The Rational Development of Improved Methods for the Removal of Oil Contamination from Wildlife and Rocky Foreshore Utilizing Magnetic Particle Technology

Total Page:16

File Type:pdf, Size:1020Kb

The Rational Development of Improved Methods for the Removal of Oil Contamination from Wildlife and Rocky Foreshore Utilizing Magnetic Particle Technology The Rational Development of Improved Methods for the Removal of Oil Contamination from Wildlife and Rocky Foreshore Utilizing Magnetic Particle Technology A thesis submitted for the degree of Doctor of Philosophy by Munaweera Thanthirige Kasup Munaweera Victoria University College of Engineering and Science September 2015 Declaration I, Munaweera Thanthirige Kasup Munaweera, declare that this thesis entitled “The Rational Development of Improved Methods for the Removal of Oil Contamination from Wildlife and Rocky Foreshore utilizing Magnetic Particle Technology” is no more than 100,000 words in length, exclusive of tables, figures, appendices, bibliography, references and footnotes. This thesis contains no material that has been submitted previously, in whole or in part, for the award of any other academic degree or diploma. This research has been conducted in collaboration with a number of partners, whose contributions have been appropriately acknowledged throughout. Thus, except where otherwise indicated, this thesis is my own work. Signature Date:………………………03 September 2015 i Journal publications, conference proceedings and conference presentations relevant to the scope of this thesis Refereed Journal Publications Bigger, SW, Munaweera, K, Ngeh, LN, Dann, P, Orbell, JD 2013, ‘Mathematical model for the sequential pick-up of chemical contaminants by magnetic particles’, Journal of Environmental Engineering, vol. 139, pp. 796-802. Ngeh, LN, Orbell, JD, Bigger, SW, Munaweera, K, Dann, P 2012, ‘Magnetic cleansing for the provision of a quick clean to oiled wildlife’, World Academy of Science and Technology, vol. 72, pp. 1091-1093. Conferences Orbell, JD, Bigger, SW, Ngeh, LN, Munaweera, K, Dann, P, Jessup, R, Healy, MT, ‘Providing a ‘quick wash’ to oil contaminated wildlife using magnetic particle technology’, Effects of Oil on Wildlife, 10th International Conference, Tallinn, Estonia, 5–9th October, 2009. Platform presentation. Munaweera, K, Le, O, Ngeh, LN, Bigger, SW, Orbell, JD, Jessop, R, Dann, P, ‘An assessment of the relative effectiveness of olive oil, methyl oleate and methyl soyate as pre- treatment agents for the rehabilitation of oiled birds’, the Oamaru Penguin Symposium, Kingsgate Hotel Brydone, Oamaru, New Zealand, 24–25th June, 2009. Poster presentation. Orbell, JD, Bigger, SW, Ngeh, LN, Munaweera, K, Jessop, R, Healy, R, Dann, P, ‘The development of prototype magnetic particle technology (MPT) equipment for providing a “quick clean” to oil contaminated wildlife’, the 7th International Penguin Conference, Boston, Massachusetts, USA, 29 Aug - 4 Sept, 2010. Poster presentation. ii Munaweera, K, Ngeh, LN, Bigger, SW, Orbell, JD, Dann, P, ‘Towards a rational choice of pre-treatment agents for the cleansing of oiled wildlife’, the Australian Wildlife Rehabilitation Conference (“Continuous Improvement”), Townsville, Australia, 16–20th July, 2012. Platform presentation and refereed proceedings. Ngeh, LN, Orbell, JD, Bigger, SW, Munaweera, K, ‘Magnetic cleansing’ for the provision of a ‘quick clean’ to oiled wildlife. International Conference on Wildlife Ecology’, Rehabilitation and Conservation, Phuket, Thailand, 24–25th December, 2012. Platform presentation and refereed proceedings. Media output ‘The Project’, Channel 10, Telecast on 23 May 2013. ‘Science dust off penguins for an 80th birthday’, The Age, 04 March 2011. Awards The collaborative research teams based at Victoria University and the Phillip Island Nature Parks, of which this research program formed a part, were awarded the 2013 Banksia Award (Business and Not-for-Profits – In Collaboration Award; “Magic Wand” Oiled Penguin Recovery Technology). The following statement was released: “This initiative stood out in the Judge’s opinion based on its innovation, effectiveness and opportunity for a broad-scale solution to a global problem. Combined with its effective communication techniques to educate the public on the risks of oil spills and recovery strategies”. The above collaboration also contributed to the award of a $250K grant to the the Penguin Foundation to further develop this technology in via the joint research and development program that is