McDONALD INSTITUTE MONOGRAPHS

Temple landscapes Fragility, change and resilience of Holocene environments in the Maltese Islands

By Charles French, Chris O. Hunt, Reuben Grima, Rowan McLaughlin, Simon Stoddart & Caroline Malone

Volume 1 of Fragility and Sustainability – Studies on Early , the ERC-funded FRAGSUS Project Temple landscapes

McDONALD INSTITUTE MONOGRAPHS

Temple landscapes Fragility, change and resilience of Holocene environments in the Maltese Islands

By Charles French, Chris O. Hunt, Reuben Grima, Rowan McLaughlin, Simon Stoddart & Caroline Malone

With contributions by Gianmarco Alberti, Jeremy Bennett, Maarten Blaauw, Petros Chatzimpaloglou, Lisa Coyle McClung, Alan J. Cresswell, Nathaniel Cutajar, Michelle Farrell, Katrin Fenech, Rory P. Flood, Timothy C. Kinnaird, Steve McCarron, Rowan McLaughlin, John Meneely, Anthony Pace, Sean D.F. Pyne-O’Donnell, Paula J. Reimer, Alastair Ruffell, George A. Said-Zammit, David C.W. Sanderson, Patrick J. Schembri, Sean Taylor, David Trump†, Jonathan Turner, Nicholas C. Vella & Nathan Wright

Illustrations by Gianmarco Alberti, Jeremy Bennett, Sara Boyle, Petros Chatzimpaloglou, Lisa Coyle McClung, Rory P. Flood, Charles French, Chris O. Hunt, Michelle Farrell, Katrin Fenech, Rowan McLaughlin, John Meneely, Anthony Pace, David Redhouse, Alastair Ruffell, George A. Said-Zammit & Simon Stoddart

Volume 1 of Fragility and Sustainability – Studies on Early Malta, the ERC-funded FRAGSUS Project This project has received funding from the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP7-2007-2013) (Grant agreement No. 323727).

Published by: McDonald Institute for Archaeological Research University of Cambridge Downing Street Cambridge, UK CB2 3ER (0)(1223) 339327 [email protected] www.mcdonald.cam.ac.uk

McDonald Institute for Archaeological Research, 2020

© 2020 McDonald Institute for Archaeological Research. Temple landscapes is made available under a Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 (International) Licence: https://creativecommons.org/licenses/by-nc-nd/4.0/

ISBN: 978-1-902937-99-1

Cover design by Dora Kemp and Ben Plumridge. Typesetting and layout by Ben Plumridge.

On the cover: View towards Nadur lighthouse and Għajnsielem church with the Gozo Channel to Malta beyond, from In-Nuffara (Caroline Malone).

Edited for the Institute by James Barrett (Series Editor). Contents

Contributors xi Figures xiii Tables xvi Preface and dedication xix Acknowledgements xxi Foreword xxiii

Introduction Caroline Malone, Simon Stoddart, Chris O. Hunt, Charles French, 1 Rowan McLaughlin & Reuben Grima 0.1. Introduction 1 0.2. Background to FRAGSUS as an archaeological project 3 0.3. Environmental research in Malta and the Mediterranean 5 0.4. The development of the FRAGSUS Project and its questions 6 0.5. Archaeological concerns in Maltese prehistory and the FRAGSUS Project 8 0.6. The research programme: the sites and their selection 9 0.7. Investigating the palaeoenvironmental context 10 0.8. Archaeological investigations 11

Part I The interaction between the natural and cultural landscape – insights into the 17 fifth–second millennia bc

Chapter 1 The geology, soils and present-day environment of Gozo and Malta 19 Petros Chatzimpaloglou, Patrick J. Schembri, Charles French, Alastair Ruffell & Simon Stoddart 1.1. Previous work 19 1.2. Geography 19 1.3. Geology 21 1.4. Stratigraphy of the Maltese Islands 23 1.4.1. Lower Coralline Limestone Formation 23 1.4.2. Globigerina Limestone Formation 23 1.4.3. Chert outcrops 25 1.4.4. Blue Clay Formation 26 1.4.5. Greensand Formation 28 1.4.6. Upper Coralline Limestone Formation 28 1.4.7. Quaternary deposits 29 1.5. Structural and tectonic geology of the Maltese Islands 29 1.6. Geomorphology 29 1.7. Soils and landscape 31 1.8. Climate and vegetation 32

Chapter 2 Chronology and stratigraphy of the valley systems 35 Chris O. Hunt, Michelle Farrell, Katrin Fenech, Charles French, Rowan McLaughlin, Maarten Blaauw, Jeremy Bennett, Rory P. Flood, Sean D. F. Pyne-O’Donnell, Paula J. Reimer, Alastair Ruffell, Alan J. Cresswell, Timothy C. Kinnaird, David Sanderson, Sean Taylor, Caroline Malone, Simon Stoddart & Nicholas C. Vella 2.1. Methods for dating environmental and climate change in the Maltese Islands 35 Rowan McLaughlin, Maarten Blaauw, Rory P. Flood, Charles French, Chris O. Hunt, Michelle Farrell, Katrin Fenech, Sean D.F. Pyne-O’Donnell, Alan J. Cresswell, David C.W. Sanderson, Timothy C. Kinnaird, Paula J. Reimer & Nicholas C. Vella 2.1.1. Data sources for chronology building 35 2.1.2. Pottery finds 41

v 2.2. Basin infill ground penetrating radar surveys 41 Alastair Ruffell, Chris O. Hunt, Jeremy Bennett, Rory P. Flood, Simon Stoddart & Caroline Malone 2.2.1. Rationale 41 2.2.2. Geophysics for basin fill identification 41 2.2.3. Valley locations 43 2.3. The sediment cores 43 Chris O. Hunt, Michelle Farrell, Rory P. Flood, Katrin Fenech, Rowan McLaughlin, Nicholas C. Vella, Sean Taylor & Charles French 2.3.1. Aims and methods 43 2.3.2. The core descriptions 49 2.3.3. Magnetic susceptibility and XRF analyses of the cores 59 2.4. Age-depth models 64 Maarten Blauuw & Rowan McLaughlin 2.4.1. Accumulation rates 64 2.5. A local marine reservoir offset for Malta 65 Paula J. Reimer 2.6. Major soil erosion phases 65 Rory P. Flood, Rowan McLaughlin & Michelle Farrell 2.6.1. Introduction 65 2.6.2. Methods 66 2.6.3. Results 67 2.6.4. Discussion 68 2.6.5. Conclusions 71

Chapter 3 The Holocene vegetation history of the Maltese Islands 73 Michelle Farrell, Chris O. Hunt & Lisa Coyle McClung 3.1. Introduction 73 Chris O. Hunt 3.2. Palynological methods 74 Lisa Coyle-McClung, Michelle Farrell & Chris O. Hunt 3.3. Taxonomy and ecological classification 75 Chris O. Hunt 3.4. Taphonomy 75 Chris O. Hunt & Michelle Farrell 3.5. The pollen results 87 Michelle Farrell, Lisa Coyle-McClung & Chris O. Hunt 3.5.1. The Salina cores 87 3.5.2. Wied Żembaq 87 3.5.3. Xemxija 87 3.5.4. In-Nuffara 87 3.5.5. Santa Verna 95 3.5.6. Ġgantija 105 3.6. Synthesis 107 3.6.1. Pre-agricultural landscapes (pre-5900 cal. bc) 107 3.6.2. First agricultural colonization (5900–5400 cal. bc) 108 3.6.3. Early Neolithic (5400–3900 cal. bc) 109 3.6.4. The later Neolithic Temple period (3900–2350 cal. bc) 110 3.6.5. The late Neolithic–Early Bronze Age transition (2350–2000 cal. bc) 111 3.6.6. The Bronze Age (2000–1000 cal. bc) 112 3.6.7. Late Bronze Age, Punic and Classical periods (c. 1000 cal. bc to ad 1000) 112 3.6.8. Medieval to modern (post-ad 1000) 113 3.7. Conclusions 113

vi Chapter 4 Molluscan remains from the valley cores 115 Katrin Fenech, Chris O. Hunt, Nicholas C. Vella & Patrick J. Schembri 4.1. Introduction 115 4.2. Material 117 4.3. Methods 117 4.4. Radiocarbon dates and Bayesian age-depth models 117 4.5. Results 117 4.5.1. Marsaxlokk (MX1) 127 4.5.2. Wied Żembaq (WŻ) 127 4.5.3. Mġarr ix-Xini (MĠX) 128 4.5.4. Marsa 2 128 4.5.5. Salina Deep Core 133 4.5.6. Xemxija 1 and 2 152 4.6. Interpretative discussion 153 4.6.1. Erosion – evidence of major events from the cores 153 4.7. Environmental reconstruction based on non-marine molluscs 155 4.7.1. Early Holocene (c. 8000–6000 cal. bc) 155 4.7.2. Mid-Holocene (c. 6000–3900 cal. bc) 155 4.7.3. Temple Period (c. 3900–2400 cal. bc) 155 4.7.4. Early to later Bronze Age (2400–c. 750 cal. bc) 155 4.7.5. Latest Bronze Age/early Phoenician period to Late Roman/Byzantine 156 period (c. 750 cal. bc–cal. ad 650) 4.8. Concluding remarks 156 4.9. Notes on selected 157 4.9.1. Extinct species 157 4.9.2. Species with no previous fossil record 158 4.9.3. Other indicator species 158

Chapter 5 The geoarchaeology of past landscape sequences on Gozo and Malta 161 Charles French & Sean Taylor 5.1. Introduction 161 5.2. Methodology and sample locations 164 5.3. Results 165 5.3.1. Santa Verna and its environs 165 5.3.2. Ġgantija temple and its environs 174 5.3.3. Skorba and its immediate environs 183 5.3.4. Taċ-Ċawla settlement site 188 5.3.5. Xagħra town 190 5.3.6. Ta’ Marżiena 192 5.3.7. In-Nuffara 192 5.3.8. The Ramla valley 193 5.3.9. The Marsalforn valley 195 5.3.10. Micromorphological analyses of possible soil materials in the Xemxija 1, 196 Wied Żembaq 1, Marsaxlokk and Salina Deep (SDC) cores 5.4. The Holocene landscapes of Gozo and Malta 213 5.5. A model of landscape development 217 5.6. Conclusions 221

Chapter 6 Cultural landscapes in the changing environments from 6000 to 2000 bc 223 Reuben Grima, Simon Stoddart, Chris O. Hunt, Charles French, Rowan McLaughlin & Caroline Malone 6.1. Introduction 223 6.2. A short history of survey of a fragmented island landscape 223 6.3. Fragmented landscapes 225 vii 6.4. The Neolithic appropriation of the landscape 227 6.5. A world in flux (5800–4800 cal. bc) 227 6.6. The fifth millennium bc hiatus (4980/4690 to 4150/3640 cal. bc) 228 6.7. Reappropriating the landscape: the ‘Temple Culture’ 230 6.8. Transition and decline 236 6.9. Conclusion 237

Part II The interaction between the natural and cultural landscape – insights from 239 the second millennium bc to the present: continuing the story

Chapter 7 Cultural landscapes from 2000 bc onwards 241 Simon Stoddart, Anthony Pace, Nathaniel Cutajar, Nicholas C. Vella, Rowan McLaughlin, Caroline Malone, John Meneely & David Trump† 7.1. An historiographical introduction to the Neolithic–Bronze Age transition 241 into the Middle Bronze Age 7.2. Bronze Age settlements in the landscape 243 7.3. The Bronze Age Phoenician transition and the Phoenician/Punic landscape 246 7.4. Entering the Roman world 250 7.5. Arab 250 7.6. Medieval 251 7.7. The Knights and the entry into the modern period 251

Chapter 8 The intensification of the agricultural landscape of the MalteseArchipelago 253 Jeremy Bennett 8.1. Introduction 253 8.2. The Annales School and the Anthropocene 254 8.3. The Maltese Archipelago and the longue durée of the Anthropocene 255 8.4. Intensification 257 8.5. Population 258 8.5.1. Sub-carrying capacity periods 258 8.5.2. Post-carrying capacity periods 260 8.6. The agrarian archipelago 262 8.6.1. The agricultural substrate 262 8.6.2. The development of agricultural technology 262 8.7. Discussion: balancing fragility and sustainability 264

Chapter 9 Locating potential pastoral foraging routes in Malta through the use of a 267 Geographic Information System Gianmarco Alberti, Reuben Grima & Nicholas C. Vella 9.1. Introduction 267 9.2. Methods 267 9.2.1. Data sources 267 9.2.2. Foraging routes and least-cost paths calculation 268 9.3. Results 271 9.3.1. Garrigue to garrigue least-cost paths 271 9.3.2. Stables to garrigues least-cost paths 273 9.4. Discussion 276 9.4. Conclusions 283

Chapter 10 Settlement evolution in Malta from the Late Middle Ages to the early twentieth 285 century and its impact on domestic space George A. Said-Zammit 10.1. The Medieval Period (ad 870–1530) 285 10.1.1. Medieval houses 288 viii 10.1.2. Giren and hovels 289 10.1.3. Cave-dwellings 292 10.1.4. Architectural development 292 10.2. The Knights’ Period (ad 1530–1798) 293 10.2.1. The phase ad 1530–1565 293 10.2.2. The phase ad 1565–1798 293 10.2.3. Early modern houses 294 10.2.4. Lower class dwellings 297 10.2.5. Cave-dwellings and hovels 298 10.2.6. The houses: a reflection of social and economic change 298 10.3. The British Period (ad 1800–1900) 298 10.3.1. The houses of the British Period 299 10.3.2. The effect of the Victorian Age 300 10.3.3. Urban lower class dwellings 301 10.3.4. Peasant houses, cave-dwellings and hovels 301 10.4. Conclusions 302

Chapter 11 Conclusions 303 Charles French, Chris O. Hunt, Michelle Farrell, Katrin Fenech, Rowan McLaughlin, Reuben Grima, Nicholas C. Vella, Patrick J. Schembri, Simon Stoddart & Caroline Malone 11.1. The palynological record 303 Chris O. Hunt & Michelle Farrell 11.1.1. Climate 303 11.1.2. Farming and anthropogenic impacts on vegetation 307 11.2. The molluscan record 308 Katrin Fenech, Chris O. Hunt, Nicholas C. Vella & Patrick J. Schembri 11.3. The soil/sediment record 310 Charles French 11.4. Discontinuities in Maltese prehistory and the influence of climate 313 Chris O. Hunt 11.5. Environmental metastability and the longue durée 314 Chris O. Hunt 11.6. Implications for the human story of the Maltese Islands 316 Charles French, Chris O. Hunt, Caroline Malone, Katrin Fenech, Michelle Farrell, Rowan McLaughlin, Reuben Grima, Patrick J. Schembri & Simon Stoddart

References 325

Appendix 1 How ground penetrating radar (GPR) works 351 Alastair Ruffell

Appendix 2 Luminescence analysis and dating of sediments from archaeological sites 353 and valley fill sequences Alan J. Cresswell, David C.W. Sanderson, Timothy C. Kinnaird & Charles French A2.1. Summary 353 A2.2. Introduction 354 A2.3. Methods 355 A2.3.1. Sampling and field screening measurements 355 A2.3.2. Laboratory calibrated screening measurements 355 A2.4. Quartz OSL SAR measurements 356 A2.4.1. Sample preparation 356 A2.4.2. Measurements and determinations 356 ix A2.5. Results 357 A2.5.1. Sampling and preliminary luminescence stratigraphies 357 A2.5.2. Gozo 357 A2.5.3. Skorba 363 A2.5.4. Tal-Istabal, 363 A2.6. Laboratory calibrated screening measurements 363 A2.6.1. Dose rates 367 A2.6.2. Quartz single aliquot equivalent dose determinations 367 A2.6.3. Age determinations 371 A2.7. Discussion 372 A2.7.1. Ġgantija Temple (SUTL2914 and 2915) 372 A2.7.2. Ramla and Marsalforn Valleys (SUTL2917–2923) 373 A2.7.3. Skorba Neolithic site (SUTL2925–2927)s 373 A2.7.4. Tal-Istabal, Qormi (SUTL2930) 376 A2.7. Conclusions 376

