ph.D., Principal Investigator Dynamac Corporation S.R. Gunnels, M.A. Prepared quality assurance audits T.A. King-Hunter, B.S. T.L. Rhoades, B.S. S. Brecher, Ph.D., PrincipalInvestigator 3 CONTENTS ABSTRACT ................................................................... 5 EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTMTY ............... 9 TECHNICAL REPORTS REVIEW SUBCOMMITTEE ................................... 10 SUMMARY OF TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS ........... 11 INTRODUCTION .............................................................. 13 MATERIALSANDMETHODS .................................................... 29 RESULTS .................................................................... 41 DISCUSSION AND CONCLUSIONS ................................................ 73 REFERENCES ................................................................ 81 APPENDIXA Summary of Lesions in Male Rats in the 2-Year Gavage Study of 1-Trans-Delta9-Tetrahydrocannabinol ................................. 93 APPENDIX B Summary of Lesions in Female Rats in the 2-Year Gavage Study of 1-Trans-Delta9-Tetrahydrocannabinol ................................. 135 APPENDIX C Summary of Lesions in Male Mice in the 2-Year Gavage Study of 1-Trans-Delta9-Tetrahydrocannabinol ................................. 171 APPENDIXD Summary of Lesions in Female Mice in the 2-Year Gavage Study of 1-Trans-Delta9-Tetrahydrocannabinol ...;............................. 213 APPENDIX E Genetic Toxicology ................................................. 255 APPENDIX F Organ Weights and Organ-Weight-to-Body-WeightRatios .................... 265 APPENDIX G Hematology and Clinical Chemistry Results .............................. 277 APPENDIX H Reproductive Tissue Evaluations and Estrous Cycle Characterization ........... 285 APPENDIX I Chemical Characterization and Dose Formulation Studies ................... 291 APPENDIX J Ingredients. Nutrient Composition. and Contaminant Levels in NIH-07 Rat and Mouse Ration ..................................... 305 APPENDIX K Sentinel Animal Program ............................................ 311 4 l-Trans-Delta9-Tetrahydrocannabinol,NTP TR 446 ABSTRACT 1-TRANS-DELTA9-TETRAHYDROCANNABINOL CAS NO.1972-08-3 Chemical Formula: ~lH,,O, Molecular Weight: 314.5 Synonyms: 3-Pentyl-6,6,9-trimethyl-6a,7,8,lOa-tet~hyd~-6h-di~~o(b,d)pyran-l-ol;deltal-tetrahydrocannabinol; (-)-delta1-3,4-trans-tetrahydrocannabinok delta'4etrahydrocannabinon; THC; delta'-THC; delta9-THC Trade names: Dronabinol; Marinol 1-Trans-delta9-tetrahydrocannabinol (THC) was administration of THC. The absolute and relative nominated by the National Cancer Institute to the uterus weights of 50, 150, and 500 mgkg females NTP for study because it is the major psychoactive were significantly lower than those of the controls. component of marijuana and a widelyused Treatment-related multifocal atrophy was observed in Schedule I substance. Male and female F344/N rats the testes of 150 and 500 mgkg males; uterine and and B6C3F, mice received THC (97% pure) in corn ovarianhypoplasiaobservedin 150 and 500 mg/kg oil by gavage for 13 weeks, 13weeks with a 9-week femaleswas also considered to be related to THC recovery period, or 2 years. Genetic toxicology administration. Based on final mean body weights studies were conducted in Salmonella typhimurium, and mortality observed in the 13-week study, doses cultured Chinese hamster ovarycells, and mouse selected for the 2-year rat study were 12.5, 25, and peripheral blood cells. 50 mg/kg. ISWEEK STUDY IN RATS WWEEK STUDY IN MICE Groups of 10 male and 10 female rats received 0, 5, Groups of 10 male and 10 female mice received0,5, 15, 50, 150, or 500 mg THC/kg body weight in corn 15, 50, 150, or 500 mg THC/kg body weight in corn oil by gavage, 5 days per week for 13weeks. Six male oil
Recommended publications
  • Medical Review Officer Manual