ongoing between Victoria University and the Phillip Island Nature Parks. Note: Conference presentations and several oil removal videos using MPT are provided in one of the pocketed CDs. iii Abstract Oil contamination of ecosystems and wildlife presents a formidable challenge to environmental remediators, including wildlife rescuers and rehabilitators. Quite apart from the diversity of polluting events, existing clean-up methods and technologies have remained essentially unchanged over the years. For example, the method of choice for the treatment of oiled wildlife is still based on the transportation of affected animals to treatment facilities and the use of surfactants and copius amounts of warm water to remove the contamination. Although such techniques have themselves been developed to a high degree over the years, with a number of notable success stories, such operations are often very labour intensive and, not being portable, cannot be applied to the animals upon first encounter, either at remote locations or in holding bays. This means that victims are often left for long periods of time in contact with toxic and/or corrosive chemicals. In spite of such requirements for improvements in wildlife rehabilitation methods and technologies, there is a paucity of scientific and engineering research into alternatives. This thesis is part of a program that exploits the use of oil ad(b)sorbing magnetic particle technology (MPT) in order to research the best methods and equipment to remove oil from a number of relevant substrates - including feathers, fur and rock surfaces. In this regard, the refinement of portable MPT equipment for the provision of a ‘quick clean’ to contaminated wildlife in the field has been pursued. This includes the development and testing of an optimal magnetic harvesting device, an investigation of the particle characteristics that promote a high initial removal of contaminant and the development, in collaboration with industrial design advisors, of the ‘backpack concept’ for a portable kit. Thus the final iteration of the magnetic harvesting device “the wand” is considered to be perfected and prototype equipment is ready for implementation in the event of an incident. The most appropriate particle size distribution and grade for the most efficient “quick removal” of the most volatile constituents has been established. A more sophisticated understanding of the contaminant removal phenomenon is crucial to the development of improved magnetic particles e.g. that have both enhanced initial removal characteristics for the ‘quick clean’ approach, as well as for achieving an optimum final removal (ideally 100%). This has been addressed via the development of a mathematical model, benchmarked to experimental data, for the sequential pick-up of chemical iv contaminants – as is appropriate for such applications. As well as providing insight into the physical basis for the pick-up phenomenon, this model also suggests an effective means for assessing the efficiency of removal. Experiments have been conducted in order to further investigate what physical and chemical characteristics of the particles themselves are important for determining critical pick-up properties, such as initial pick-up efficiency and final removal. Hence, properties such as average particle size, particle size distribution, surface characteristics, surface coating, porosity and apparent density have been investigated. In this regard, an optimal average particle size range (i.e. preferably > 5µm and < 100 µm) and the importance of capillary effects (as reflected in the mathematical form of the removal isotherm) have been characterized. In practice, related to the problem of efficient removal is the frequent necessity to use pre- treatment agents (PTAs) for recalcitrant contaminants. Where the use of a PTA is indicated, existing detergent-based protocols usually rely on anecdotal evidence for the choice of a suitable agent - such as olive oil or methyl soyate. There have been very few, if any, scientific investigations into what the optimum PTA for a given scenario (of contaminant type and bird species) might be and what might be the most appropriate point of PTA application during the cleansing process. This thesis has researched the further development of a quantitative assay, based on MPT together with the mathematical modelling, whereby the relative efficacy of potential PTAs can be conveniently assessed for specific situations. This method has been applied to the evaluation of a range