Appendix 2 – Supplements A–D 379

Appendix 3 Deep core borehole logs 401 Chris O. Hunt, Katrin Fenech, Michelle Farrell & Rowan McLaughlin

Appendix 4 Granulometry of the deep cores 421 (online edition only) Katrin Fenech

Appendix 5 The molluscan counts for the deep cores 441 (online edition only) Katrin Fenech

Appendix 6 The borehole and test excavation profile log descriptions 535 Charles French & Sean Taylor

Appendix 7 The detailed soil micromorphological descriptions from the buried soils and 549 Ramla and Marsalforn valleys Charles French A7.1. Santa Verna 549 A7.2. Ġgantija Test Pit 1 551 A7.3. Ġgantija WC Trench 1 552 A7.4. Ġgantija olive grove and environs 553 A7.5. Skorba 553 A7.6. Xagħra town 554 A7.7. Taċ-Ċawla 555 A7.8. In-Nuffara 555 A7.9. Marsalforn Valley Profile 626 556 A7.10. Ramla Valley Profile 627 556 A7.11. Dwerja 556

Appendix 8 The micromorphological descriptions for the Malta deep cores of Xemxija 1, 557 Wied Żembaq 1, Marsaxlokk and the base of the Salina Deep Core (21B) Charles French & Sean Taylor

Appendix 9 The charcoal data 563 Nathan Wright

Index 565

x Contributors

Dr Gianmarco Alberti Dr Rory P. Flood Department of Criminology, Faculty for Social School of Natural and Built Environment, Queen’s Wellbeing, University of Malta, Msida, Malta University, University Road, Belfast, Northern Email: [email protected] Ireland Email: [email protected] Jeremy Bennett Department of Archaeology, University of Prof. Charles French Cambridge, Cambridge, UK Department of Archaeology, University of Email: [email protected] Cambridge, Cambridge, UK Email: [email protected] Dr Maarten Blaauw School of Natural and Built Environment, Queen’s Dr Reuben Grima University, University Road, Belfast, Northern Department of Conservation and Built Heritage, Ireland University of Malta, Msida, Malta Email: [email protected] Email: [email protected]

Dr Petros Chatzimpaloglou Dr Evan A. Hill Department of Archaeology, University of School of Natural and Built Environment, Queen’s Cambridge, Cambridge, UK University, University Road, Belfast, Northern Email: [email protected] Ireland Email: [email protected] Dr Lisa Coyle McClung School of Natural and Built Environment, Queen’s Prof. Chris O. Hunt University, University Road, Belfast, Northern Faculty of Science, Liverpool John Moores Ireland University, Liverpool, UK Email: [email protected] Email: [email protected]

Dr Alan J. Cresswell Dr Timothy C. Kinnaird SUERC, University of Glasgow, East Kilbride, School of Earth and Environmental Sciences, University of Glasgow, Glasgow, Scotland University of St Andrews, St. Andrews, Scotland Email: [email protected] Email: [email protected]

Nathaniel Cutajar Prof. Caroline Malone Deputy Superintendent of Cultural Heritage, School of Natural and Built Environment, Queen’s Heritage Malta, , Malta University, University Road, Belfast, BT7 1NN, Email: [email protected] Northern Ireland Email: [email protected] Dr Michelle Farrell Centre for Agroecology, Water and Resilience, Dr Steve McCarron School of Energy, Construction and Environment, Department of Geography, National University of Coventry University, Coventry, UK Ireland, Maynooth, Ireland Email: [email protected] Email: [email protected]

Dr Katrin Fenech Dr Rowan McLaughlin Department of Classics & Archaeology, University School of Natural and Built Environment, Queen’s of Malta, Msida, Malta University, University Road, Belfast, Northern Email: [email protected] Ireland Email: [email protected]

xi John Meneely Prof. Patrick J. Schembri School of Natural and Built Environment, Queen’s Department of Biology, University of Malta, University, University Road, Belfast, Northern Msida, Malta Ireland Email: [email protected] Email: [email protected] Dr Simon Stoddart Dr Anthony Pace Department of Archaeology, University of UNESCO Cultural Heritage, Valletta, Malta Cambridge, Cambridge, UK Email: [email protected] Email: [email protected]

Dr Sean D.F. Pyne-O’Donnell Dr Sean Taylor Earth Observatory of Singapore, Nanyang Department of Archaeology, University of Technological University, Singapore Cambridge, Cambridge, UK Email: [email protected] Email: [email protected]

Prof. Paula J. Reimer Dr David Trump† School of Natural and Built Environment, Queen’s University, University Road, Belfast, Northern Dr Jonathan Turner Ireland Department of Geography, National University Email: [email protected] of Ireland, University College, Dublin, Ireland Email: [email protected] Dr Alastair Ruffell School of Natural and Built Environment, Queen’s Prof. Nicholas C. Vella University, University Road, Belfast, Northern Department of Classics and Archaeology, Faculty Ireland of Arts, University of Malta, Msida, Malta Email: [email protected] Email: [email protected]

George A. Said-Zammit Dr Nathan Wright Department of Examinations, Ministry for School of Social Science, The University of Education and Employment, Government of Malta, Queensland, Brisbane, Australia Malta Email: [email protected] Email: [email protected]

Prof. David C.W. Sanderson SUERC, University of Glasgow, East Kilbride, University of Glasgow, Glasgow, Scotland Email: [email protected]

xii Figures

0.1 Location map of the Maltese Islands in the southern Mediterranean Sea. 2 0.2 Location of the main Neolithic archaeological and deep coring sites investigated on Malta and Gozo.  11 0.3 Some views of previous excavations on Malta and Gozo.  12–13 0.4 Some views of recent excavations.  14 1.1 The location of the Maltese Islands in the southern Mediterranean Sea with respect to Sicily and North Africa.  20 1.2 Stratigraphic column of the geological formations reported for the Maltese Islands.  22 1.3 Geological map of the Maltese Islands.  22 1.4 Typical coastal outcrops of Lower Coralline Limestone, forming sheer cliffs.  23 1.5 Characteristic geomorphological features developed on the Lower Coralline Limestone in western Gozo (Dwerja Point).  24 1.6 The Middle Globigerina Limestone at the Xwejni coastline. 24 1.7 An overview of the area investigated in western Malta. 25 1.8 The end of the major fault system of Malta (Victorian Lines) at Fomm Ir-Riħ.  26 1.9 An overview of the western part of Gozo where the chert outcrops are located. 27 1.10 Chert outcrops: a) and c) bedded chert, and b) and d) nodular chert. 27 1.11 Four characteristic exposures of the Blue Clay formation on Gozo and Malta.  28 1.12 Map of the fault systems, arranged often as northwest–southeast oriented graben, and strike-slip structures.  30 2.1 Summary of new radiocarbon dating of Neolithic and Bronze Age sites on Gozo and Malta.  36 2.2 Summed radiocarbon ages for the main sediment cores.  36 2.3 The location of the Birżebbuġa Għar Dalam and Borġ in-Nadur basins and their GNSS-located GPR lines.  42 2.4 The core locations in Malta and Gozo.  44 2.5 Radiocarbon activity in settlement cores.  48 2.6 The Xemxija 2 core by depth. 51 2.7 The Wied Żembaq 1 and 2 cores by depth. 52 2.8 The Mġarr ix-Xini core by depth.  54 2.9 The Marsaxlokk 1 core and part of 2 by depth.  55 2.10 The resistivity and magnetic susceptibility graphs for Xemxija 1 core.  60 2.11 The resistivity and magnetic susceptibility graphs for Xemxija 2 core.  60 2.12 The multi-element data plots for Xemxija 1 core.  61 2.13 The multi-element data plots for Wied Żembaq 1 core.  62 2.14 The multi-element data plots for Marsaxlokk 1 core.  63 2.15 RUSLE models of soil erosion for the Maltese Islands in September and March.  69 2.16 R and C factors and their product.  70 3.1 Valley catchments and core locations in the Mistra area of Malta.  79 3.2 The modern pollen spectra. 81 3.3 Pollen zonation for the Salina Deep Core.  82–3 3.4 Pollen zonation for the Salina 4 core.  88–9 3.5 Pollen zonation for the Wied Żembaq 1 core.  92–3 3.6 Pollen zonation for the Xemxija 1 core.  96–7 3.7 Pollen zonation for the pit fills at In-Nuffara.  101 3.8 Pollen and palynofacies from the buried soils below the temple at Santa Verna.  102 3.9 Pollen and palynofacies from Test Pit 1 on the southwestern edge of the Ġgantija platform.  104 3.10 Photomicrographs (x800) of key components of the palynofacies at Santa Verna and Ġgantija.  106 4.1 Marsaxlokk 1 molluscan histogram.  120 4.2 Wied Żembaq 1 molluscan histogram.  122 4.3 Mġarr ix-Xini molluscan histogram.  129 4.4 Marsa 2 molluscan histogram.  134 4.5 Salina Deep Core molluscan histogram.  138 4.6 Marine molluscan histogram for the Salina Deep Core.  139 xiii 4.7 Xemxija 1 molluscan histogram.  144 4.8 Base of Xemxija 2 molluscan histogram.  145 5.1 Location map of the test excavation/sample sites and geoarchaeological survey areas on Gozo and Malta.  164 5.2 Plan of Santa Verna temple and the locations of the test trenches.  166 5.3 Santa Verna excavation trench profiles all with sample locations marked.  167 5.4 The red-brown buried soil profiles in Trench E, the Ashby and Trump Sondages within the Santa Verna temple site.  170 5.5 Santa Verna soil photomicrographs.  172–3 5.6 Plan of Ġgantija temple and locations of Test Pit 1 and the WC Trench excavations, with as-dug views of the WC Trench and TP1.  175 5.7 Section profiles of Ġgantija Test Pit 1 on the southwest side of Ġgantija temple and the east-west section of the Ġgantija WC Trench on the southeast side. 176 5.8 Ġgantija TP 1 photomicrographs.  178 5.9 Ġgantija WC Trench 1 photomicrographs.  180 5.10 Section profiles of Trench A at Skorba showing the locations of the micromorphological and OSL samples.  183 5.11 Skorba Trench A, section 1, photomicrographs.  185 5.12 Skorba Trench A, section 2, photomicrographs.  186 5.13 Taċ-Ċawla soil photomicrographs.  189 5.14 A typical terra rossa soil sequence in Xagħra town at construction site 2.  191 5.15 Xagħra soil photomicrographs.  191 5.16 In-Nuffara photomicrographs.  193 5.17 The Marsalforn (Pr 626) and Ramla (Pr 627) valley fill sequences, with the micromorphology samples and OSL profiling/dating loci marked.  194 5.18 Ramla and Marsalforn valley profiles soil photomicrographs.  195 5.19 Photomicrographs of the Blue Clay and Greensand geological substrates from the Ramla valley.  199 5.20 Xemxija 1 deep valley core photomicrographs.  202 5.21 Wied Żembaq 1 deep valley core photomicrographs.  206 5.22 Marsaxlokk and Salina Deep Core photomicrographs.  210 5.23 Scrub woodland on an abandoned terrace system and garrigue plateau land on the north coast of Gozo.  213 5.24 Terracing within land parcels (defined by modern sinuous lanes) on the Blue Clay slopes of the Ramla valley with Xagħra in the background.  216 6.1 The location of the Cambridge Gozo Project survey areas.  224 6.2 Fieldwalking survey data from around A. Ta Kuljat, B. Santa Verna, and C. Għajnsielem on Gozo from the Cambridge Gozo survey and the FRAGSUS Project.  227 6.3 The first cycle of Neolithic occupation as recorded by the Cambridge Gozo survey using kernel density analysis for the Għar Dalam, Red Skorba and Grey Skorba phases.  229 6.4 The first half of the second cycle of Neolithic occupation as recorded by the Cambridge Gozo survey using kernel density analysis implemented for the Żebbuġ and Mġarr phases. 232 6.5 The second half of the second cycle of Neolithic occupation as recorded by the Cambridge Gozo survey using kernel density analysis for the Ġgantija and Tarxien phases. 233 7.1 Kernel density analysis of the Tarxien Cemetery, Borġ in-Nadur and Baħrija periods for the areas covered by the Cambridge Gozo survey. 244 7.2a The evidence for Bronze Age settlement in the Mdina area on Malta. 245 7.2b The evidence for Bronze Age settlement in the Rabat (Gozo) area. 245 7.3 Distribution of Early Bronze Age dolmen on the Maltese Islands.  246 7.4 Distribution of presses discovered in the Mġarr ix-Xini valley during the survey. 248 7.5 The cultural heritage record of the Punic tower in Żurrieq through the centuries. 249 7.6 The changing patterns of social resilience, connectivity and population over the course of the centuries in the Maltese Islands.  252 8.1 An oblique aerial image of the northern slopes of the Magħtab land-fill site, depicting landscaping efforts including ‘artificial’ terracing.  256 8.2 RUSLE estimates of areas of low and moderate erosion for Gozo and Malta.  259 9.1 a) Sheep being led to their fold in Pwales down a track; b) Sheep grazing along a track on the Bajda Ridge in Xemxija, Malta.  269 xiv 9.2 Least-cost paths (LCPs), connecting garrigue areas, representing potential foraging routes across the Maltese landscape.  271 9.3 Density of LCPs connecting garrigue areas to random points within the garrigue areas themselves. 272 9.4 Location of ‘public spaces’, with size proportional to the distance to the nearest garrigue-to-garrigue LCP.  273 9.5 LCPs connecting farmhouses hosting pens to randomly generated points within garrigue areas in northwestern (A) and northeastern (B) Malta. 274 9.6 As for Figure 9.5, but representing west-central and east-central Malta. 274 9.7 As for Figure 9.5, but representing southern and southwestern Malta. 275 9.8 Location of ‘public spaces’, with size proportional to the distance to the nearest outbound journey.  276 9.9 a) Public space at Tal-Wei, between the modern town of Mosta and Naxxar; b) Tal-Wei public space as represented in 1940s survey sheets. 277 9.10 Approximate location of the (mostly disappeared) raħal toponyms.  279 9.11 Isochrones around farmhouse 4 representing the space that can be covered at 1-hour intervals considering animal walking speed.  280 9.12 Isochrones around farmhouse 2 representing the space that can be covered at 1-hour intervals considering animal walking speed (grazing while walking).  281 9.13 a) Isochrones around farmhouse 5 representing the space that can be covered at 1-hour intervals; b) Isochrones around farmhouse 6; c) Isochrones around farmhouse 7. 282 10.1 The likely distribution of built-up and cave-dwellings in the second half of the fourteenth century. 286 10.2 The lower frequency of settlement distribution by c. ad 1420.  286 10.3 The distribution of settlements just before ad 1530.  288 10.4 The late medieval Falson Palace in Mdina.  289 10.5 A girna integral with and surrounded by stone dry walling. 290 10.6 A hovel dwelling with a flight of rock-cut steps.  291 10.7 The hierarchical organisation of settlements continued, with the addition of Valletta, Floriana and the new towns around Birgu. 295 10.8 An example of a seventeenth century townhouse with open and closed timber balconies. 296 10.9 An example of a two-storey razzett belonging to a wealthier peasant family.  297 10.10 The distribution of built-up settlements in about ad 1900.  299 10.11 An example of a Neo-Classical house.  301 11.1 Summary of tree and shrub pollen frequencies at 10 sample sites. 304 11.2 Summary of cereal pollen frequencies at 14 sample sites.  305 11.3 Schematic profiles of possible trajectories of soil development in the major geological zones of Malta and Gozo. 311 11.4 The main elements of a new cultural-environmental story of the Maltese Islands throughout the last 10,000 years.  317 A2.1 Marsalforn valley, Gozo.  360 A2.2 Marsalforn valley, Gozo.  361 A2.3 Ramla valley, Gozo.  361 A2.4 Ġgantija Test Pit 1, Gozo.  361 A2.5 Skorba Neolithic site; trench A, East section; trench A, South section.  362 A2.6 Skorba, Trench A, South section.  362 A2.7 Tal-Istabal, Qormi, Malta.  364 A2.8 Tal-Istabal, Qormi, Malta.  364 A2.9 Photograph, showing locations of profile sample and OSL tubes, and luminescence-depth profile, for the sediment stratigraphy sampled in profile 1. 365 A2.10 Photograph, and luminescence-depth profile, for the sediment stratigraphy sampled in profile 3.  365 A2.11 Photograph, and luminescence-depth profile, for the sediment stratigraphy sampled in profile 2.  366 A2.12 Photograph, and luminescence-depth profile, for the sediment stratigraphy sampled in profiles 4 and 6.  366 A2.13 Photograph, and luminescence-depth profile, for the sediment stratigraphy sampled in profile 5.  367 A2.14 Apparent dose and sensitivity for laboratory OSL and IRSL profile measurements for SUTL2916 (P1). 370 A2.15 Apparent dose and sensitivity for laboratory OSL and IRSL profile measurements for SUTL2920 (P2). 370 A2.16 Apparent dose and sensitivity for laboratory OSL and IRSL profile measurements for SUTL2913 (P3). 370 A2.17 Apparent dose and sensitivity for laboratory OSL and IRSL profile measurements for SUTL2924 (P4). 370 xv A2.18 Apparent dose and sensitivity for laboratory OSL and IRSL profile measurements for SUTL2929 (P5). 371 A2.19 Apparent dose and sensitivity for laboratory OSL and IRSL profile measurements for SUTL2928 (P6). 371 A2.20 Apparent dose and sensitivity for laboratory OSL and IRSL profile measurements for SUTL2931 (P7). 371 A2.21 Probability Distribution Functions for the stored dose on samples SUTL2914 and 2915.  374 A2.22 Probability Distribution Functions for the stored dose on samples SUTL2917–2919.  374 A2.23 Probability Distribution Functions for the stored dose on samples SUTL2921–2923.  375 A2.24 Probability Distribution Functions for the stored dose on samples SUTL2925–2927.  375 A2.25 Probability Distribution Function for the stored dose on sample SUTL2930.  376 SB.1 Dose response curves for SUTL2914. 385 SB.2 Dose response curves for SUTL2915. 385 SB.3 Dose response curves for SUTL2917. 386 SB.4 Dose response curves for SUTL2918. 386 SB.5 Dose response curves for SUTL2919. 387 SB.6 Dose response curves for SUTL2921. 387 SB.7 Dose response curves for SUTL2922. 388 SB.8 Dose response curves for SUTL2923. 388 SB.9 Dose response curves for SUTL2925. 389 SB.10 Dose response curves for SUTL2926. 389 SB.11 Dose response curves for SUTL2927. 390 SB.12 Dose response curves for SUTL2930. 390 SC.1 Abanico plot for SUTL2914.  391 SC.2 Abanico plot for SUTL2915.  391 SC.3 Abanico plot for SUTL2917.  392 SC.4 Abanico plot for SUTL2918.  392 SC.5 Abanico plot for SUTL2919.  392 SC.6 Abanico plot for SUTL2921.  393 SC.7 Abanico plot for SUTL2922.  393 SC.8 Abanico plot for SUTL2923.  393 SC.9 Abanico plot for SUTL2925.  394 SC.10 Abanico plot for SUTL2926.  394 SC.11 Abanico plot for SUTL2927.  394 SC.12 Abanico plot for SUTL2930.  395 SD.1 Apparent ages for profile 1, with OSL ages. 397 SD.2 Apparent ages for profile 2, with OSL ages. 397 SD.3 Apparent ages for profile 3, with OSL ages. 398 SD.4 Apparent ages for profiles 4 and 6, with OSL ages.  398 SD.5 Apparent ages for profile 5, with OSL ages. 399 SD.6 Apparent ages for profile 7.  399