    Department of Health and Human Services Substance Abuse and Mental Health Services Administration Center for Substance Abuse Prevention Medical Review Officer Manual for Federal Agency Workplace Drug Testing Programs EFFECTIVE OCTOBER 1, 2010 Note: This manual applies to Federal agency drug testing programs that come under Executive Order 12564 dated September 15, 1986, section 503 of Public Law 100-71, 5 U.S.C. section 7301 note dated July 11, 1987, and the Department of Health and Human Services Mandatory Guidelines for Federal Workplace Drug Testing Programs (73 FR 71858) dated November 25, 2008 (effective October 1, 2010). This manual does not apply to specimens submitted for testing under U.S. Department of Transportation (DOT) Procedures for Transportation Workplace Drug and Alcohol Testing Programs (49 CFR Part 40). The current version of this manual and other information including MRO Case Studies are available on the Drug Testing page under Medical Review Officer (MRO) Resources on the SAMHSA website: http://www.workplace.samhsa.gov Previous Versions of this Manual are Obsolete 3 Table of Contents Chapter 1. The Medical Review Officer (MRO)........................................................................... 6 Chapter 2. The Federal Drug Testing Custody and Control Form ................................................ 7 Chapter 3. Urine Drug Testing ...................................................................................................... 9 A. Federal Workplace Drug Testing Overview..................................................................
    [Show full text]
  • Cannabis Terminology 101
    Super Animal Care Solutions TECHNICAL BULLETIN Cannabis Terminology 101 Cannabis or Hemp? nabinol). Contrary to what many pot smok- Cannabidiol-CBD Cannabis refers to a broad category of ers may tell you, marijuana is addictive. A naturally occurring constituent/cannabi- plants, including both hemp and marijuana. Even among occasional users, one in 12 can noid of the hemp plant. It is the most abun- Hemp is a specific type of cannabis plant feel withdrawal symptoms if they can’t get dant, non-psychoactive cannabinoid in that contains less than 0.3% THC. high when they want to. Many experts also hemp/cannabis, and reacts primarily with believe marijuana is physically addictive. CB-2 receptors that are generally concen- Cannabis trated in peripheral organs and cells asso- The name given to the plant itself. A total of Medical Cannabis/Medical Marijuana ciated with the immune system. 480 natural components have been found Cannabis used as a physician-recom- within the cannabis plant. There are three mended form of medicine or herbal thera- The Vediol blend delivers a highly purified major types of cannabis (plus multiple hy- py typically higher in THC content – (higher cannabinoid consortium, devoid of THC, brids), distinguished by very different char- than 0.3%) than other species of cannabis. designed for maximum effectiveness. While acteristics and traits they display: no causal link has been established, abun- Tetrahydrocannabinol-THC dant research would suggest non-human • Cannabis sativa delta-9-tetrahydrocannabinol. This is a con- patients may benefit from receiving hemp • Cannabis indica trolled substance. The only thus far identi- derived CBD in support of their endocan- • Cannabis ruderalis fied psychoactive component of cannabis nabinoid system.
    [Show full text]
  • The Cannabinoid Receptor Agonist WIN 55,212-2 Attenuates the Effects Induced by Quinolinic Acid in the Rat Striatum
    Neuropharmacology 51 (2006) 1004e1012 www.elsevier.com/locate/neuropharm The cannabinoid receptor agonist WIN 55,212-2 attenuates the effects induced by quinolinic acid in the rat striatum A. Pintor a, M.T. Tebano a, A. Martire a, R. Grieco a, M. Galluzzo a, M.L. Scattoni b,A.Pe`zzola a, R. Coccurello c, F. Felici a, V. Cuomo d, D. Piomelli e, G. Calamandrei b, P. Popoli a,* a Department of Drug Research and Evaluation, Central Nervous System Pharmacology Division, Istituto Superiore di Sanita`, Viale Regina Elena, 299, 00161 Rome, Italy b Department of Cell Biology and Neuroscience, Istituto Superiore di Sanita`, Viale Regina Elena, 299, 00161 Rome, Italy c Institute of Neuroscience, EBRI Foundation, Rome, Italy d Department of Pharmacology and General Physiology, University ‘‘La Sapienza’’, Rome, Italy e Department of Pharmacology and Center for Drug Discovery, University of California, Irvine, CA, USA Received 7 April 2006; received in revised form 15 May 2006; accepted 16 June 2006 Abstract The ability of CB1 receptors to regulate the release of glutamate in the striatum, together with the finding that, in experimental models of Huntington disease (HD), both endocannabinoid levels and CB1 receptor densities are reduced, has prompted the investigation on the neuropro- tective role of the cannabinoids in HD. Quinolinic acid (QA) is an excitotoxin that, when injected in the rat striatum reproduces many features of HD and that acts by stimulating glutamate outflow. The aim of the present study was to test the ability of the cannabinoid receptor agonist WIN 55,212-2 to prevent the effects induced by QA in the rat striatum.