of pre-treatment candidates with respect to the removal of different oil types from feathers. This work has clearly demonstrated that the choice of the most appropriate PTA is both oil and substrate dependent and also depends upon the point of PTA application. It has also been demonstrated that the PTA assay may be used to develop potentially more effective PTAs, including PTA blends, for specific applications. An important consideration for this work is to test the hypothesis that the relative PTA efficacies - as determined by the MPT assay, carry over with fidelity to PTA-assisted detergent based methods; so that recommendations can be reliably made to the rehabilitation community at large. Experiments have therefore been designed and conducted in order to test this hypothesis for eight different PTAs. Thus parallel, semi-quantitative, detergent-based
Recommended publications
  • Oil Pollution in the North Sea: the Impact of Governance Measures on Oil Pollution Over Several Decades
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by White Rose Research Online Hydrobiologia https://doi.org/10.1007/s10750-018-3559-2 NORTH SEA OPEN SCIENCE CONFERENCE Review Paper Oil pollution in the North Sea: the impact of governance measures on oil pollution over several decades Angela Carpenter Received: 4 April 2017 / Revised: 22 February 2018 / Accepted: 24 February 2018 Ó The Author(s) 2018. This article is an open access publication Abstract Oil pollution entering the marine environ- This paper illustrates that international cooperation ment has been an issue of concern for many decades. It can result in a reduction in marine pollution leading to can come from riverine or land-based sources, acci- a cleaner environment. dental and intentional discharges from ships, or as a by-product of offshore oil extraction. Growing aware- Keywords Oil pollution Á North Sea Á ness of the impact of oil pollution on the marine Environmental monitoring Á Environmental policy Á environment has led, since the late 1960s, to the Regional cooperation Á Monitoring and surveillance introduction of measures to reduce or eliminate pollution from shipping and the offshore oil industry. A framework for environmental protection of the North Sea has developed over many decades through Introduction international agreements, regional cooperation, and national measures, while education has also played an Oil pollution—petroleum hydrocarbons—can enter important role with modern-day sailors being given the marine environment from a wide range of sources due training to understand that dumping waste at sea is including transport (e.g.
    [Show full text]
  • Crisis-Induced Learning and Issue Politicization in the Eu: the Braer, Sea Empress, Erika,Andprestige Oil Spill Disasters
    doi: 10.1111/padm.12170 CRISIS-INDUCED LEARNING AND ISSUE POLITICIZATION IN THE EU: THE BRAER, SEA EMPRESS, ERIKA,ANDPRESTIGE OIL SPILL DISASTERS WOUT BROEKEMA This article explores the relation between issue politicization and crisis-induced learning by the EU. We performed a political claims analysis on the political response to the four major oil spill disasters that have occurred in European waters since 1993. Political claims that we observed in three arenas (mass media, national parliaments, and the European Parliament) were compared with recommen- dations in post-crisis evaluation reports and the EU’s legislative responses. For all three political arenas our findings indicate that politicization of issues either promotes or impedes crisis-induced EU learning, which points to the existence of determining intervening factors. EU legislation that is adopted in response to oil spill disasters appears to a large extent grounded in crisis evaluation reports. Characteristics of crisis evaluation reports, especially the degree of international focus, seem to offer a more plausible explanation for variance in crisis-induced learning outcomes than politi- cization. INTRODUCTION On 15 January 1996, the Liberian-registered oil tanker Sea Empress ran aground on the rocks at the entrance to Milford Haven, releasing 72,000 tonnes of oil into the sea in the following days. Only three years later, on 12 December 1999, a very similar accident occurred in the European Atlantic when the Maltese-registered tanker Erika sank due to rough weather conditions off the Brittany coast, causing an oil spill of 20,000 tonnes. Both accidents had a dramatic long-term environmental, social, and economical transboundary impact (EMSA 2004; Wene 2005).