Tables

1.1 Description of the geological formations found on the Maltese Islands.  21 2.1 The cultural sequence of the Maltese Islands (with all dates calibrated). 37 2.2 Quartz OSL sediment ages from the Marsalforn (2917–2919) and Ramla (2921–2923) valleys, the Skorba temple/buried soil (2925–2927) and Tal-Istabal, Qormi, soil (2930).  40 2.3 Dating results for positions in the sediment cores. 45 2.4 Summary stratigraphic descriptions of the sequences in the deep core profiles. 57 2.5 Mean sediment accumulation rates per area versus time for the deep cores. 64 2.6 Radiocarbon measurements and ΔR values from early twentieth century marine shells from Malta. 65 2.7 Calibrated AMS 14C dates of charred plant remains from Santa Verna palaeosol, Gozo.  68 2.8 Physical properties of the catchments.  68 2.9 Normalized Diffuse Vegetation Index (NDVI) for the catchments in 2014–15 and average rainfall data for the weather station at Balzan for the period 1985 to 2012.  69 3.1 Semi-natural plant communities in the Maltese Islands.  76 xvi 3.2 Attribution of pollen taxa to plant communities in the Maltese Islands and more widely in the Central Mediterranean.  77 3.3 Characteristics of the taphonomic samples from on-shore and off-shore Mistra Valley, Malta.  80 3.4 The pollen zonation of the Salina Deep Core with modelled age-depths.  84 3.5 The pollen zonation of the Salina 4 core with modelled age-depths.  90 3.6 The pollen zonation of the Wied Żembaq 1 core with modelled age-depths.  94 3.7 The pollen zonation of the Xemxija 1 core with modelled age-depths.  98 3.8 The pollen zonation of the fill of a Bronze Age silo at In-Nuffara, Gozo.  103 3.9 Summary of the pollen analyses of the buried soil below the Santa Verna temple structure.  103 3.10 Summary of the pollen analyses from the buried soil in Ġgantija Test Pit 1.  105 3.11 Activity on Temple sites and high cereal pollen in adjacent cores.  105 4.1 List of freshwater molluscs and land snails found in the cores, habitat requirement, palaeontological record and current status and conservation in the Maltese Islands. 118 4.2 Molluscan zones for the Marsaxlokk 1 core (MX1).  121 4.3 Molluscan zones for the Wied Żembaq 1 core (WŻ1).  123 4.4 Molluscan zones for the Wied Żembaq 2 core (WŻ2).  125 4.5 Integration of molluscan zones from the Wied Żembaq 1 and 2 cores.  128 4.6 Molluscan zones for the Mġarr ix-Xini 1 core (MĠX1).  130 4.7 Molluscan zones for the Marsa 2 core (MC2).  135 4.8 The non-marine molluscan zones for the Salina Deep Core (SDC).  140 4.9 Molluscan zones for the Salina Deep Core (SDC).  142 4.10 Molluscan zones for the Xemxija 1 core (XEM1).  146 4.11 Molluscan zones for the Xemxija 2 core (XEM2).  148 4.12 Correlation and integration of molluscan data from Xemxija 1 (XEM1) and Xemxija 2 (XEM2).  151 5.1 Micromorphology and small bulk sample sites and numbers.  162 5.2 Summary of available dating for the sites investigated in Gozo and Malta.  163 5.3 pH, magnetic susceptibility, loss-on-ignition, calcium carbonate and % sand/silt/clay particle size analysis results for the Ġgantija, Santa Verna and the Xagħra town profiles, Gozo.  168 5.4 Selected multi-element results for Ġgantija, Santa Verna and Xagħra town buried soils, and the Marsalforn and Ramla valley sequences, Gozo.  169 5.5 Summary of the main soil micromorphological observations for the Santa Verna, Ġgantija and the Xagħra town profiles, Gozo.  181 5.6 pH, magnetic susceptibility and selected multi-element results for the palaeosols in section 1, Trench A, Skorba.  184 5.7 Loss-on-ignition organic/carbon/calcium carbonate frequencies and particle size analysis results for the palaeosols in section 1, Trench A, Skorba.  184 5.8 Summary of the main soil micromorphological observations of the buried soils in sections 1 and 2, Trench A, Skorba.  188 5.9 Summary of the main soil micromorphological observations of the possible buried soils at Taċ-Ċawla.  189 5.10 Field descriptions and micromorphological observations for the quarry and construction site profiles in Xagħra town. 190 5.11 Sample contexts and micromorphological observations for two silo fills at In-Nuffara.  192 5.12 Summary of the main soil micromorphological observations from the Ramla and Marsalforn valley fill profiles.  196 5.13 Main characteristics of the Upper and Lower Coralline Limestone, Globigerina Limestone, Blue Clay and Greensand. 197 5.14 Summary micromorphological descriptions and suggested interpretations for the Xemxija 1 core.  200 5.15 Summary micromorphological descriptions and suggested interpretations for the Wied Żembaq 1 core.  207 5.16 Summary micromorphological descriptions and suggested interpretations for the Marsaxlokk 1 core.  209 5.17 Summary micromorphological descriptions and suggested interpretations for the base zone of the base of the Salina Deep Core.  211 8.1 Carrying capacity estimates for the Neolithic/Temple Period of the Maltese Archipelago.  258 8.2 Summary of population changes in the Maltese Archipelago.  261 11.1 Summary of the environmental and vegetation changes in the Maltese Islands over the longue durée. 306 xvii 11.2 Summary of events revealed by the molluscan data in the deep cores. 309 11.3 Major phases of soil, vegetation and landscape development and change during the Holocene.  312 11.4 Occurrence of gypsum in FRAGSUS cores and contemporary events.  314 A2.1 Sample descriptions, contexts and archaeological significance of the profiling samples used for initial screening and laboratory characterization.  358 A2.2 Sample descriptions, contexts and archaeological significance of sediment samples SUTL2914–2930.  360 A2.3 Activity and equivalent concentrations of K, U and Th determined by HRGS.  368 A2.4 Infinite matrix dose rates determined by HRGS and TSBC.  368 A2.5 Effective beta and gamma dose rates following water correction.  369 A2.6 SAR quality parameters.  369 A2.7 Comments on equivalent dose distributions of SUTL2914 to SUTL2930.  372 A2.8 Quartz OSL sediment ages.  372 A2.9 Locations, dates and archaeological significance of sediment samples SUTL2914–2930.  373 SA.1 Field profiling data, as obtained using portable OSL equipment, for the sediment stratigraphies examined on Gozo and Malta.  379 SA.2 OSL screening measurements on paired aliquots of 90–250 μm 40% HF-etched ‘quartz’. 380 SA.3 OSL screening measurements on three aliquots of 90–250 μm 40% HF-etched ‘quartz’ for SUTL2924. 382 SA.4 IRSL screening measurements on paired aliquots of 90–250 μm 15% HF-etched ‘polymineral’.  382 SA.5 IRSL screening measurements on three aliquots of 90–250 μm 15% HF-etched ‘polymineral’ for SUTL2924.  383 A3.1 Stratigraphy and interpretation of the Salina Deep Core.  401 A3.2 Stratigraphy and interpretation of the Salina 4 core.  405 A3.3 Stratigraphy and interpretation of the Salina 2 core.  407 A3.4 Stratigraphy and interpretation of the Xemxija 1 core.  408 A3.5 Stratigraphy and interpretation of the Xemxija 2 core.  411 A3.6 Stratigraphy and interpretation of the Wied Żembaq 1 core.  413 A3.7 Stratigraphy and interpretation of the Wied Żembaq 2 core.  413 A3.8 Stratigraphy and interpretation of the Mgarr ix-Xini core.  414 A3.9 Stratigraphy and interpretation of the Marsaxlokk core.  416 A3.10 Stratigraphy and interpretation of the Marsa 2 core.  417 A3.11 Stratigraphy and interpretation of the Mellieħa Bay core.  418 A3.12 Key to the scheme for the description of Quaternary sediments. 419 A4.1 Marsa 2.  421 (online edition only) A4.2 Mgarr ix-Xini.  424 (online edition only) A4.3 Salina Deep Core.  427 (online edition only) A4.4 Wied Żembaq 2.  429 (online edition only) A4.5 Wied Żembaq 1.  430 (online edition only) A4.6 Xemxija 1.  432 (online edition only) A4.7 Xemxija 2.  435 (online edition only) A4.8 Marsaxlokk 1.  438 (online edition only) A5.1 Marsa 2.  442 (online edition only) A5.2 Mgarr ix-Xini.  456 (online edition only) A5.3 Salina Deep Core non-marine.  466 (online edition only) A5.4 Salina Deep Core marine.  478 (online edition only) A5.5 Wied Żembaq 2.  490 (online edition only) A5.6 Wied Żembaq 1.  496 (online edition only) A5.7 Xemxija 1.  502 (online edition only) A5.8 Xemxija 2.  516 (online edition only) A5.9 Marsaxlokk 1.  528 (online edition only) A8.1 Xemxija 1 core micromorphology sample descriptions.  557 A8.2 Wied Żembaq 1 core micromorphology sample descriptions.  559 A8.3 Marsaxlokk core micromorphology sample descriptions.  560 A8.4 Salina Deep Core micromorphology sample descriptions.  561 A9.1 The charcoal data from the Skorba, Kordin, In-Nuffara and Salina Deep Core.  563 xviii Preface and dedication

Caroline Malone

The FRAGSUS Project emerged as the direct result As this and the two other volumes in this series of an invitation to undertake new archaeological report, the original Cambridge Gozo Project was the fieldwork in Malta in 1985. Anthony Bonanno of the germ of a rich and fruitful academic collaboration University of Malta organized a conference on ‘The that has had international impact, and has influenced Mother Goddess of the Mediterranean’ in which successive generations of young archaeologists in Colin Renfrew was a participant. The discussions that Malta and beyond. resulted prompted an invitation that made its way to As the Principal Investigator of the FRAGSUS David Trump (Tutor in Continuing Education, Cam- Project, on behalf of the very extensive FRAGSUS team bridge University), Caroline Malone (then Curator of I want to dedicate this the first volume of the series the Avebury Keiller Museum) and Simon Stoddart to the enlightened scholars who set up this now 35 (then a post-graduate researcher in Cambridge). We year-long collaboration of prehistoric inquiry with our eagerly took up the invitation to devise a new collab- heartfelt thanks for their role in our studies. orative, scientifically based programme of research on prehistoric Malta. We dedicate this volume to: What resulted was the original Cambridge Gozo Project (1987–94) and the excavations of the Xagħra Joseph Attard Tabone Brochtorff Circle and the Għajnsielem Road Neo- Professor Anthony Bonanno lithic house. Both those sites had been found by local Professor Lord Colin Renfrew antiquarian, Joseph Attard-Tabone, a long-established figure in the island for his work on conservation and and offer our profound thanks for their continuing site identification. role in promoting the prehistory of Malta.

xix

Acknowledgements

This volume records research undertaken with fund- They were helped by Vincent Van Walt, who provided ing from the European Research Council under the technical assistance. Al Ruffell and John Meneely did European Union’s Seventh Framework Programme geophysical evaluation and GRP location of the cores. (FP/2007-2013)/ERC Grant Agreement n. 323727 During fieldwork, Tim Kinnaird and Charles French (FRAGSUS Project: Fragility and sustainability in were assisted by Sean Taylor, Jeremy Bennett and small island environments: adaptation, cultural change Simon Stoddart. We are grateful to the Superintend- and collapse in prehistory – http://www.qub.ac.uk/ ence of Cultural Heritage, Malta and Heritage Malta sites/FRAGSUS/). All the authors of this volume are for permission to undertake the analyses and much indebted to the ERC for its financial support, and to practical assistance. the Principal Investigator of the FRAGSUS Project, For Chapter 5, we would like to thank all at Her- Prof. Caroline Malone (Queen’s University, Belfast, itage Malta, the Ġgantija visitor’s centre and the Uni- UK), for her central role in devising the project and versity of Malta for their friendly and useful assistance seeing this research through to publication. throughout. In particular, we would like to thank For Chapter 2, we extend warm thanks to the George Azzopardi, Daphne Caruana, Josef Caruana, staff of the 14CHRONO centre at QUB, especially Nathaniel Cutajar, Chris Gemmell, Reuben Grima, Stephen Hoper, Jim McDonald, Michelle Thompson Joanne Mallia, Christian Mifsud, Anthony Pace, Ella and Ron Reimer, all of whom took a keen interest in Samut-Tagliaferro, Mevrick Spiteri, Katya Stroud, the FRAGSUS Project. The success of the FRAGSUS Sharon Sultana and Nick Vella. We also thank Tonko Project in general and the radiocarbon dating exercise Rajkovača of the McBurney Laboratory, Department has depended on their work. We thank the Physical of Archaeology, University of Cambridge, for mak- Geography Laboratory staff at the School of Geogra- ing the thin section slides, the Physical Geography phy, University College Dublin, for the use of their Laboratory, Department of Geography, University of ITRAX XRF core scanner. In particular, we would like Cambridge, and the ALS Global laboratory in Seville, to thank Dr Steve McCarron, Department of Geogra- Spain, for processing the multi-element analyses. phy, National University of Ireland, Maynooth and Dr For Chapter 6, Reuben Grima wrote the first Jonathan Turner, Department of Geography, National draft of this contribution, receiving comments and University of Ireland, University College, Dublin. additions from the other authors. We thank Prof. Patrick Schembri for sourcing and For Chapter 7, Simon Stoddart wrote the first collecting the Acanthocardia samples from the Natural draft of this contribution, receiving comments and Museum of Natural History. Sean Pyne O’Donnell additions from the other authors. thanks Dr Chris Hayward at the Tephrochronology For Chapter 9, we thank Sharlo Camilleri for pro- Analytical Unit (TAU), University of Edinburgh, for viding us with a copy of the GIS data produced by the help and advice during microprobe work. Dr Maxine MALSIS (MALtese Soil Information System) project. Anastasi, Department of Classics and Archaeology, We are grateful to Prof. Saviour Formosa and Prof. University of Malta, helped identify the pottery from Timmy Gambin, both of the University of Malta, who the settlement cores. Dr Frank Carroll helped show facilitated the donation of LiDAR data, together with us the way forward; but sadly is no longer with us. computer facilities, as part of the European project Chris Hunt, Rory Flood, Michell Farrell, Sean Pyne ERDF156 Developing National Environmental Monitor- O’Donnell and Mevrick Spiteri were the coring team. ing Infrastructure and Capacity, from the former Malta xxi Acknowledgements