    [Show full text]
  • About the Endocannabinoid System (ECS)
    Mana Artisan Botanics Frequently Asked Questions | 1 Frequently Asked Questions About the Endocannabinoid system (ECS) What is the Endocannabinoid What are Endocannabinoids? System, or ECS? Endocannabinoids are endogenous neurotransmitters that Discovered in the late 1980s, the Endocannabinoid System, or are produced by our bodies. They regulate neurotransmission ECS is a biological system found in all mammals, composed and allow for feedback loops. Anandamide and 2-Arachido- of endocannabinoids and cannabinoid receptors. ECS affects noylglycerol (2-AG) are the two primary endocannabinoids. virtually every cell, muscle, organ and tissue in our body, and critical to regulating a wide range of body processes, our What are Phytocannabinoids and nervous system, immune system, digestive system, endocrine how are they different than glands, brain, heart, lungs, kidneys, liver, spleen, bones, mus- Endocannabinoids? cles, blood vessels and cells, lymph cells, and fat cells. Phytocannabinoids are plant derivative compounds (primarily The ECS is believed to have more cellular receptor sites than extracted from cannabis) that mimic the characteristics of the any other receptor system. The widespread distribution of endocannabinoids. THC and Cannabidiol (CBD) are the two these cannabinoid receptors shows just how important the primary phytocannabinoids that mimic the endocannabinoids ECS is to our overall bodily function and health. Anandamide and 2-AG, respectively. Both endocannabinoid and phytocannabinoids, collectively referred to as cannabinoids,
    [Show full text]
  • Endocannabinoid Stimulated Release of Nitric Oxide and Its Mitochondrial
    A tica nal eu yt c ic a a m A r a c t Stefano et al., Pharm Anal Acta 2015, 6:6 h a P Pharmaceutica Analytica Acta DOI: 10.4172/2153-2435.1000378 ISSN: 2153-2435 Review Article Open Access Endocannabinoid Stimulated Release of Nitric Oxide and its Mitochondrial Influence Triggering Vascular Pathology George B Stefano*, Erin Quinn and Richard M Kream MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY 11735, USA Abstract Endocannabinoids, and their respective receptors, are involved in a host of cellular regulatory activities. In part, some of these mediated effects occur by way of stimulating constitutive nitric oxide release. This occurs in endothelia, certain white blood cells, microglia, and in similar invertebrate tissues, demonstrating that this is a conserved chemical messenger system. This endocannabinoid chemical messenger system, coupled to constitutive nitric oxide release, also appears to exert regulatory effects on mitochondrial energy associated processes, further substantiating its primordial history. In this regard, it appears to offer some beneficial actions in the occurrence of reperfusion injury and stroke. The mechanism envisioned is one initiated via a hypoxic event, which does not restore normalcy, then progresses to a pro-inflammatory state, and the resultant chronic condition manifests itself in a specific disorder. This fits nicely into a vascular-associated origin for Alzheimer’s Disease, whereby the pro- inflammatory state encompasses vessels that have endothelial gaps, providing for a compromised blood brain barrier, beta amyloid deposition, and enhanced white blood cell trafficking. In time, due to the physical progression of the events, Alzheimer’s Disease occurs.