    [Show full text]
  • Impact of the Braer Oil Spill on Historic Scotland Monuments in Shetland
    TECHNICAL CONSERVATION, RESEARCH AND EDUCATION DMSION No. 1 Preparation and use of Lime Mortars (Second revision 2002) No. 2 Conservation of Plasterwork (1994) No. 3 Performance Standards for Timber Sash and Case Windows (1994) (Withdrawn) No. 4 Thatch & Thatching Techniques; (1996) A guide to consm'ng Scottislz tlmtcl~ingtraditions No. 5 The Hebridean Blackhouse: (1996) A gtricle ro matenah, construction and maintenance No. 6 Earth Structures and Construction in Scotland: (1996) A guide to the Recognition and Conservation of Edrtlz Tecltnobgy in Scottish BuiMings No. 7 Access to the Built Heritage: (1996) Advice on tlwpiwvision of mcmforpeople with disabiliries to historic sites open to tlwpublic No. 8 Historic Scotland Guide to International Conservation Charters (1997) No. 9 Stonedeaning of Granite Buildings (1997) No. 10 Biological Growths on Sandstone Buildings: (1997) Conrrol and Treatment No. 11 Fire Protection Measures in Scottish Historic Buildings (1997) No. 12 Quarries of Scotland: (1997) An i[lwhatedguide to Scottish geology and stone working metlzoch based on the Britich Geological Survey Photographic Archive of selected buiMing stone qtiarries No. U The Archaeology of Scottish Thatch (1998) No. 14 The Installation of Sprinkler Systems in Historic Buildings (1998) No. 15 External Lime Coatings on Traditional Buildings (2001) No. 16 Bumwing Animals and Archaeology (1999) No. 17 Bracken and Archaeology (1999) No. 18 The Treatment of Graffiti on Historic Surfaces (1999) No. 19 Scottish Agregates for Building Conservation (1999) No. 20 Comsion in Masonry Clad Early 20th Century Steel Framed Buildings (2000) No. 21 Scottish Slate Quarries (2000) No. 22 Fire Risk Management in Heritage Buildings (2001) No.
    [Show full text]
  • Treatment of Petroleum-Contaminated Water Resources: Modern Techniques
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic archive of Tomsk Polytechnic University PGON2016 IOP Publishing IOP Conf. Series: Earth and Environmental Science 43 (2016) 012026 doi:10.1088/1755-1315/43/1/012026 Treatment of petroleum-contaminated water resources: modern techniques Pogharnitskaya O.V.1,2, Konovalov V.V.1,3 , Dmitrieva N.V. 4, Belozerova D.S.1, Strelnikova A.B. 1 1 National Research Tomsk Polytechnic University, 30 Lenina Ave., Tomsk, 634050, Russia 4 Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia E-mail: [email protected], [email protected] Abstract. The article deals with the issue of petroleum-contaminated water resources. The authors have analyzed the dynamics of oil spills, including the world’s largest ones, and claimed the issue to be global. The modern methods of mitigating oil spill effects have been studied, as well as the modern techniques of water resource treatment. The particular attention is paid to peat sorbent production, which is considered a promising trend of petroleum- contaminated water treatment. Key words: water resources, oil, petroleum contamination, peat, water resources treatment Introduction Over the past decades, negative environmental impact attributed to oil spills has substantially increased. The major damage has been caused to water resources. In practice, oil spills and leaks inevitably occur at different stages of recovery, processing, and transportation, with oil pipeline accidents being particularly dangerous. Therefore, it is quite difficult to develop the whole range of preventive measures to reduce the environmental impact. Having penetrated into the ground, oil results in complicated processes, which makes the treatment of petroleum contaminated soil and water a challenging task.