Environment and Planning Authority. A number of the grant. The research team also wants to record our individuals were happy to share their recollections of indebtedness to the administrators of the grant within shepherding practices in Malta and Gozo over the last our own institutions, since this work required detailed sixty or seventy years; others facilitated the encoun- and dedicated attention. In particular we thank Rory ters. We are grateful to all of them: Charles Gauci, Jordan in the Research Support Office, Stephen Hoper Grezzju Meilaq, Joseph Micallef, Louis , Ċettina and Jim McDonald – CHRONO lab, and Martin and Anġlu Vella, Ernest Vella and Renata Zerafa. Stroud (Queen’s University Belfast), Laura Cousens Simon Stoddart would like to thank Prof. Martin (Cambridge University), Glen Farrugia and Cora Jones and Rachel Ballantyne for their advice in con- Magri (University of Malta), the Curatorial, Finance structing Figure 11.4. The editors would like to thank and Designs & Exhibitions Departments in Heritage Emma Hannah for compiling the index. Malta and Stephen Borg at the Superintendence of Firstly, the FRAGSUS Project is the result of Cultural Heritage. Finally, we thank Fr. Joe Inguanez a very generous research grant from the European (Emeritus Head of Department, Department of Soci- Research Council (Advanced Grant no’ 323727), with- ology, University of Malta) for offering us theleitmotif out which this and its two partner volumes and the of this volume while a visiting scholar in Magdalene research undertaken could not have taken place. We College, Cambridge: ‘Mingħajr art u ħamrija, m’hemmx heartily thank the ERC for its award and the many sinjorija’ translating as ‘without land and soil, there is administrators in Brussels who monitored our use of no wealth’.

xxii Foreword

Anthony Pace

Sustainability, as applied in archaeological research designed by the participating institutional partners and heritage management, provides a useful perspec- and scholars, was to explore untapped field resources tive for understanding the past as well as the modern and archived archaeological material from a number conditions of archaeological sites themselves. As often of sites and their landscape to answer questions that happens in archaeological thought, the idea of sus- could be approached with new techniques and meth- tainability was borrowed from other areas of concern, ods. The results of the FRAGSUS Project will serve to particularly from the modern construct of develop- advance our knowledge of certain areas of Maltese ment and its bearing on the environment and resource prehistory and to better contextualize the archipela- exploitation. The term sustainability entered common go’s importance as a model for understanding island usage as a result of the unstoppable surge in resource archaeology in the central Mediterranean. The work exploitation, economic development, demographic that has been invested in FRAGSUS lays the founda- growth and the human impacts on the environment tion for future research. that has gripped the World since 1500. Irrespective of Malta and Gozo are among the Mediterranean scale and technology, most human activity of an eco- islands whose prehistoric archaeology has been nomic nature has not spared resources from impacts, intensely studied over a number of decades. This transformations or loss irrespective of historical and factor is important, yet more needs to be done in the geographic contexts. Theories of sustainability may field of Maltese archaeology and its valorization. provide new narratives on the archaeology of Malta Research is not the preserve of academic specialists. and Gozo, but they are equally important and of It serves to enhance not only what we know about central relevance to contemporary issues of cultural the Maltese islands, but more importantly, why the heritage conservation and care. Though the archae- archipelago’s cultural landscape and its contents ological resources of the Maltese islands can throw deserve care and protection especially at a time of light on the past, one has to recognize that such extensive construction development. Strict rules and resources are limited, finite and non-renewable. The guidelines established by the Superintendence of sense of urgency with which these resources have to Cultural Heritage have meant that during the last two be identified, listed, studied, archived and valued is decades more archaeological sites and deposits have akin to that same urgency with which objects of value been protected in situ or rescue-excavated through a and all fragile forms of natural and cultural resources statutory watching regime. This supervision has been require constant stewardship and protection. The idea applied successfully in a wide range of sites located in of sustainability therefore, follows a common thread urban areas, rural locations and the landscape, as well across millennia. as at the World Heritage Sites of Valletta, Ġgantija, It is all the more reason why cultural resource Ħaġar Qim and Mnajdra and Tarxien. This activity management requires particular attention through has been instrumental in understanding ancient and research, valorization and protection. The FRAGSUS historical land use, and the making of the Maltese Project (Fragility and sustainability in small island historic centres and landscape. environments: adaptation, cultural change and col- Though the cumulative effect of archaeological lapse in prehistory) was intended to further explore research is being felt more strongly, new areas of and enhance existing knowledge on the prehistory interest still need to be addressed. Most pressing are of Malta and Gozo. The objective of the project as those areas of landscape studies which often become xxiii Foreword

peripheral to the attention that is garnered by prom- FRAGSUS Project, will bear valuable results that will inent megalithic monuments. FRAGSUS has once only advance Malta’s interests especially in today’s again confirmed that there is a great deal of value world of instant e-knowledge that was not available in studying field systems, terraces and geological on such a global scale a mere two decades ago. settings which, after all, were the material media in FRAGSUS also underlines the relevance of which modern Malta and Gozo ultimately developed. studying the achievements and predicaments of past There is, therefore, an interplay in the use of the term societies to understand certain, though not all, aspects sustainability, an interplay between what we can learn of present environmental challenges. The twentieth from the way ancient communities tested and used the century saw unprecedented environmental changes very same island landscape which we occupy today, as a result of modern political-economic constructs. and the manner in which this landscape is treated in Admittedly, twentieth century developments cannot contested economic realities. If we are to seek factors be equated with those of antiquity in terms of demog- of sustainability in the past, we must first protect its raphy, technology, food production and consumption relics and study them using the best available meth- or the use of natural resources including the uptake ods in our times. On the other hand, the study of the of land. However, there are certain aspects, such as past using the materiality of ancient peoples requires climate change, changing sea levels, significant envi- strong research agendas and thoughtful stewardship. ronmental degradation, soil erosion, the exploitation The FRAGSUS Project has shown us how even small and abandonment of land resources, the building and fragile deposits, nursed through protective legislation maintenance of field terraces, the rate and scale of and guardianship, can yield significant information human demographic growth, movement of peoples, which the methods of pioneering scholars of Maltese access to scarce resources, which to a certain extent archaeology would not have enabled access to. As reflect impacts that seem to recur in time, irrespec- already outlined by the Superintendence of Cultural tively of scale and historic context. Heritage, a national research agenda for cultural herit- age and the humanities is a desideratum. Such a frame- Anthony Pace work, reflected in the institutional partnership of the Superintendent of Cultural Heritage (2003–18).

xxiv References

Aalen, F.H.A., 1984. Vernacular Buildings in Cephalonia, Analyses of the uppermost 10 m Cores from Valle di Ionian Islands, Greece. Journal of Cultural Geography Castiglione (Roma, Italy). Geologica Romana 25, 287–308. 4 (2), 56–72. Allen, M.J. & B. Eastabrook, 2017. (Some thoughts on) using Abela, G.F., 1647. Della descrittione di Malta. Malta: Paolo molluscs for landscape reconstruction and ecology in Bonacota. Malta, in Molluscs in Archaeology: Methods, Approaches Abel-Schaad, D. & J.A. López-Sáez, 2013. Vegetation changes and Applications, ed. M.J. Allen. Oxford: Oxbow Books, in relation to fire history and human activities at 165–78. the Peña Negra mire (Bejar Range, Iberian Central Allen, M.J. & R.I. Macphail, 1987. Micromorphology and Mountain System, Spain) during the past 4,000 years. magnetic susceptibility studies: their combined role Vegetation History and Archaeobotany 22, 199–214. in interpreting archaeological soils and sediments, in Aguilar, J., J.L. Guardiola, E. Barahona, C. Dorronsoro & Soil Micromorphology, eds. N. Fedoroff, L.M. Bresson & F. Santos, 1983. Clay illuviation in calcareous soils, in M-A. Courty. Paris: Association Francaise pour l’Etude Soil Micromorphology, eds. P. Bullock & C.P. Murphy. du Sol, 669–76. Berkhamsted: A.B. Academic, 541–50. Alley, R.B., P.A. Mayewski, T. Sowers, M. Stuiver, K.C. Tay- Aitken, M.J., 1983. Dose rate data in SI units. PACT: Journal lor & P.U. Clark, 1997. Holocene climatic instability; of the European Study Group on Physical, Chemical and A prominent, widespread event 8200 yr ago. Geology Mathematical Techniques Applied to Archaeology 9, 69–76. 25, 483–6. Albert, P.G., E.L. Tomlinson., V.C. Smith, A. Di Roberto, Alexander, D., 1988. A review of the physical geography of A. Todman, M. Rosi, M. Marani, W. Muller & M.A. Malta and its significance for tectonic geomorphology. Menzies, 2012. Marine-continental tephra correlations: Quaternary Science Reviews 7, 41–53. Volcanic glass geochemistry from the Marsili Basin Aloisio, M.A., 2007. A Test-Case for Regional Market Integra- and the Aeolian Islands, Southern Tyrrhenian Sea, tion? The Grain Trade between Malta and Sicily in the Italy. Journal of Volcanology and Geothermal Research Late Middle Ages, in Money, Markets and Trade in Late 229 (Supplement C), 74–94. Medieval Europe: Essays in Honour of John H. A. Munro, Alberti, G., 2017. TRANSIT: a GIS toolbox for estimating eds. L. Armstrong, I. Elbl, I. & M.M. Elbl. Leiden: Brill, the duration of ancient sail-powered navigation. 297–309. Cartography and Geographic Information Science 46, 1–19. Ammerman, A., 1985. The Acconia Survey: Neolithic settlement Alberti, G., R. Grima & N.C. Vella, 2018. The use of geo- and the Obsidian Trade. London: Institute of Archaeology. graphical information system and 1860s cadastral Ammerman, A.J. & Cavalli-Sforza, L. 1984. The Neolithic Tran- data to model agricultural suitability before heavy sition and the Genetics of Population in Europe. Princeton: mechanization. A case study from Malta. Plos One Princeton University Press. 13 (2), 1–28. Anastasi, M., (ed.) 2019. Pottery from Roman Malta. Oxford: Alberts, E.E., W.C. Moldenhauer & G.R. Foster, 1980. Soil Archaeopress. aggregates and primary particles transported in rill Anastasi, M. & N.C. Vella, 2018. Olive oil production technol- and interrill flow.Soil Science Society of America Journal ogy in Roman Malta, in The Lure of the Antique: Essays 44, 590–5. on Malta and Mediterranean Archaeology in Honour of Aldenderfer, M.S., 1998. Montane Foragers. Asana and the Anthony Bonanno, eds. N.C. Vella, A.J. Frendo & H.C.R. South-Central Andean Archaic. Iowa City: University Vella. Leuven: Peeters, 275–300. of Iowa Press. Anderson, E.W., 1997. The wied: a representative Mediterra- Alessio, A., L. Allegri, F. Bella, G. Calderoni, C. Cortesi, G. nean landform. GeoJournal 44, 111–14. Dai Pra, D. De Rita, D. Esu, M. Follieri, S. Improta, D. Anderson, E.W. & P.J. Schembri, 1989. Coastal zone Survey of Magri, B. Narcisi, V. Petrone & L. Sadori, 1986. 14C the Maltese Islands report. Beltissebh, Malta: Planning dating, Geochemical Features, Faunistic and Pollen Services Division, Works Department. 325 References