    [Show full text]
  • The Effects of Ketamine on Dopaminergic Function: Meta-Analysis and Review of the Implications for Neuropsychiatric Disorders
    OPEN Molecular Psychiatry (2018) 23, 59–69 www.nature.com/mp REVIEW The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders M Kokkinou1,2, AH Ashok1,2,3 and OD Howes1,2,3 Ketamine is a non-competitive antagonist at the N-methyl-D-aspartate receptor. It has recently been found to have antidepressant effects and is a drug of abuse, suggesting it may have dopaminergic effects. To examine the effect of ketamine on the dopamine systems, we carried out a systematic review and meta-analysis of dopamine measures in the rodent, human and primate brain following acute and chronic ketamine administration relative to a drug-free baseline or control condition. Systematic search of PubMed and PsychInfo electronic databases yielded 40 original peer-reviewed studies. There were sufficient rodent studies of the acute effects of ketamine at sub-anaesthetic doses for meta-analysis. Acute ketamine administration in rodents is associated with significantly increased dopamine levels in the cortex (Hedge’s g = 1.33, Po0.01), striatum (Hedge’s g = 0.57, Po0.05) and the nucleus accumbens (Hedge’s g = 1.30, Po0.05) compared to control conditions, and 62–180% increases in dopamine neuron population activity. Sub-analysis indicated elevations were more marked in in vivo (g = 1.93) than ex vivo (g = 0.50) studies. There were not enough studies for meta-analysis in other brain regions studied (hippocampus, ventral pallidum and cerebellum), or of the effects of chronic ketamine administration, although consistent increases in cortical dopamine levels (from 88 to 180%) were reported in the latter studies.
    [Show full text]
  • Accepted Manuscript Provisional
    Int J Case Rep Images 2015;6():**–**. Richtig et al. 1 www.ijcasereportsandimages.com ACASECCCEPTEASE REPORTD MAN USCRIPT PEERP EERREVI REEWVIEEDW |E PROD OPEN| OPENVISIONA ACCESS ACCESSL PDF Cannabis consumption before surgery may be associated with increased tolerance of anesthetic drugs: A case report Georg Richtig, Götz Bosse, Friederike Arlt, Christian von Heymann Disclaimer: This manuscript has been accepted for and anesthetic drugs like propofol and thiopental, publication in International Journal of Case Reports but the pharmacodynamic interaction between and Images (IJCRI). This is a pdf file of the provisional cannabis and commonly used anesthetic drugs is version of the manuscript. The manuscript will under still not well understood. Case Report: A 37-year go content check, copyediting/proofreading and content old male patient with a history of regular cannabis formating to conform to journal’s requirements. Please consumption and cannabis intake the day before note that during the above publication processes errors in surgery was admitted for an arthroscopic content or presentation may be discovered which will be shoulder stabilization. Induction of anesthesia rectified during manuscript processing. These errors may required large doses of propofol, thiopental and affect the contents of this manuscript and final published sevoflurane. MaintenancePDF was achieved with the version of this manuscript may be extensively different additional application of nitrous oxide to provide in content and layout than this provisional PDF version. clinical tolerance of the surgical procedure. Return of consciousness and the postoperative MANUSCRIPTcourse were uneventful. Conclusion: History ABSTRACT of cannabis intake should be taken into routine preoperative assessment and patients should Introduction: Cannabis is the most commonly be closely monitored by experienced anesthesia used illicit drug worldwide in adults.