    [Show full text]
  • Application of Redundancy in Ship Power Plants of Offshore Vessels
    APPLICATION OF REDUNDANCY IN SHIP POWER PLANTS OF OFFSHORE VESSELS DOI 10.2478/ntpe-2018-0055 Prof. Wieslaw Tarelko Gdansk University of Technology, Poland 2018 Volume 1 Issue 1 pp. 443-470 Abstract. Power and propulsion systems of offshore units must be of a very high level of reliability. The loss of ability to perform functions of their components causes generally to very high economic losses, which may be increased by unused the weather window resulting to postponing the planned offshore operations. To ensure carrying out so expensive offshore operations in the most reliable way, various types of redundancies are built-in ship power plants. This paper deals with issues related to application of redundancy in ship power plants of offshore vessels. Especially, evolution of redundancy application in ship power plants, and design solution of redundancy for offshore vessels are presented. Moreover, the specifics of these offshore operations so important from the point of view of minimizing financial losses due to any interruptions caused by failures of power and propulsion systems are discussed in detailed way. Keywords: redundancy, reliability, ship power plant, offshore vessel INTRODUCTION In principle, a high level of technical systems’ availability, including ship power plants of offshore vessels, can be obtained by increasing: • the quality of the system components, • the redundancy of system’s structural components. The first of these methods requires applying high quality technical units (parts, assemblies, systems, etc.). Their quality should be confirmed during a design process by carrying out various types of engineering analysis (e.g. fault tree analysis) and test prototypes, and then eventually proved in operational practice.
    [Show full text]
  • Dispersant Application in Alaska
    Proceedings of Conference: Dispersant Application in Alaska: A Technical Update Anchorage Hilton Hotel Anchorage, Alaska March 18 and 19, 1998 Sponsored by: Alaska Department of Environmental Conservation Alyeska Pipeline Service Company - SERVS Prince William Sound Oil Spill Recovery Institute Prince William Sound Regional Citizens’ Advisory Council U.S. Coast Guard Marine Safety Office, Valdez Program and Proceedings Coordinated by: Ken Trudel S.L. Ross Environmental Research Ltd. i REPORT AVAILABILITY Copies of this report can be obtained from Nancy Bird at the following address: Prince William Sound Oil Spill Recovery Institute (OSRI) P.O. Box 705 Cordova, Alaska 99574 U. S. A. Phone: 907-424-5800 Fax: 907-424-5820 e-mail: [email protected] CITATION Suggested citation for individual technical papers is, for example: Lewis, A., A. Crosbie, L. Davies, and T. Lunel. 1998. The AEA ‘97 North Sea Field Trials on Oil Weathering and Aerial Application of Dispersants. In Trudel, B.K.(ed.). Proceedings of the Conference, “Dispersant Use in Alaska: A Technical Update”, Anchorage, Alaska, March 18 & 19, 1998, Prince William Sound Oil Spill Recovery Institute, Cordova, Alaska. ii TABLE OF CONTENTS 1. TITLE PAGE ............................................................. i 2. MEMBERS OF THE STEERING COMMITTEE.................................v 3. ACKNOWLEDGMENTS .................................................. v 4. FOREWORD ............................................................ vi 5. TECHNICAL PRESENTATIONS Dispersant Policies
    [Show full text]
  • A Review Article on the Report of Lord Donaldson's Inquiry Into The
    Safer Ships and Cleaner Seas: A Review Article on the Report of Lord Donaldson's Inquiry into the Prevention of Pollution from Merchant Shipping1 G. Plant Barrister; Director, Centre for Environmental Law and Policy, London School of Economics The Origins and Scope of the Inquiry In the early hours of 5 January 1993, the M.V. Braer, an 89,730 dead weight ton (d.w.t.) oil tanker, en route from Mongstad in Norway to Quebec City via the normal route through the Fair Isle Channel,2 lost propulsion in heavy seas about 10 miles off and roughly south of Sumburgh Head, Shetland. Later that morning she stranded, despite efforts to prevent this, at Garth's Ness, South Shetland, and broke up over the ensuing days, losing her entire cargo of 85,000 tons of North Sea light crude oil, as well as some 1,825 tons of bunker fuel and diesel oil,3 when continuing bad weather put paid to continued salvage efforts.4 She was a single engine, single hull, 17-year-old vessel, 'flagged out' to Liberia, and crewed by two Greek officers and some 22 Filipino crew. When she lost propulsion she was close to the outer limit of, but outside, one of the two voluntary Areas to be Avoided approved by the IMO and adopted by the UK around much of the Shetland coast, in respect of tankers over 5,000 gross registered tons.5 535 536 The Braer incident came close on the heels of another major oil pollution disaster off northern Spain6 and was closely followed by a serious collision off 7 Sumatra.? The incidents, particularly the Braer incident, aroused a great deal of public concern, especially in the UK and Western Europe.