Angulo, R.J., M.C. De Souza, M.L. Assine, L.C.R. Pessenda Baddeley, A., E. Rubak & R. Turner, 2016. Spatial Point Pat- & S.T. Disaro, 2008. Chronostratigraphy and radi- terns. Methodology and Applications with R. Boca Raton: ocarbon age inversion in the Holocene regressive CRC Press. barrier of Paraná, southern Brazil. Marine Geology Baillie, M.G.L., 1999. Exodus to Arthur: Catastrophic Encounters 252 (3), 111–19. with Comets. London: B.T. Batsford. , J., J.A. López-Sàez & P. Bintz 2006. Exploring Baldassini, N. & A. Di Stefano, 2015. New insights on the the ancient occupation of a high altitude site (Lake Oligo–Miocene succession bearing phosphatic layers Lauzon, France): comparison between pollen and of the Maltese Archipelago. Italian Journal of Geosciences non-pollen palynomorphs. Review of Palaeobotany and 134 (2), 355–66. Palynology 141, 151–63. Barber, D.C., A. Dyke, C. Hillaire-Marcel, A.E. Jennings, J.T. Ariano, B., R. McLaughlin, R. Power, J. Stock, B. Mercie- Andrews, M.W. Kerwin, G. Bilodeau, R. McNeely, J. ca-Spiteri, S. Stoddart, C. Malone & D. Bradley, in Southon, M.D. Morehead & J.-M. Gagnon, 1999. Forcing press. aDNA: Origins, in Temple People. Bioarchaeol- of the cold event of 8,200 years ago by catastrophic ogy, Resilience and Culture in Prehistoric Malta, eds. drainage of Laurentide lakes. Nature 400, 344–8. S. Stoddart, R. Power, J. Thompson, B. Mercieca, R., Barker, G., 1995. A Mediterranean Valley: Landscape Archaeol- McLaughlin & C. Malone. Cambridge: McDonald ogy and Annales History in the Biferno Valley. London: Institute for Archaeological Research. Leicester University Press. Arnon, A., T. Svoray & E.D. Ungar, 2011. The spatial Barker, G., 1996. The Biferno Valley: Archaeology as Annales dimension of pastoral herding: A case study from the History in a Mediterranean Valley. Leicester: Leicester northern Negev. Israel Journal of Ecology & Evolution University Press. 57 (1–2), 129–49. Barker, G. & C.O. Hunt, 1995. Quaternary valley floor Armstrong, K., C. Tsigonaki, A. Sarris, A. & N. Coutsinas, erosion and alluviation in the Biferno valley, Molise, 2016. Site Location Modelling and Prediction on Italy: the role of tectonics, climate, sea level change Early Byzantine Crete: Methods Employed, Chal- and human activity, in Mediterranean Quaternary River lenges Encountered, in Keep the Revolution Going. Environments, eds. J.C. Woodward, M.G. Macklin & J. Proceedings of the 43rd Annual Conference on Computer Lewin. Rotterdam: Balkema, 145–57. Applications and Quantitative Methods in Archaeology, Barker, G., D. Gilbertson, B. Jones & D.J. Mattingley (eds.), eds. S. Campana, R. Scopigno, G. Carpentiero & M. 1996. Farming the Desert: The UNESCO Libyan Valleys Cirillo. Oxford: Archaeopress, 659–68. Survey. Paris: UNESCO. Ashby, T., 1915. Roman Malta. Journal of Roman Studies Barker, G., D. Gilbertson & D. Mattingly (eds.), 2007.Archae - 5, 25–80. ology and Desertification: The Wadi Faynan Landscape Ashby, T., R.N. Bradley, T.E. Peet & N. Tagliaferro, 1913. Survey, Southern Jordan. (CBRL Levant Series Volume Excavations in 1908–11 in various megalithic build- 6.) Oxford: Oxbow Books, 445–64. ings in Malta and Gozo. Papers of the British School at Barratt, R., R. McLaughlin, C. Malone & S. Stoddart, 2018. Rome 6, 1–126. Celebrations in Prehistoric Malta. World Archaeology Asioli, A., F. Trincardi, J.J. Lowe & F. Oldfield, 1999. Short- 50 (2), 271–84. term climate changes during the last glacial-Holocene Barratt, R., Malone, C., McLaughlin, R. & Parkinson, E., 2020. transition: Comparison between Mediterranean Hypogea and the clubhouse: Neolithic Malta’s houses records and the GRIP event stratigraphy. Journal of of the living and houses of the dead. In Barclay, A., Quaternary Science 14, 373–81. Field, D. & Leary, J. (eds.), Houses of the Dead. Oxford: Asouti, K., C. Kabukcu, C.E. White, I. Kuijt, B. Finlayson Oxbow, 15–38. & C. Makarewicz, 2015. Early Holocene woodland Barrowclough, D.A. & C. Malone (eds.), 2007. Cult in context: vegetation and human impacts in the arid zone of reconsidering ritual in archaeology. Oxford: Oxbow Books. the southern Levant. The Holocene 25 (10), 1565–80. Bauer, A.M. & M. Bhan, 2018. Climate without Nature: A Avery, B.W. & C.L. Bascomb (eds.), 1974. Soil Survey Lab- Critical Anthropology of the Anthropocene. Cambridge: oratory Methods. Harpenden: Soil Survey Technical Cambridge University Press. Monograph No. 6. Behrensmeyer, A.K. & S.M. Kidwell, 1985. Taphonomy’s Azzopardi, E. 2013. The Shipwrecks of Xlendi Bay, Gozo, contributions to paleobiology. Paleobiology 11, 105–19. Malta. International Journal of Nautical Archaeology Bell, T., A. Wilson & A. Wickham, 2002. Tracking the Sam- 42 (2), 286–95. nites: Landscape and Communications Routes in the Azzopardi, G., 2006–7. Cremation burials in Early Bronze Sangro Valley, Italy. American Journal of Archaeology Age Malta. Malta Archaeological Review 8, 9–17. 106 (2), 169. Azzopardi, G., 2014. ‘Religious Landscapes and Identities Bengtsson, L. & M. Enell, 1986. Chemical analysis, in Handbook of the Maltese Islands in a Mediterranean Context: of Holocene palaeoecology and palaeohydrology, ed. B.E. 700 B.C. – A.D. 500.’ Unpublished PhD thesis, Uni- Berglund. Chichester: John Wiley, 323–451. versity of Durham. Benito, G., R. Brazdil, J. Herget & M.J. Machado, 2015. Quan- Azzopardi, G. & A. Pace, 2008. ‘Economic landscapes of the titative historical hydrology in Europe. Hydrology and Maltese Islands during antiquity: a survey of ancient Earth System Science 19, 3517–39. presses.’ Poster presented at the XVII Congresso Benjamin, D.J., J.O. Berger & V.E. Johnson, 2018. Redefine Internazionale di Archeologia Classica, Rome. statistical significance.Nature Human Behaviour 2, 6–10. 326 References

Benjamin, J., A. Rovere, A. Fontana, S. Furlani, M. Vacchi, Bintliff, J., 2005. Human impact, land-use history, and the R.H. Inglis, E. Galili, F. Antonioli, D. Sivan, S. Miko, surface arhaeological record: A case study from Greece. N. Mourtzas, I. Felja, M. Meredith-Williams, B. Good- Geoarchaeology 20, 135–47. man-Tchernov, E. Kolaiti, M. Anzidei & R. Gehrels, Blaauw, M., 2010. Methods and code for ‘classical’ age-model- 2017. Late Quaternary sea-level changes and early ling of radiocarbon sequences. Quaternary Geochronology human societies in the central and eastern Mediterra- 5 (5), 512–18. nean Basin: An interdisciplinary review. Quaternary Blaauw, M. & J.A. Christen, 2011. Flexible paleoclimate age- International 449, 29–57. depth models using an autoregressive gamma process. Benton, M. & D.A.T. Harper, 2009. Introduction to palaeobiology Bayesian Analysis 6 (3), 457–74. and the fossil record. Wiley-Blackwell, Oxon. Blaauw, M., K.D. Bennett & J.A. Christen, 2010. Random Bennett, J.M., 2020. ‘Testing Terraces: Managing and Sus- walk simulations of fossil proxy data. The Holocene taining the Agrarian Environment in the Maltese 20 (4), 645–9. Archipelago.’ Unpublished PhD thesis, Department Blackford, J.J. & J.B. Innes, 2006. Linking current environ- of Archaeology, University of Cambridge. ments and processes to fungal spore assemblages: Berger, J.-F. & J. Guilaine, 2009. The 8200 cal bp abrupt surface NPM data from woodland environments. environmental change and the Neolithic transition: Review of Palaeobotany and Palynology 141, 179–87. A Medi­terranean perspective. Quaternary International Blockley, S.P.E., S.D.F. Pyne-O’Donnell, J.J. Lowe, I.P. Mat- 200, 31–49. thews, A. Stone, A.M. Pollard, C.S.M. Turney & E.G. Bernabò Brea, L., 1966. Abitato Neolitico e insediamento Molyneux, 2005. A new and less destructive laboratory Maltese dell’Eta del Bronzo nell’isola di Ognina (Sira- procedure for the physical separation of distal glass cusa) e i rapporti fra la Sicilia e Malta dal XVI al XXIII tephra shards from sediments. Quaternary Science Sec. a.C. Kokalos 12, 40–69. Reviews 24 (16), 1952–60. Bertoldi, R., 1980. Le vicende vegetazionali e climatiche nella Blouet, B., 1963. The Changing Landscape of Malta during the sequenza paleobotanica würmiana e post-würmiana Rule of the Order of St John of Jerusalem 1530–1798. Hull: di Lagdei (Appennino settentrionale). “L’Ateneo Par- University of Hull. mense.” Acta Naturalis 16, 147–75. Blouet, B., 1964. The distribution of marshland in Malta Bertran, P., 2004. Soil erosion in small catchments of the during the seventeenth century. Journal of Maltese Quercy region (southwestern France) during the Hol- Studies 2, 198–203. ocene. The Holocene 14, 597–606. Blouet, B., 1967. Some observations on the distribution of Beug, H.-J., 2004. Leitfaden der Pollenbestimmung für Mit- Xagħra place-names in Malta. Journal of Maltese Studies teleuropa und Angrenzende Gebiete. München: Verlag 4, 81–4. Dr. Friedrich Pfeil. Blouet, B., 1978. The impact of armed conflict on the rural Bevan, A. & J. Conolly, 2004. GIS, archaeological survey, settlement pattern of Malta.Transactions of the Institute and landscape archaeology on the island of Kythera, of British Geographers 3 (3), 367–80. Greece. Journal of Field Archaeology 29 (1–2), 123–38. Blouet, B., 1984. The Story of Malta (2nd edition). Malta: Bevan, A. & J. Conolly, 2013. Mediterranean Islands, Fragile Progress Press. Communities and Persistent Landscapes. Cambridge: Blouet, B., 1993. The Story of Malta (5th edition). Malta: Cambridge University Press. Progress Press. Bevan, A., J. Conolly, S. Colledge & A. Stellatou, 2013. The Blouet, B., 1997. The Story of Malta (6th edition). Malta: long-term ecology of agricultural terraces and enclosed Progress Press. fields from Antikythera, Greece. Human Ecology 41, Boddington, A., A.N. Garland & R.C. Janaway (eds.), 1987. 255–72. Death, Decay, and Reconstruction: Approaches to Archae- Bicho, N., J. Cascalheira & C. Gonçalves, 2017. Early Upper ology and Forensic Science. Manchester: Manchester Paleolithic colonization across Europe: Time and mode University Press. of the Gravettian diffusion.PLOS ONE 12(5), e0178506. Bonanno, A., 1977. Distribution of villas and some aspects Bini, M., G. Zanchetta, A. Persoiu, R. Cartier, A. Catala, I. of the Maltese economy in the Roman period. Journal Cacho, J.R. Dean, F. Di Rita, R.N. Drysdale, M. Finne, of the Faculty of Arts 6 (4), 73–81. I. Isola, B. Jalali, F. Lirer, D. Magri, A. Masi, L. Marks, Bonanno, A., 1986a. A socioeconomic approach to Maltese A.M. Mercuri, O. Peyron, L. Sadori, M-A. Sicre, F. Welc, prehistory, in The Temple Builders. Malta. Studies of C. Zielhofer & E. Brisset, 2018. The 4.2 ka bp event in its Heritage and History. Malta: Mid-Med Bank Ltd. – the Mediterranean region: an overview. Climate of the Interprint Ltd., 17–46. Past Discussions 15, 1–36. Bonanno, A. (ed.), 1986b. Archaeology and Fertility Cult Bintliff, J., 1977. Natural Environment and Human Settlement in the Ancient Mediterranean. Papers Presented at the in Greece. Oxford: British Archaeological Reports, First International Conference on Archaeology of the Supplementary Series 28. Ancient Mediterranean. The University of Malta 2–5 Bintliff, J., 1992. Erosion in the Mediterranean lands: a recon- September 1985. Amsterdam: B.R. Grüner Publishing sideration of pattern, process and methodology, inPast Co. and Present Soil Erosion: Archaeological and Geographical Bonanno, A., 1990. Malta’s role in the Phoenician, Greek and Perspectives, eds. M.G. Bell & J. Boardman. Oxford: Etruscan trade in the western Mediterranean. Melita Oxbow Books, 125–31. Historica 10, 209–24. 327 References

Bonanno, A., 1992. Roman Malta. The Archaeological Heritage Bottema, S. & H. Woldring, 1984. Late Quaternary vegetation of the Maltese Islands. Lugano: World Confederation of and climate of southwestern Turkey. Paleohistoria 26, Salesian past pupils of Don Bosco. 123–49. Bonanno, A., 1993a. The prehistory and protohistory of the Bottema, S., G. Entjes-Nieborg & W. Van Zeist (eds.), 1990. Maltese Islands: Current problems and perspectives, in Man’s Role in the Shaping of the Eastern Mediterranean La Prehistòria de les Illes de la Medierranìa Occidental. Landscape. Rotterdam: Balkema. Jornades d’Estudis Històrics Locals 10, 215–41. Bøtter-Jensen, L., E. Bulur, G.A.T. Duller & A.S. Murray, Bonanno, A., 1993b. Tarxien and Tarxien Cemetery. Break or 2000. Advances in luminescence instrument systems. continuity between Temple Period and Bronze Age in Radiation Measurements 32 (5), 523–28. Malta?. Mediterraneo. Revistade Estudos Pluridisciplinares Bouby, L., I. Figueiral, A. Bouchette, N. Rovira, S. Ivorra, T. sobre ad Sociedades Mediterranicas 2, 35–47. Lacombe & J.F. Terral, 2013. Bioarchaeological insights Bonanno, A., 2008. pressing in antiquity. Melita into the process of domestication of grapevine (Vitis vin- Historica 11, 1–18. ifera L.) during Roman times in Southern France. PLoS Bonanno, A., 2011. The rise of a maritime strategic island: One 8 (5), e63195. Malta under the Phoenicians and the Romans, in The Bowen, D.Q., 1978. Quaternary Geology: A Stratigraphic Frame- Maritime : The First Millennia, eds. C. Cini work for Multidisciplinary Work. London: Pergamon. & J. Borg. Malta: Salesians of Don Bosco and Heritage Bowen Jones, H., J.C. Dewdney & W.B. Fisher (eds.), 1961. Malta, 37–71. Malta, a Background for Development. Durham: Durham Bonanno, A. 2018. Roman Villas in the Maltese Archipelago, in University Press. The Roman Villa in the Mediterranean Basin: Late Republic Boyle, J., A.J. Plater, C. Mayers, S.D. Turner, R.W. Stroud to Late Antiquity, eds. A. Marzano & G. P. R. Métraux, and J.E. Weber, 2011. Land use, soil erosion, and sed- Cambridge: Cambridge University Press, 255–65. iment yield at Pinto Lake, California: Comparison of a Bonanno, A. and N.C. Vella, 2015. Tas Silġ, Marsaxlokk (Malta) simplified USLE model with the lake sediment record. I: Archaeological Excavations Conducted by the University Journal of Paleolimnology 45 (2), 199–212. of Malta, 1996–2005. (Ancient Near East Studies Supple- Boyle, S., 2013. ‘The Social and Physical Environment of ment Series 48). Leuven: Peeters Publishers. Early Gozo – A Study of Settlement and Change.’ Bonanno, A., T. Gouder, C. Malone & S. Stoddart, 1990. Unpublished PhD thesis, Queen’s University Belfast. Monuments in an island society. World Archaeology 22 Boyle, S., 2014. Potty about pots: exploring identity through (2), 190–205. the prehistoric pottery assemblage, in Exploring Pre- Bonatti, E., 1966. North Mediterranean climate during the historic identity in Europe, eds. V. Ginn, R. Enlander & last Würm glaciation. Nature 209, 984–5. R. Crozier. Oxford: Oxbow, 85–96. Bondì, S.F., 2014. Phoenicity, punicities, in The Punic Med- Braudel, F., 1966. The Mediterranean and the Mediterranean iterranean, eds. J.C. Quinn & N.C. Vella. Cambridge: World in the Age of Philip II, vol. 1 (2nd edition). London: Cambridge University Press, 58–68. Penguin Books. Bonson, C.G., C. Childs, J.J. Walsh, M.P.J. Schöpfer & V. Bresc, H., 1975. The ‘Secrezia’ and the Royal Patrimony in Carboni, 2007. Geometric and kinematic controls on Malta: 1240–1450, in Medieval Malta: Studies on Malta the internal structure of a large normal fault in mas- before the Knights, ed. A. Luttrell. London: British School sive limestones: The Maghlaq Fault, Malta. Journal of at Rome, 126–62. Structural Geology 29, 336–54. Bradley, R., 1993. Altering the Earth. The Origins of Monuments Bocquet‐Appel, J. P. 2002. Paleoanthropological Traces of a in Britain and Continental Europe. Edinburgh: Society Neolithic Demographic transition. Current Anthropology of Antiquaries of Scotland. 43 (4), 637–50. Brandt, C.J. & J.B. Thornes, 1996. Mediterranean Desertification Boreham, S., C. Conneller, N. Milner, B. Taylor, A. Needham, and Land-use. London: John Wiley & Sons Ltd. J. Boreham & C.J. Rolfe, 2011. Geochemical indicators of Bresc, H., 1991. Sicile, Malte e Monde Musulman, in Malta. preservation status and site deterioration at Star Carr. A case study in international cross-currents. Proceedings Journal of Archaeological Science 38, 2833–57. of the First International Colloquium on the History of the Borg, A.P., 2003. ‘Migration and Mobility in Early Modern Central Mediterranean held at the University of Malta, Malta. The Harbour City of Valletta as a Case-Study, 13–17 December 1989, eds. S. Fiorini & V. Mallia-Milanes. 1575–1650.’ Unpublished MA thesis, University of Malta: Salesian Press, 47–79. Malta. Bridges, E.M., 1978. World Soils (2nd edition). London: Borg, J., 1915. Agriculture and Horticulture in Malta, in Longman. Malta and Gibraltar Illustrated: Historical and Descriptive, Bringezu S., H. Schütz, W. Pengue, M. O´Brien, F. Garcia, Commercial and Industrial, Facts, Figures and Resources, R. Sims, R. Howarth, L. Kauppi M. Swilling & J. ed. A. Macmillan. London: W.H. & L. Collingridge and Herrick, 2014. ‘Assessing Global Land Use: Balancing Malta: Midsea Books, 224–9. Consumption with Sustainable Supply. A Report of Boserup, E., 1965. The Conditions of Agricultural Growth. the Working Group on Land and Soils of the Inter- Chicago: Aldine. national Resource Panel.’ New York: United Nations Boserup, E., 1975. The Impact of Population Growth on Environment Programme. Agricultural Output. The Quarterly Journal of Economics Brincat, J.M., 1991. Language and demography in Malta: the 89 (2), 257–70. social foundations of the symbiosis between semitic 328 References