    [Show full text]
  • Susceptibility of the Adolescent Brain to Cannabinoids: Long-Term Hippocampal Effects and Relevance to Schizophrenia
    Citation: Transl Psychiatry (2012) 2, e199; doi:10.1038/tp.2012.122 & 2012 Macmillan Publishers Limited All rights reserved 2158-3188/12 www.nature.com/tp Susceptibility of the adolescent brain to cannabinoids: long-term hippocampal effects and relevance to schizophrenia KA Gleason, SG Birnbaum, A Shukla and S Ghose Clinical studies report associations between cannabis use during adolescence and later onset of schizophrenia. We examined the causal relationship between developmental cannabinoid administration and long-term behavioral and molecular alterations in mice. Mice were administered either WIN 55,212-2 (WIN), a cannabinoid receptor 1 (CB1) agonist or vehicle (Veh) during adolescence (postnatal day 30–35) or early adulthood (postnatal day 63–70). Behavioral testing was conducted after postnatal day 120 followed by biochemical assays. Adolescent cannabinoid treatment (ACU) leads to deficits in prepulse inhibition and fear conditioning in adulthood. Metabotropic glutamate receptors type 5 (mGluR5), a receptor critically involved in fear conditioning and endocannabinoid (eCB) signaling, is significantly reduced in the ACU mouse hippocampus. Next, we examined expression profiles of genes involved in eCB synthesis (diacylglycerol lipase (DGL)) and uptake (monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH)) in the experimental mice. We find evidence of increased MGL and FAAH in ACU mice, reflecting increases in eCB uptake and degradation. These data suggest that administration of cannabinoids during adolescence leads to a behavioral phenotype associated with a rodent model of schizophrenia, as indexed by alterations in sensorimotor gating and hippocampal-dependent learning and memory deficits. Further, these deficits are associated with a reduction in hippocampal mGluR5 and a sustained change in eCB turnover, suggesting reduced eCB signaling in the ACU hippocampus.
    [Show full text]
  • Cannabidiol and ( ) 9-Tetrahydrocannabinol Are Neuroprotective Antioxidants
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 8268–8273, July 1998 Medical Sciences Cannabidiol and (2)D9-tetrahydrocannabinol are neuroprotective antioxidants A. J. HAMPSON*†,M.GRIMALDI‡,J.AXELROD*, AND D. WINK§ *Laboratory of Cellular and Molecular Regulation, National Institutes of Mental Health, Bethesda, MD 20892; ‡Laboratory of Adaptive Systems, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892; and §Radiology and Biology Branch, National Cancer Institute, Bethesda, MD 20892 Contributed by Julius Axelrod, April 27, 1998 ABSTRACT The neuroprotective actions of cannabidiol reduce the toxic reactive oxygen species (ROS) formed during and other cannabinoids were examined in rat cortical neuron ischemic metabolism. Cannabinoids like (2)D9-tetrahydrocan- cultures exposed to toxic levels of the excitatory neurotrans- nabinol (THC) and its psychoactive analogues also have been mitter glutamate. Glutamate toxicity was reduced by both reported to be neuroprotective against glutamate toxicity in cannabidiol, a nonpsychoactive constituent of marijuana, and vitro (7). Cannabinoids have been suggested to prevent gluta- the psychotropic cannabinoid (2)D9-tetrahydrocannabinol mate neurotoxicity by activating cannabinoid receptors (7, 8), (THC). Cannabinoids protected equally well against neuro- which can reduce calcium influx through voltage sensitive toxicity mediated by N-methyl-D-aspartate receptors, 2-ami- calcium channels (8, 9). A synthetic cannabinoid (HU-211) no-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic acid recep- also has been demonstrated to be neuroprotective even though tors, or kainate receptors. N-methyl-D-aspartate receptor- it does not activate cannabinoid receptors. This compound is induced toxicity has been shown to be calcium dependent; this an atypical cannabinoid, however, in that it, unlike other study demonstrates that 2-amino-3-(4-butyl-3-hydroxyisox- cannabinoids, directly antagonizes NMDAr (10) and possesses azol-5-yl)propionic acidykainate receptor-type neurotoxicity some antioxidant properties (11).