    [Show full text]
  • Identification of Environmental Loss Indicators Due to Oil Tanker Failures
    IOP Conference Series: Earth and Environmental Science PAPER • OPEN ACCESS Identification of environmental loss indicators due to oil tanker failures To cite this article: W M M Wan Fatihah et al 2019 IOP Conf. Ser.: Earth Environ. Sci. 220 012032 View the article online for updates and enhancements. This content was downloaded from IP address 170.106.40.139 on 23/09/2021 at 20:05 SEPKA-ISEED IOP Publishing IOP Conf. Series: Earth and Environmental Science 220 (2019) 012032 doi:10.1088/1755-1315/220/1/012032 Identification of environmental loss indicators due to oil tanker failures W M M Wan Fatihah1, Z Libriati1, M N Norhazilan1, Y Nordin1 and A K Nur Hafizah1 1School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia Abstract. Consequence of failure (COF) estimation is a vital part of risk assessment and is practiced in various industries. In pipeline integrity managing systems, the COF basically consist of people, asset, environmental and reputation loss. Environmental consequence assessment for offshore pipeline in Malaysia is considered very general due to negligence of local factors. Moreover, the expert judgment as an internal stakeholder is very simple in the assessment as it does not consider the impact on the external stakeholders. Thus, this paper aimed to identify the environmental loss indicators for offshore spillage from tanker worldwide. A comprehensive environmental loss are crucial to be identified as a part of enhancing the accuracy of operating pipeline risk assessment in Malaysia with the involvement of external stakeholders. Hence the operator can choose the best maintenance strategy with optimum cost by ensuring the pipeline integrity is not neglected.
    [Show full text]
  • Rayong Oil Spill Cleanup Workers Exposure And
    RAYONG OIL SPILL CLEANUP WORKERS EXPOSURE AND SYMPTOM ASSESSMENT by Thammasin Ingviya, MD, MHS A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland October, 2017 © 2017 Thammasin Ingviya All Rights Reserved ABSTRACT In July of 2013, a pipeline connecting an offshore oil platform to a tanker, operated by PTT Global Chemical (PTTGC), a corporation owned by the government of Thailand, leaked and caused crude oil to spill into the Sea of Rayong off the coast of Thailand. The crude oil covered an area of approximately 20 square kilometers and washed ashore on the island of Samet in an area called “Ao Prao” on 28 July, 2013. On-land cleanup lasted about a month and was performed by a combination of territorial defense volunteers, citizen volunteers, Thai military personnel and PTTGC employees. Cleanup procedures included oil containment and dispersal using absorbent pads, and removal and disposal of contaminated soil, sand and rocks. The goal of this dissertation is to determine if Rayong oil spill cleanup workers were exposed to elevated levels of PAHs and benzene and if these exposures are associated with recorded acute symptoms. We measured the concentration of 1-hydroxypyrene-glucuronide (1-OHPG), a metabolite of pyrene, in the 1,343 frozen stored urine samples available from the cleanup workers, and retrieved previously measured trans,trans-muconic acid (t,t-MA) data, a benzene metabolite. This allowed us to quantify the internal dose of polycyclic aromatic hydrocarbons (PAHs) and benzene in these workers and to examine factors related to their dose.