and romance in standard Maltese, in Malta. A case Significance of Caves and Rockshelters in Europe, eds. study in international cross-currents. Proceedings of the K.A. Bergsvik. & R. Skeates. Oxford: Oxbow, 153–65. first international colloquium on the history of the central Buhagiar, K. 2016. Malta and Water (ad 900 to 1900): Irrigating Mediterranean held at the university of Malta, 13–17 a Semi-Arid Landscape. Oxford: British Archaeological December 1989, eds. S. Fiorini and V. Mallia-Milanes. Reports – Hadrian Books. Malta: Salesian Press, 91–110. Buhagiar, M., 1991. Post-Muslim Malta – A Case Study in Brincat, J.M., 1995. Malta 870–1054 Al-Himyari’s Account Artistic and Architectural Cross-Currents, in Malta and its Linguistic Implications. Valletta: Said Interna- – A Case Study in International Cross-Currents, eds. S. tional Ltd. Fiorini & V. Mallia Milanes. Malta: Malta University Bringezu S., H. Schütz, W. Pengue, M. O´Brien, F. Garcia, Publications, 13–31. R. Sims, R. Howarth, L. Kauppi, M. Swilling & J. Her- Bullock, P. & C.P. Murphy, 1979. Evolution of a palaeo-ar- rick (eds.), 2014. Assessing Global Land Use: Balancing gillic brown earth (Paleudalf) from Oxfordshire, Consumption with Sustainable Supply. A Report of the England. Geoderma 22, 225–52. Working Group on Land and Soils of the International Bullock, P., N. Fedoroff, A. Jongerius, G. Stoops & T. Tursina Resource Panel. New York: United Nations Environ- 1985. Handbook for Soil Thin Section Description. Wol- ment Programme (UNEP). verhampton: Waine Research. Broodbank, C., 2013. The making of the Middle Sea: a history Burbidge, C.I., D.C.W. Sanderson, R.A. Housley & P. of the Mediterranean from the beginning to the emergence Allsworth Jones, 2007. Survey of Palaeolithic sites of the Classical world. London: Thames and Hudson. by luminescence profiling, a case study from Eastern Bronk Ramsey, C., 2008a. Deposition models for chrono- Europe. Quaternary Geochronology 2, 296–302. logical records. Quaternary Science Reviews 27, 42–60. Butzer, K.W., 1960. Archaeology and geology in ancient Bronk Ramsey, C., 2008b. Radiocarbon Dating: Revolutions Egypt. Science 132, 1617–24. in Understanding. Archaeometry 50 (2), 249–75. Butzer, K.W., 1982.Archaeology as Human Ecology. Cambridge: Brothwell, D.R. & Pollard, A.M. (eds.) 2005. Handbook of Cambridge University Press. Archaeological Sciences. Chichester: Wiley. Butzer, K.W., 1996. Ecology in the Long View: Settlement Brown, A., P. Toms, C. Carey & E. Rhodes, 2013. Geomor- Histories, Agrosystemic Strategies, and Ecological phology of the Anthropocene: Time-transgressive Performance. Journal of Field Archaeology 23, 141–50. discontinuities of human-induced alluviation. Anthro- Butzer, K.W., 2005. Environmental history in the Medi- pocene 1, 3–13. terranean world: Cross-disciplinary investigation of Brückner, H., A. Vött, M. Schriever & M. Handl, 2005. Holo- cause-and-effect for degradation and soil erosion. cene delta progradation in the eastern Mediterranean Journal of Archaeological Science 32, 1773–800. – case studies in their historical context. Méditerranée Butzer, K.W., 2015.Anthropocene as an evolving paradigm. 104, 95–106. The Holocene 25 (10), 1539–41. Bruno, B., 2009. Roman and Byzantine Malta: Trade and Econ- Butzer, K.W. & J. Cuerda, 1962. Coastal stratigraphy of omy (Vol. 15). Valletta: Maltese Social Studies. southern Mallorca and its implications for the Pleisto- Bruno, B. & N. Cutajar, 2002. Archeologia bizantina a cene chronology of the Mediterranean Sea. Journal of Malta: primi risultati e prospettive di indagine, inDa Geology 70, 398–416. Pyrgia a Mozia: Studi sull’archeologia del Mediterraneo in Cagiano de Azevedo, M., 1969. Lo scavo. In Missione memoria di Antonia Ciasca, eds. M.G. Amadasi Guzzo, Archeologica Italiana a Malta: Rapporto preliminare della M. Liverani & P. Matthiae. Roma: Università di Roma Campagna 1968. Roma: Consiglio Nazionale delle La Sapienza, 109–38. Ricerche, 93–5. Bruno, B. & N. Cutajar, 2018. Malta between the ninth and Cagiano de Azevado, M., C. Caprino, A. Ciasca, E. Coleiro, tenth century – two early medieval contexts. Archeo- A. Davico, G. Garbini & F. Saverio Mallia, 1964–73. logia Medievale 45, 111–22. Missione Archeologica Italiana a Malta. Rapporti Prelimi- Brusasco, P., 1993. Dal Levante al Mediterraneo centrale: nari delle Campagne 1963–1970. Roma: Istituto di Studi La prima fase fenicia a Tas-Silg, Malta. Journal of del Vicino Oriente, Università di Roma. Mediterranean Studies 3, 1–29. Caló, C., P.D. Henne, B. Curry, M. Magny, E. Vescovi, T. Bugeja, A., 2011. Understanding the past: Borġ in-Nadur La Mantia, S. Pasta, B. Vanniére & W. Tinner, 2012. in antiquarian and early archaeological literature, in Spatio-temporal patterns of Holocene environmental Site, Artefacts and Landscape: Prehistoric Borġ-in-Nadur, change in southern Sicily. Palaeogeography Paleaoclima- Malta (Praehistorica Mediterranea 3), eds. D. Tanasi & tology Palaeoecology 323–325, 110–22. N.C. Vella. Italy: Polimentrica, 15–44. Canellas-Bolta, N., S. Riera-Mora, H.A. Orengo, A. Livarda Bugeja, J.R., 2018. Land Tenure System in the Late 19th and & C. Knappett, C. 2018. Human management and land- Early 20th Centuries. Tesserae 6, 22–31. scape changes at Palaikastro (Eastern Crete) from the Buhagiar, K., 2002. ‘Medieval and early modern cave-set- late Neolithic to the Early Minoan period. Quaternary tlements and water galleries in North-West Malta Science Reviews 183, 59–75. South of the Great Fault: a field survey and gazetteer.’ Caracuta, V., 2020. Olive growing in Puglia (southeastern Unpublished MA thesis, University of Malta. Italy): a review of the evidence from the Mesolithic to Buhagiar, K., 2012. Caves in Context: The Late Medieval the Middle Ages. Vegetation History and Archaeobotany Maltese Scenario, in Caves in Context: The Cultural https://doi.org/10.1007/s00334-019-00765-y 329 References

Carlson, T.N. & D.A. Ripley, 1997. On the relation between Chapman, J., 2018. Climatic and human impact on the NDVI, fractional vegetation cover, and leaf area index. environment?: A question of scale. Quaternary Inter- Remote Sensing of Environment 62, 241–52. national 496, 3–13. Carroll, F.A., 2007. ‘The Holocene Environment of the Maltese Chatzimpaloglou, P., 2019. ‘Geological reconnaissance and Islands.’ Unpublished PhD, Queen’s University Belfast. provenancing of potential Neolithic lithic sources in Carroll, F.A., C.O. Hunt, P.J. Schembri & A. Bonanno, 2012. the Maltese Islands.’ Unpublished PhD, Department Holocene climate change, vegetation history and of Archaeology, University of Cambridge. human impact in the Central Mediterranean: evidence Chatzimpaloglou P., C. French, M. Pedley & S. Stoddart, from the Maltese Islands. Quaternary Science Reviews 2020. Connecting chert sources of Sicily with the Neo- 52, 24–40. lithic chert artefacts of Malta. Journal of Archaeological Cassar, C., 1988. Everyday Life in Malta in the Nineteenth and Science: Reports 29, 102–11. Twentieth Centuries, in The British Colonial Experience, Chen, Y.C., Q. Sung & K.Y. Cheng, 2003. Along-strike 1800–1964: The Impact on Maltese Society, ed. V. Mallia variations of morphotectonic features in the Western Milanes. Malta: Mireva, 91–126. Foothills of : Tectonic implications based on Cassar, C., 2000. Society, culture and identity in early modern stream-gradient and hypsometric analysis. Geomor- Malta. Malta: Mireva. phology 56, 109–37. Cassar, C., 2002. A Concise History of Malta. Malta: Mireva. Cherry, J.F., 1981. Pattern and process in the earliest colo- Cassar, L.F., E. Conrad & P.J. Schembri, 2008. The Maltese nisation of the Mediterranean islands. Proceedings of archipelago, in Mediterranean Island Landscapes: Natu- the Prehistoric Society 47, 41–68. ral and Cultural Approaches, eds. I.N. Vogiatzakis, G. Cherry, J.F., 1990. The first colonisation of the Mediterra- Pungetti and A.M. Mannion. Heidelberg: Springer, nean islands: a review of recent research. Journal of 297–322. Mediterranean Archaeology 3 (2), 145–221. Catania, P., 2015. The People of the North 1546–1610. Malta: Cherry, J.F., 2004. Mediterranean island pre-history: what’s Midsea Books. different and what’s new?, inVoyages of Discovery: The Catling, C., 2013. Peasant houses in Midland England. Current Archaeology of Islands, ed. S.C. Fitzpatrick. Westport: Archaeology 279, 12–19. Praeger Publishers, 233–48. Catt, J.A., 1990. Paleopedology manual.Quaternary Interna- Chetcuti, D., A. Buhagiar, P.J. Schembri & F. Ventura, F. tional 6, 1–95. 1992. The Climate of the Maltese Islands: A Review. Msida: Cazzella, A. & G. Recchia, 2008. L’area sacra megalitica Malta University Press. di Tas-Silg (Malta): nuovi elementi per lo studio dei Chircop, J., 1993. Underdevelopment: The Maltese Experience modelli architettonici e delle pratiche cultuali.Scienze 1880–1914. University of Malta. dell’Antichità 13, 689–99. Cilia, D.P. & C. Mifsud, 2012. Contributions to the malacol- Cazzella, A. & G. Recchia, 2012. Tas-Silġ: the Late Neolithic ogy of Malta, I: a new location for subfossil Oxyloma megalithic sanctuary and its re-use during the Bronze elegans (Risso, 1826) (: Succineidae) from Age and the Early Iron Age. Scienze dell’antichità 18, the Salini Holocene deposits in Malta. Central Medi- 15–38. terranean Naturalist 2011 (5), 3–4. Cazzella, A. & G. Recchia. 2013. Malta, Sicily, Aeolian Islands Civetta, L., Y. Cornette, P.Y. Gillot & G. Orsi, G. 1988. The and Southern Italy during the Bronze Age: The mean- eruptive history of Pantelleria (Sicily channel) in the ing of a changing relationship in, Exchange, Interaction, last 50 ka. Bulletin of Volcanology 50, 47–57. Conflicts and Transformations: Social and Cultural Changes Clark, A., 1996. Seeing beneath the Soil: Prospecting Methods in in Europe and the Mediterranean between Bronze and Iron Archaeology (2nd edition). London: Routledge. Age, eds. Alberti. E. & S. Vitri. Oxford: Oxbow, 80–91. Clark, D., 2004. Building Logistics, in Malta before History: Cazzella, A. & G. Recchia, 2015. The early Bronze Age in the The World’s Oldest Free-Standing Stone Architecture, ed. Maltese islands, in The Late Prehistory of Malta: Essays D. Cilia. Malta: Miranda, 367–77. on Borg in-Nadur and Other Sites, eds. D. Tanasi and Coles, G.M., D.D. Gilbertson, C.O. Hunt & R.D.S. Jenkin- N.C. Vella. Oxford: Archaeopress, 139–59. son, 1989. Taphonomy and the palynology of cave Cazzella, A., A. Pace & G. Recchia, 2011. The late second mil- sediments. Cave Science 16 (3), 83–9. lennium B.C. agate artefact with cuneiform inscription Collins, P.M., B.A.S. Davis & J.O. Kaplan, 2012. The mid-Hol- from the Tas-Silg sanctuary in Malta: an archaeological ocene vegetation of the Mediterranean region and framework. Scienze dell’Antichità 17, 599–609. southern Europe, and comparison with the present Cazzella, A., A. Pace & G. Recchia, 2012. Cult and exchange day. Journal of Biogeography 39, 1848–61. in the Mediterranean: A second millennium bc cunei- Coneybeare, W.D., 1824. On the discovery of an almost form inscription from the sanctuary of Tas-Silġ in perfect skeleton of a Plesiosaurus. Transactions of the Malta. Le Science Web (News online: http//en.lswn.it/ Geological Society Journal of Science VII, 203–40. archaeology/cult-and-exchange-in-the-mediterranean- Conolly, J. & M. Lake, 2006. Geographic Information Systems in a-second-millennium-bc-cuneiform-inscription-from- Archaeology. Cambridge: Cambridge University Press. the-sanctuary-of-tas-silg-in-malta/). Contreras, D.A., 2011. How far to Conchucos? A GIS Cerdá, A., 2008. Erosión y Degradación del Suelo Agrícola approach to assessing the implications of exotic mate- en España. Valencia: Universitat de Valencia Estudi rials at Chavín de Huántar, World Archaeology 43 (3), General. 380–97. 330 References