    [Show full text]
  • Phencyclidine Increases Forebrain Monoamine Metabolism in Rats and Monkeys: Modulation by the Isomers of HA966
    The Journal of Neuroscience, March 1, 1997, 17(5):1769–1775 Phencyclidine Increases Forebrain Monoamine Metabolism in Rats and Monkeys: Modulation by the Isomers of HA966 J. David Jentsch,1 John D. Elsworth,2,3 D. Eugene Redmond Jr.,2,4 and Robert H. Roth2,3 Departments of 1Neurobiology, 2Psychiatry, 3Pharmacology, and 4Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510 The noncompetitive NMDA receptor antagonist phencyclidine enantiomer altered the effect of PCP on DA turnover in the (PCP) has psychotomimetic properties in humans and activates nucleus accumbens or the PCP-induced increases in serotonin the frontal cortical dopamine innervation in rats, findings that turnover in PFC. PCP (0.3 mg/kg, i.m.) exerted regionally se- have contributed to a hyperdopaminergic hypothesis of schizo- lective effects on the dopaminergic and serotonergic innerva- phrenia. In the present studies, the effects of the enantiomers of tion of the monkey frontal cortex, effects blocked by pretreat- 3-amino-1-hydroxypyrrolid-2-one (HA966) on PCP-induced ment with S-(2)HA966 (3 mg/kg, i.m.). Importantly, these data changes in monoamine metabolism in the forebrain of rats and demonstrate that in the primate, PCP has potent effects on monkeys were examined, because HA966 has been shown dopamine transmission in the frontal cortex, a brain region previously to attenuate stress- or drug-induced activation of thought to be dysfunctional in schizophrenia. In addition, a role dopamine systems. In rats, PCP (10 mg/kg, i.p.) potently acti- for S-(2)HA966 as a modulator of cortical monoamine trans- vated dopamine (DA) turnover in the medial prefrontal cortex mission in primates is posited.
    [Show full text]
  • A Preliminary Study of The-LSD Interactions on Rabbit EEG and Behavior
    Physiological Psychology 1981, Vol. 9 (2), 219·222 A preliminary study of THe-LSD interactions on rabbit EEG and behavior PARTHENA MARTIN Department oj Psychology, Virginia State University, Petersburg, Virginia 23803 and PAUL CONSROE Department oj Pharmacology and Toxicology, College ojPharmacy, University ojArizona Tucson, Arizona 85721 Quantified cortical and hippocampal electroencephalograms (EEG) and corresponding be­ haviors were recorded from rabbits who were given either acute or subacute (12-day) delta-9- tetrahydrocannabinol (THC; .5 mglkg, iv) followed by acute lysergic acid diethylamide (LSD; 50 ~lkg, iv). The results indicated that acute THC does not block the stimulant effects of LSD (increases in standing and activity). However, subacute THC produced tolerance to the de­ pressant cortical EEG (increase in delta) and behavioral (sprawling) activity of the cannabinoid and blocked some excitatory effects of LSD. During recent years, there has been much self­ METHOD experimentation with psychoactive drugs, especially with two or more drugs being used simultaneously. Animals Two female and two male New Zealand white rabbits, weighing For example, data recently compiled by the National 2.3 to 3.4 kg, were used. Each subject was housed individually Institute on Drug Abuse (Dupont, 1976) show that in a room maintained at constant temperature (25° ± 2°C) and 39070 of the patients admitted for treatment of prob­ under controlled lighting (l2-h light-dark cycle). Animals were lems due to use of hallucinogens such as lysergic allowed ad-lib access to food and water except during testing. acid diethylamide (LSD) also have secondary drug Eleetrode and Catbeter Implants problems due to use of marijuana.
    [Show full text]
  • Application A360 Use of Industrial Hemp As a Novel Food
    FINAL ASSESSMENT REPORT [INQUIRY - S.17] APPLICATION A360 USE OF INDUSTRIAL HEMP AS A NOVEL FOOD 1 TABLE OF CONTENTS EXECUTIVE SUMMARY ................................................................................................... 4 INTRODUCTION.................................................................................................................. 7 Application to ANZFA ............................................................................................................7 Industrial hemp as a novel food ............................................................................................... 7 Novel Food Standard ............................................................................................................... 7 PROBLEM ............................................................................................................................. 8 OBJECTIVE .......................................................................................................................... 8 OPTIONS................................................................................................................................ 9 IMPACT ANALYSIS .......................................................................................................... 10 CONSULTATION...............................................................................................................10 Public consultation................................................................................................................. 10 Consultation
    [Show full text]