    [Show full text]
  • Crude Oil Spill Exposure and Human Health Risks
    CME AVAILABLE FOR THIS ARTICLE AT ACOEM.ORG Crude Oil Spill Exposure and Human Health Risks Mark A. D’Andrea, MD, FACRO, and G. Kesava Reddy, PhD, MHA Objective: The objective of this study was to review and summarize pub- lished studies on human health effects of oil spill exposure. Methods: A Learning Objectives r systematic literature search was conducted for articles published on health Become familiar with the available research, and gaps in effects of oil spill exposure. More than 250 articles were examined, and research, on the human health impact of exposure to crude only those articles that dealt with health effects on human populations were r oil spills. included. The methodology, results, discussion, and conclusions for each Outline the evidence for various types of health effects of oil study were reviewed and summarized. Results: Published studies are helpful spills, including worker safety, toxic effects, mental health in identifying acute and, to some extent, chronic health effects related to effects, and ecosystem effects with consequences for human health. major oil spills. Nevertheless, many of these reports were focused on the r Identify the review’s implications for future research and pol- behavioral health effects of the oil spill exposures in the affected population. icy related to the potential health effects of oil spills. Conclusions: These published studies clearly support the need for further assessment of the potential short- and long-term repercussions in human populations exposed to oil spills. ince the industrial revolution of the eighteenth century, the use concern, especially among people living in the affected coastal areas, S of fossil fuels, specifically refined petroleum products, has in- and in the large numbers of volunteers who are mobilized to clean creased exponentially.
    [Show full text]
  • For Peer Review the Braer Storm Revisited
    promoting access to White Rose research papers Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/ This is the author’s post-print version of an article published in Weather, 68 (4) White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/id/eprint/76587 Published article: Odell, L, Knippertz, P, Pickering, S, Parkes, B and Roberts, A (2013) The Braer storm revisited. Weather, 68 (4). 105 - 111. ISSN 0043-1656 http://dx.doi.org/10.1002/wea.2097 White Rose Research Online [email protected] Page 1 of 19 Weather 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 The Braer Storm Revisited 16 17 18 For Peer Review 19 20 21 22 23 24 25 26 LUKE ODELL*, PETER KNIPPERTZ, STEVEN PICKERING, BEN PARKES AND 27 28 29 ALEXANDER ROBERTS 30 31 32 33 34 School of Earth & Environment, University of Leeds, Leeds, UK 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 *Correspondence to : Luke Odell, School of Earth & Environment, University of Leeds, Leeds LS2 54 55 56 9JT, UK; email: [email protected] 57 58 59 60 http://mc.manuscriptcentral.com/weather Weather Page 2 of 19 1 2 3 ABSTRACT 4 5 The Braer storm of January 1993 was the deepest ever recorded cyclone outside of the Tropics 6 7 with a minimum core pressure of 914 mbar, but due to its track between Scotland and Iceland it 8 ensued little damage and was never intensively examined.
    [Show full text]
  • Guidance for the Environmental Public Health Management of Crude Oil Incidents
    GUIDANCE FOR THE ENVIRONMENTAL PUBLIC HEALTH MANAGEMENT OF CRUDE OIL INCIDENTS A Guide Intended for Public Health and Emergency Management Practitioners Chemical Emergency Preparedness and Response Unit Health Canada August 2018 Health Canada is responsible for helping Canadians maintain and improve their health. It ensures that high-quality health services are accessible, and works to reduce health risks. We are a federal institution that is part of the Health portfolio. Également disponible en français sous le titre : Guide pour la gestion de la santé publique et environnementale en cas d’incident mettant en cause du pétrole brut To obtain additional information, please contact: Health Canada Address Locator 0900C2 Ottawa, ON K1A 0K9 Tel.: 613-957-2991 Toll free: 1-866-225-0709 Fax: 613-941-5366 TTY: 1-800-465-7735 E-mail: [email protected] To report any factual errors in this document, or to provide any other suggestions for improvement, please e-mail comments to: [email protected] This publication can be made available in alternative formats upon request. © Her Majesty the Queen in Right of Canada, as represented by the Minister of Health, 2017 Publication date: August 2018 This publication may be reproduced for personal or internal use only without permission provided the source is fully acknowledged. PDF Cat.: H129-82/2018E-PDF ISBN: 978-0-660-24441-9 Pub.: 170387 Guidance for the Environmental Public Health ACKNOWLEDGEMENTS Management of Crude Oil Incidents ACKNOWLEDGEMENTS Health Canada is very grateful to the National Collaborating Centre for Environmental Health (NCCEH) and all individuals who have contributed to the creation of this guidance document, in particular to its authors who have committed their passion, expertise and wisdom to this venture.
    [Show full text]