Cook, S.F. & R.F. Heizer, 1965. Studies on the Chemical Steffensen, A.E. Sveinbjornsdottir, J. Jouzel & G. Bond, Analysis of Archaeological Sites. Berkeley: University 1993. Evidence for general instability of past climate of California Press. fron a 250-kyr ice-core record. Nature 364, 218–22. Cooke, J.H., 1891. Notes on the ‘Pleistocene Beds’ of Gozo. Dart, C.J., D.W.J. Bosence & K.R. McClay, 1993. Stratigraphy Geological Magazine 28, 348–55. and structure of the Maltese graben system. Journal of Cooke, J.H., 1893a. On the occurrence of concretionary the Geological Society 150, 1153–66. masses of flint and chert in the Maltese limestones. Davidovich, U., N. Porat, Y. Gadot, Y. Avni & O. Lipschits, GeoMagazine 30, 157–60. 2012. Archaeological investigations and OSL dating of Cooke, J.H., 1893b. The marls and clays of the Maltese terraces at Ramat Rahel, Israel. Journal of Field Archae- Islands. Quarterly Journal of the Geological Society London ology 37 (3), 192–208. 49, 117–28. Davidson, D.A., 1971. Geomorphology and prehistoric set- Cooke, J.H., 1893c. On the occurrence of concretionary tlement of the Plain of Drama. Revue Geomorphology masses of flint and chert in the Maltese limestones. Dynamique 20, 22–6. GeoMagazine 30, 157–60. Davidson, D.A., 1980. Erosion in Greece during the first and Cooke, J.H., 1896a. Contributions to the stratigraphy and second millennia bc, in Timescales in Geomorphology, palaeontology of the Globigerina Limestones of the eds. R.A. Cullingford, D.A. Davidson & J. Lewin. New Maltese Islands. Quarterly Journal of the Geological Society York: Wiley and Sons, 143–58. London 52, 461–2. Davis, D.S., 2019. Studying human responses to environmen- Cooke, J.H., 1896b. Notes on the Globigerina Limestone of tal change: Trends and trajectories of archaeological the Maltese Islands. Geological Magazine 33, 502–11. research. Environmental Archaeology 24 (4) (doi.org/10 Cooke, J.H., 1896c. Notes on the ‘Pleistocene Beds’ of the .1080/14614103.2019.1639338) Maltese Islands. Geological Magazine 32, 201–10. Dawson, H., 2004–6. Understanding colonisation. Adaptation Copat, V., M. Danesi and C. Ruggini, 2013. Late Neo- strategies in the central Mediterranean islands. Accordia lithic and Bronze age pottery from Tas-Silġ sanctuary: Papers 10, 35–60. new research perspectives for the Maltese prehistoric Dawson, H., 2008. Unravelling ‘mystery’ and process from sequence. Scienze dell’Antichità 18, 39–63. the prehistoric colonization and abandonment of the Corrado, A., A. Bonanno & N.C. Vella 2004. Bones and Bowls: Mediterranean Islands, in Comparative Island Archaeolo- a Preliminary Interpretation of the Faunal Remains gies, eds. J. Conolly & M. Campbell. (BAR International from the Punic Levels in Area B, at the Temple of Series 1829.) Oxford: British Archaeological Reports, Tas-Silġ, Malta, in Behaviour Behind Bones: The Zooar- 105–33. chaeology of Ritual, Religion, Status and Identity, eds. S. Dawson, H., 2010. Question of Life or Death? Seafaring and Jones O’Day, W. Van Neer & A. Ervynvk, Oxford: Abandonment in the Mediterranean and Pacific Islands, Oxbow, 47–53. in The Global Origins and Development of Seafaring, eds. Courty, M-A., P. Goldberg & R.I. Macphail, 1989. Soils and A. Anderson, J.H. Barrett & K.V. Boyle. Cambridge: Micromorphology in Archaeology. Cambridge: Cambridge McDonald Institute, 203–12. University Press. Dawson, H., 2014. Mediterranean Voyages: The Archaeology of Cox, C.B., P.D. Moore & R.J. Ladle, R.J., 2016. Biogeography: Island Colonisation and Abandonment. Publications of the An Ecological and Evolutionary Approach. (9th edition) Institute of Archaeology, University College London Chichester: Wiley-Blackwell. 62. Walnut Creek, CA: Left Coast Press, Inc. Cresswell, A.J., D.C.W. Sanderson, T.C. Kinnaird & C. Declercq, Y., R. Samson, A. Castanheiro, S. Spassov, F.M.G. French, 2017. ‘Luminescence analysis and dating of Tack, E. Van De Vijver & P. De Smedt, 2019. Evaluating sediments from valley fills and archaeological sites the potential of topsoil magnetic pollution mapping on Gozo and Malta.’ Unpublished report, July, 2017. across different land use classes. Science of the Total East Kilbride: SUERC. Environment 685, 345–56. Cresswell, A.J., Carter, J. & Sanderson, D.C.W. 2018. Dose De Grossi Mazzorin, J. & M. Battafarano 2012. I resti faun- rate conversion parameters: assessment of nuclear istici provenienti dagli scavi di Tas Silġ a Malta: data. Radiation Measurements 120, 195–201. testimonianze di pratiche rituali, in Atti del 6° Con- Cutajar, N., 2018. Core and Periphery – Mdina and Hal Safi vegno Nazionale di Archeozoologia Centro Visitatori del in the 9th and 10th centuries, Valletta, Heritage Malta. Parco dell’Orecchiella 1–24 maggio 2009 San Romano Dalli, C., 2006. Malta – The Medieval Millennium. Malta: in Garfagnana – Lucca, eds. J. De Grossi Mazzorin, Midsea Books. D. Saccà & C. Tozzi, Lecce: Associazione Italiana di Dalli, C., 2011. The sea in Medieval Maltese History, in The Archeozoologia, 357–63. Maritime History of Malta: The First Millennia, eds. D. Delano-Smith, C., N. Mills & B. Ward-Perkins, 1986. Luni Cini & J. Borg. Malta: Salesians of Don Bosco and and the Ager Lunensis. The Rise and fall of a Roman Heritage Malta, 73–109. town and its territory. Papers of the British School at Dalli, C., 2016. From medieval dar al-Islam to contemporary Rome 54, 82–146. Malta: rahal toponymy in a wider western Mediter- De Lucca, D., 1988. British Influence on Maltese Architecture ranean context. Island Studies Journal 11 (2), 369–80. and Fortifications, in Mallia Milanes, V. (ed.)The British Dansgaard, W., S.J. Johnsen, H.B. Clausen, D. Dahl-Jensen, Colonial Experience, 1800–1964: The Impact on Maltese N.S. Gunderstrup, C.U. Hammer, C.S. Hvidberg, J.P. Society, pp. 313–27. Malta: Mireva. 331 References

De Lucca, D., 1995. Mdina: A History of Its Urban Space and Features of Soils and Regoliths, eds. G. Stoops, V. Marce- Architecture. Malta: Said International. lino & F. Mees. Amsterdam: Elsevier, 149–94. Desjardins, E., G. Barker, Z. Lindo, C. Dielman & A.C. Dus- Durn, G., 2003. Terra rossa in the Mediterranean region: sault, 2015. Promoting reslience. The Quarterly Review parent materials, composition and origin. Geologia of Biology 90, 147–65. Croatica 56, 83–100. de Vareilles, A., L. Bouby, A. Jesus, L. Martin, M. Rottoli, M. Dusar, B., G. Verstraeten, B. Notebaert & J. Bakker, 2011. Hol- Vander Linden & F. Antolin, 2020. One sea but many ocene environmental change and its impact on sediment routes to Sail. The early maritime dispersal of Neolithic dynamics in the eastern mediterranean. Earth-Science crops from the Aegean to the Western Mediterranean. Reviews 108, 137–57. Journal of Archaeological Science: Reports 29, 102140. Edgeworth, M., C. Waters, J. Zalasiewicz & S. Stoddart, 2016. di Gennaro, F. & S.K.F. Stoddart, 1982. A review of the evi- Second Anthropocene Working Group Meeting. The dence for prehistoric activity in part of South Etruria. European Archaeologist 47, 27–31. Papers of the British School at Rome 50, 1–21. Edwards, K.J., R.M. Fyfe, C.O. Hunt & E. Schofield, 2015. Di Rita, F. and D. Magri, 2009. Holocene drought, deforest- Moving forwards? Palynology and the human dimen- ation and evergreen vegetation development in the sion. Journal of Archaeological Science 56, 117–32. central Mediterranean: A 5500 year record from Lago Edwards, K.J. & C.J. McIntosh, 1988. Improving the detection Alimini Piccolo, Apulia, southeast Italy. The Holocene of cereal-type pollen grains from Ulmus decline and 19, 295–306. earlier deposits from Scotland. Pollen et Spores 3, 179–88. Di Rita, F. & D. Magri, 2019. The 4.2ka event in the vegeta- Efremov, A., 1940. Taphonomy: a new branch of palaeontol- tion record of the central Mediterranean. Climate Past ogy. Pan American Geologist 74, 81–93. 15, 237–51. Ejarque, A., Y. Miras & S. Riera, 2011. Pollen and non-pollen Dietre, B., E. Gauthier & F. Gillet, 2012. Modern pollen rain palynomorphs indicators of vegetation and highland and fungal spore assemblages from pasture woodlands grazing activities obtained from modern surface and around Lake Saint-Point (France). Review of Palaeobotany dung datasets in the eastern Pyrenees. Review of Palae- and Palynology 186, 69–89. obotany and Palynology 167, 123–39. Djamali, M., 2014. Pollen profile BM1, BurMarrad ria, Malta. Ellenberg, L., 1983. Die kusten von Gozo. Essener Geograpische European Pollen Database (EPD), PANGAEA (https://doi. Arbeiten 6, 129–60. org/10.1594/PANGAEA.835773). Endre Nyerges, A., 1980. Traditional Pastoralism and Patterns Djamali, M., B. Gambin, N. Marriner, V. Andieu-Ponel, of Range Degradation, in Browse in Africa. The Current T. Gambin, E. Gandouin, S. Lanfranco, F. Medail, State of Knowledge, ed. H.N. Le Houerou. Addis Ababa: D. Paron, P. Ponel & C. Morhange, 2013. Vegetation International Livestock Center for Africa, 465–70. dynamics during the early to mid-Holocene transition English Heritage, 2007. Geoarchaeology: Using Earth Sciences in NW Malta, human impact versus climate forcing. to Understand the Archaeological Record (2nd edition). Vegetation History and Archaeobotany 22, 367–80. Swindon: English Heritage. Docter, R.F., N.C. Vella, N. Cutajar, A. Bonanno & A. Pace, Entwistle, J.A., P.W. Abrahams & R.A. Dodgshon, 1998. 2012. Rural Malta: First Results of the Joint Belgo-Mal- Multi-element analysis of soils from Scottish historical tese Survey Project. Babesch. Bulletin Antieke Beschaving sites, interpreting land-use history through physical 87, 107–49. and chemical analysis of soil. Journal of Archaeological Doneddu, M. & E. Trainito, 2005. Conchiglie del Mediterraneo: Science 25, 53–68. Guida ai Molluschi conchigliati. Trezzano sul Naviglio: Eppes, M.C., R. Bierma, D. Vinson & F. Pazzaglia, 2008. A soil Il Castello. chronosequence study of the Reno valley, Italy: Insights Dotterweich, M., 2008. The history of soil erosion and fluvial into the relative role of climate versus anthropogenic deposits in small catchments of central Europe: Deci- forcing on hillslope processes during the mid-Holocene. phering the long-term interaction between humans Geoderma 147, 97–107. and the environment – A review. Geomorphology 101, Epstein, S.R., 2002. An Island for Itself: Economic Development 192–208. and Social Change in Late Medieval Sicily. Cambridge: Dotterweich, M., M. Stankoviansky, J. Minár, S. Koco & P. Cambridge University Press. Papco, 2013. Human induced soil erosion and gully Estiarte, M., J. Peñuelas, C. López-Martínez & R. Pérez-Obiol, system development in the Late Holocene and future 2008. Holocene palaeoenvironment in a former coastal perspectives on landscape evolution: The Myjava Hill lagoon of the arid south eastern Iberian Peninsula: Land, Slovakia. Geomorphology 201, 227–45. salinization effects on 15δ N. Vegetation History and Drescher-Schneider, R., J-L. de Beaulieu, M. Magny, A-V. Archaeobotany 17, 667–74. Walter-Simonnet, G. Bossuet, L. Millet, E. Brugiapaglia ESRI, 2017a. Data Classification Methods. http://pro.arcgis. & A. Drescher, A. 2007. Vegetation history, climate com/en/pro-app/help/mapping/symbols-and-styles/ and human impact over the last 15,000 years at Lago data-classification-methods.htm [Accessed 18 Apr 2017]. dell’Accesa (Tuscany, Central Italy). Vegetation History ESRI, 2017b. How Line Density works. http://desktop.arcgis. and Archaeobotany 16, 279–99. com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how- Duchaufour, P., 1982. Pedology. London: Allen and Unwin. line-density-works.htm [Accessed 18 Apr 2017]. Durand, N., H. Curtis Monger & M.G. Canti, 2010. Calcium ESRI, 2017c. How the Horizontal and Vertical Factors Affect Path carbonate features, inInterpretation of Micromorphological Distance. http://desktop.arcgis.com/en/arcmap/10.3/ 332 References

tools/spatial-analyst-toolbox/how-the-horizonal-and- Fedoroff, N., 1968. Génese et morphologie des sols a horizon vertical-factors-affect-path-distance.htm [Accessed 11 b textural en France atlantique. Science du Sol 1, 29–65. Apr 2017]. Fedoroff, N., 1977. Clay illuviation in Red Mediterranean ESRI, 2017d. Understanding Path Distance Analysis. http:// soils. Catena 28, 71–189. desktop.arcgis.com/en/arcmap/10.3/tools/spatial-an- Felix, R., 1973. Oligo-Miocene Stratigraphy of Malta and G020. alyst-toolbox/understanding-path-distance-analysis. Wageningen: H. Veenman and Zonen, B.V. htm [Accessed 11 Apr 2017]. Fenech, K., 2007. Human-induced changes in the environment Etherington, T.R., 2016. Least-Cost Modelling and Landscape and landscape of the Maltese Islands from the Neolithic to the Ecology: Concepts, Applications, and Opportunities, 15th century ad as inferred from a scientific study of sedi- Current Landscape Ecology Reports 1 (1), 40–53. ments from Marsa, Malta. British Archaeological Reports, Evans, J.D., 1953. The prehistoric culture sequence of the International Series 1692. Oxford: Archaeopress. Maltese archipelago. Proceedings of the Prehistoric Society Fenech, K. & P.J. Schembri, 2015. Environmental analy- 19, 41–94. ses based on molluscan and other sedimentological Evans, J.D., 1956. The dolmens of Malta and the origins of the remains, in Tas-Silġ, Marsaxlokk (Malta) I: Archaeolog- Tarxien cemetery culture. Proceedings of the Prehistoric ical Excavations Conducted by the University of Malta, Society 22, 85–101. 1996–2005, eds. A. Bonanno, A. & N.C. Vella. Leuven: Evans, J.D., 1959. Malta. Ancient People and Places. London: Peeters, 401–96. Thames and Hudson. Fenton, E.G., 1918. The Maltese Cart Ruts. Man 18, 67–72. Evans, J.D., 1971. The Prehistoric Antiquities of the Maltese Finné, M., K. Holmgren, H.S. Sundqvist, E. Weiberg & M. Islands: a survey. London: Athlone Press. Lindblom, 2011. Climate in the eastern Mediterranean, Evans, J.D., 1973a. Islands as laboratories for the study of and adjacent regions, during the past 6000 years – A culture process, in The Explanation of culture change. review. Journal of Archaeological Science 38, 3153–73. Models in Prehistory, ed. A.C. Renfrew. London: Duck- Fiorentino, G., C. Oronzo & G. Colaianni, 2012. Human-En- worth, 517–20. vironmental Interaction, in Malta From The Neolithic Evans, J.D., 1973b. Priests and people – a note on evidence To The Roman Period: Archaeobotanical Analyses At for social distinctions in prehistoric Malta, in Estu- Tas-Silġ. Scienze dell’Antichità 18, 169–84. dios Dedicados al Profesor Dr. Luis Pericot (Publicaciones Fiorini, S., 1993a. Malta in 1530, in 1530– Eventuales 23), ed. J. Maluqer de Motes. Barcelona: 1798: Studies on Early Modern Malta and the Order of Universidad de Barcelona, Instituto de Arqueologia y St. John of Jerusalem, ed. V. Mallia Milanes. Malta: Prehistoria, 215–19. Mireva, 111–98. Evans, J.D., 1977. Island archaeology in the Mediterranean, Fiorini, S., 1993b. Demographic growth and urbanisation of problems and opportunities. World Archaeology 9, 12–26. the Maltese countryside to 1798, in Hospitaller Malta, Evans, J.D., 1984. Maltese prehistory: A reappraisal, in The 1530–1798: Studies on Early Modern Malta and the Order Deya Conference of Prehistory, eds. W. Waldren, R.W. of St John of Jerusalem, ed. V. Mallia-Milanes. Msida, Chapman, J. Lewthwaite & R.C. Kennard. Oxford: Malta: Mireva, 296–310. British Archaeological Reports, International Series Fleisher, J. & F. Sulas, 2015. Deciphering public spaces in 229, 489–97. urban contexts: Geophysical survey, multi-element Evans, J.G., 1978. An Introduction to Environmental Archaeology. analysis, and artefact distributions at the 15th–16th New York: Cornell University Press. century ad Swahili settlement of Songa Mnana, Tan- Evans, J.G. & T. O’Connor, 2005. Environmental Archaeology, zania. Journal of Archaeological Science 55, 55–70. Principles and Methods (2nd edition). Stroud: Sutton Florenzano, A., M. Marignani, L. Rosati, S. Fascetti & A.M. Publishing. Mercuri, 2015. Are Cichorieae an indicator of open Faegri, K. & K. Iversen, 1975. A textbook of pollen analysis. habitats and pastoralism in current and past vegetation Stockholm: Munksgaard. studies? Plant Biosystems 149, 154–65. Fageria, N.K. & V.C. Baligar, 2005. Nutrient availability, in Florenzano, A., A.M. Mercuri, R. Rinaldi, E. Rattighieri, Encyclopedia of Soils in the Environment, ed. D. Hillel. R. Fornaciari, R. Messora & L. Arru, 2017. The rep- Amsterdam: Elsevier, 63–71. resentativeness of Olea pollen from olive groves and F.A.O. & I.S.R.I.C., 1990. Guidelines for Soil Description (3rd the late Holocene landscape reconstruction in central edition revised). Rome: FAO. Mediterranean. Frontiers in Earth Science 5, 1–11. Fall, P.L., S.E. Falconer, C.S. Galletti, T. Shirmang, E. Ridder Foglini, F., M. Prampolini, A. Micallef, L. Angeletti, L. Vanf- & J. Klinge, 2012. Long-term agrarian landscapes in delli, A. Deidum & M. Taviani, 2016. Late Quaternary the Troodos foothills, Cyprus. Journal of Archaeological coastal landscape morphology and evolution of the Science 39, 2335–47. Maltese Islands (Mediterranean Sea) reconstructed Farres, P., 2019. Paleosoils: Legacies of past landscapes, with a from high-resolution seafloor data, in Geology and series of contrasting examples from Malta, in Landscapes Archaeology: Submerged Landscapes of the Continental and Landforms of the Maltese Islands, eds. R. Gauci & J.A. Shelf, eds. J. Harff, G. Bailey & F. Luth. London: Geo- Schembri. Cham, Switzerland: Springer Nature, 141–52. logical Society Special Publication 411, 77–95. Fassbinder, J.W.E., 2016. Magnetometry for archaeology, in Folke, C., 2006. Resilience: The emergence of a perspective Encyclopedia of Geoarchaeology, ed. A.S. Gilbert. Dordre- for social-ecological system analyses. Global Environ- cht: Springer, 499–514. mental Change 16 (3), 253–67. 333 References

Folke, C., 2019. Resilience, in Oxford Research Encyclopedia & G. Quarta, G. 2018. Submerged speleothem in Malta of Environmental Science, ed. H.H. Shugart. Oxford: indicates tectonic stability throughout the Holocene. Oxford University Press, 1–60. The Holocene 28 (10), 1588–97. Folke, C., S. Carpenter, B. Walker, M. Scheffer, F.S. Chapin Galea P., 2007. Seismic history of the Maltese Islands and & J. Rockstrom, 2010. Resilience thinking: Integrating considerations on seismic risk. Annals of Geophysics resilience, adaptability and transformability. Ecology 50 (6), 725–40. and Society 15 (4), 20–28. Galea, P., 2019. Central Mediterranean Tectonics – A Key Follieri, M., D. Magri & L. Sadori, 1988. 250,000-year pollen player in the geomorphology of the Maltese Islands, in record from the Valle di Castiglione (Roma). Pollen et Landscapes and Landforms of the Maltese Islands (World Spores 30, 329–56. Geomorphological Landscapes), eds. R. Gauci & J.A. Föllmi, K.B., B. Gertsch, J-P. Renevey, E. De Kaenel & P. Schembri. Cham, Switzerland: Springer Nature, 19–30. Stilles, 2008. Stratigraphy and sedimentology of phos- Galdies, C., 2011. The : statistics, trends and phate-rich sediments in Malta and south-eastern Sicily analysis, 1951–2010. Valletta: National Statistics Office. (latest Oligocene to early Late Miocene). Sedimentology Gambin, T., 2008. Archaeological discoveries at Marsa over 55, 1029–51. the centuries. Malta Archaeological Review 7 (2004–2005), Forbes, H., 1996. The uses of the uncultivated landscape in 49–54. modern Greece: a pointer to the value of the wilderness Gambin, T. 2015. A Phoenician Shipwreck off Gozo, Malta. in antiquity?, in Human Landscapes in Classical Antiquity: Malta Archaeological Review 10, 69–71. Environment and Culture, eds. G. Shipley & J. Salmon. Garmbin, T. & J.-C. Sourisseau 2015. Xlendi, Malta. Home- London-New York: Routledge, 68–97. page of Laboratoire des Sciences de l'Information et des Forbes, H., 1998. European Agriculture Viewed Bottom-side Systèmes, Centre Camille-Jullian, Centre National de la Upwards: Fodder- and Forage-provision in a Tradi- Recherche Scientifique (France), http://www.lsis.org/ tional Greek Community. Environmental Archaeology groplan/article/art_Xlendi.html 1, 19–34. Gambin, T., V. Andrrieu-Ponel, F. Medail, N. Marriner, O. French, C., 2010. Sustaining prehistoric agricultural land- Peyron, V. Montade, T. Gambin, C. Morhange, D. scapes in southern Spain, highland Yemen and northern Belkacem & M. Djamali, 2016. 7300 years of vegetation New Mexico: the geoarchaeological perspective, in history and climate for the NW Malta: A Holocene Perspectives in Landscape Archaeology, eds. H. Lewis & perspective. Climate of the Past 12, 273–97. S. Semple. B.A.R. International Series 2103. Oxford: Ganskopp, D., R. Cruz & D. Johnson, 2000. Least-effort Archaeopress, 37–44. pathways?: a GIS analysis of livestock trails in rugged French, C., 2015. A Handbook of Geoarchaeological Approaches to terrain. Applied Animal Behaviour Science 68 (3), 179–90. Landscapes and Settlement Sites. Oxford: Oxbow Books. García-Ruiz, J.M., 2010. The effects of land uses on soil erosion French, C., S. Taylor, R. McLaughlin, A. Cresswell, T. Kin- in Spain: A review. Catena 81, 1–11. naird, D. Sanderson, S. Stoddart & C. Malone, 2018. A García-Ruiz, J.M. & N. Lana-Renault, 2011. Hydrological Neolithic palaeo-catena for the Xagħra Upper Coralline and erosive consequences of farmland abandonment Limestone plateau of Gozo, Malta, and its implications in Europe, with special reference to the Mediterranean for past soil development and land use. Catena 171, region – A review. Agriculture, Ecosystems and Environ- 337–58. ment 140, 317–38. Frendo, H., 1988. Maltese Colonial Identity: Latin Medi- García-Ruiz, J.M., E. Nadal-Romero, N. Lana-Renault & S. terranean or British Empire?, in The British Colonial Begueria, 2013. Erosion in Mediterranean landscapes: Experience, 1800–1964: The Impact on Maltese Society, ed. Changes and future challenges. Geomorphology 198, V. Mallia Milanes. Malta: Mireva, 185–214. 20–36. Frost, H., 1969. The Mortar Wreck in Mellieha Bay: Plans and Gardiner, W., M. Grasso & D. Sedgeley, 1995. Plio-Pleistocene Soundings. A Report on the 1967 Campaign carried out fault movement as evidence for mega-block kinematics on behalf of the National Museum of Malta. London: within the Hyblean-Malta Plateau, central Mediterra- Appetron Press. nean. Journal of Geodynamics 19, 35–51. Fsadni, M., 1992. The Girna. The Maltese Corbelled Stone Hut. Gatt, M., 2006a. Il-Ġeoloġija u l-paleontoloġija tal-Gżejjer Maltin Malta: Dominican Publication. I. Sensiela Kullana Kulturali, Nru. 68. Pietà, Malta: Fuchs, M., Lang, A. & Wagner, G.A. 2004. The history of Pubblikazzjonijiet Indipendenza. Holocene soil erosion in the Phlious Basin, NE Pelo- Gatt, M., 2006b. Il-Ġeoloġija u l-paleontoloġija tal-Gżejjer Maltin ponnese, Greece, based on optical dating. The Holocene II. Sensiela Kullana Kulturali, Nru. 69. Pietà, Malta: 14, 334–45. Pubblikazzjonijiet Indipendenza. Fuller, D.Q., 2001. Harappan seeds and agriculture: some Gauci, R. & J.A. Schembri (eds.), 2019. Landscapes and Land- considerations. Antiquity 75, 410–14. forms of the Maltese Islands (World Geomorphological Furlani, S., F. Antonioli, S. Biolchi, T. Gambin, R. Gauci, V. Lo Landscapes.) Cham, Switzerland: Springer Nature. Priesti, M. Anzidei, S. Devoto, M. Palombo & A. Sulli, Gerasimova, M. & M. Lebedeva-Verba, 2010. Topsoils – 2013. Holocene sea level change in Malta. Quaternary Mollic, takyric and yermic horizons, in Interpretation International 288, 146–57. of Micromorphological Features of Soils and Regoliths, Furlani, S., F. Antonioli, T. Gambin, S. Biolchi, S. Formosa, eds. G. Stoops, V. Marcelino and F. Mees. Amsterdam: V. Lo Priesti, M. Mantovani, M. Anzidei, L. Calcagnile Elsevier, 351–68. 334 References

Geertz, C., 1963. Agricultural Involution: The Process of Eco- method of incremental sum of squares. Computers & logical Change in Indonesia. Los Angeles: University of Geosciences 13, 13–35. California Press. Grove, A.T. & O. Rackham, 2003. The Nature of Mediterra- Gibson, H. & S. Venkateswar, 2015. Anthropological Engage- nean Europe: An Ecological History. New Haven: Yale ment with the Anthropocene: A Critical Review. University Press. Behaviour and Information Technology 6, 5–27. Grundmann, S. & U. Fürst, 1998. The Architecture of Rome: Giorgianni, M., 1990. La Pietra Vissuta. Il Paesaggio Degli Iblei. An Architectural History in 400 Presentations. Stuttgart: Palermo: Sellerio Editore. Edition Axel Menges. Giusti, F., G. Manganelli & P.J. Schembri, 1995. The Non-marine Gruszczynski, M., J.D. Marshall, R. Goldring, M.L. Coleman, Molluscs of the Maltese Islands. Torino: Museo Regionale L. Malkowski, E. Gazdzicka, J. Semil & P. Gatt, P. 2008. die Scienze Naturali. Hiatal surfaces from the Miocene Globigerina Limestone Glick, T.F., 1995. From Muslim Fortress to Christian Castle. Formation of Malta: biostratigraphy, sedimentology, Manchester: Manchester University Press. trace fossils and early diagenesis. Palaeogeography, Goldberg, P. & R.I. Macphail, 2006. Practical and Theoretical Palaeoclimatology, Palaeoecology 270 (2–3), 239–51. Geoarchaeology. Oxford: Blackwells Scientific. Guilaine, J., F. Briois & J-D. Vigne, 2011. Shillourokambos, Gómez Bellard, C., 1995. The first colonization of Ibiza and un Etablissement Néolithique Précéramique à Chypre. Formentera (Balearic Islands, Spain): Some more islands Les fouilles du Secteur 1. Paris-Athènes: Errance -Ecole out of the stream? World Archaeology 26 (3), 442–55. française d’Athènes. Gonzales-Samperiz, P., P. Utrilla, C. Mazo, B.L. Valero-Garces, Guilcher, A. & R. Paskoff, 1975. Remarques sur la geomorphol- M. Cruz Sopena, M. Morellon, M.S. Lopez, A. Moreno ogie littorale de l’archipel maltais.Bulletin de l’Association & M. Bea, 2009. Patterns of human occupation during Geographique de France 427, 225–31. the early Holocene in the Central Ebro Basin (NE Spain) Gunatilaka, A., 2012. Holocene evolution of Arabian coastal in response to the 8.2 ka climatic event. Quaternary sabkhas: a re‐evaluation based on stable‐isotope analy- Research 71 (2), 121–32. sis, forty years after Shearman’s first view of the sabkha, Gorenflo, L.J. & N. Gale, 1990. Mapping regional settlement in Quaternary Carbonate and Evaporite Sedimentary Facies in information space. Journal of Anthropological Archae- and their Ancient Analogues: A Tribute to Douglas James ology 9 (3), 240–74. Shearman, eds. C.G. St.C. Kendall, A.S. Alsharhan, I. Gorman, M.L., 1979. Island Ecology. (Outline Studies in Ecol- Jarvis & T. Stevens. International Association of Sedimen- ogy.) London: Chapman and Hall. tologists Special Publication 43, 113–32. Goudie, A.S., 1993. The Human Impact on the Natural Environ- Gunderson, L.H., 2000. Resilience in theory and practice. ment. Hoboken: Wiley-Blackwell. Annual Review of Ecology and Systematics 31, 425–39. Goudie, A.S. & H.A. Viles, 2016. Geomorphology in the Anthro- Gvirtzman, G. & M. Wieder, 2001. Climate of the last 53,000 pocene. Cambridge: Cambridge University Press. years in the eastern Mediterranean, based on soil-se- Gregg, S.A., 1988. Foragers and Farmers: Population Interaction quence stratigraphy in the coastal plain of Israel. and Agricultural Expansion in Prehistoric Europe. Quaternary Science Reviews 20, 1827–49. Grima, R., 2004. The landscape context of megalithic archi- Haggard, S., M. Noland & A. Sen, 2009. Famine in North tecture, in Malta Before History, ed. D. Cilia. Malta: Korea: Markets, Aid, and Reform: New York: Columbia Miranda, 327–45. University Press. Grima, R., 2007. The Cultural Construction of the Landscape Halstead, P., 2014. Two Oxen Ahead: Pre-mechanized Farming in Late Neolithic Malta, in Cult in Context, eds. D. Bar- in the Mediterranean. Hoboken, New Jersey: John Wiley rowclough & C. Malone. Oxford: Oxbow Books, 35–40. & Sons. Grima, R., 2008a. The Making of Malta. Malta: Midsea Books. Haregeweyn, N., J. Poesen, J. Nyssen, G. Govers, G. Verstrae- Grima, R., 2008b. Landscape, territories, and the life-histo- ten, J. de Vente, J. Deckers, J. Moeyersons & M. Haile, ries of monuments in Temple Period Malta. Journal of 2008. Sediment yield variability in Northern Ethiopia: Mediterranean Archaeology 21, 35–56. A quantitative analysis of its controlling factors. Catena Grima, R., 2011a. Hercules’ unfinished labour: the man- 75, 65–76. agement of Borġ in-Nadur and its landscape, in Site, Harff, J., G. Bailey & F. Luth (eds.), 2016. Geology and Archae- Artefacts and Landscape: Prehistoric Borġ in-Nadur, Malta ology: Submerged Landscapes of the Continental Shelf. (Praehistorica Mediterranea 3), eds. D. Tanasi & N.C. Vella. London: Geological Society Special Publications. Monza: Polimetrica, 341–72. Haslam, S.M., 1969. Malta’s Plant Life. Malta: Progress Press Grima, R., 2011b. The prehistoric islandscape, in The Mar- Co. itime History of Malta: The First Millennia, eds. C. Cini Haslam, S. M., Sell, P.D. & Wolseley, P.A. 1977. A Flora of the & J. Borg. Malta: Salesians of Don Bosco and Heritage Maltese Islands. Msida: Malta University Press. Malta, 10–35. Havinga, A.J., 1964. Investigation into the differential corro- Grima, R. & S. Farrugia, 2019. Landscapes, landforms and sion susceptibility of pollen and spores in various soil monuments in Neolithic Malta, in Landscapes and Land- types. Pollen et Spores 6, 621–35. forms of the Maltese Islands, eds. R. Gauci and J.A. Havinga, A.J., 1967. Palynology and pollen preservation. Schembri. Cham, Switzerland: Springer Nature, 79–90. Review of Palaeobotany and Palynology 2, 81–98. Grimm, E.C., 1987. CONISS: a FORTRAN 77 program for Haywood, C., 2012. High spatial resolution electron probe stratigraphically constrained cluster analysis by the microanalysis of tephras and melt inclusions without 335 References

beam-induced chemical modification. The Holocene in Central Italy, in Il Sistema upmo-ambuiente tra pas- 22, 119–25. sato e presente 1, eds. A.C. Livadie & F. Ortolani. Bari: Heino, J. & T. Muotka, 2005. Highly nested snail and clam Edipuglia, 99–111. assemblages in boreal lake littorals: roles of isolation, Hunt, C.O., 2001. Palynology. Mediterranean Archaeology area, and habitat suitability. Ecoscience 12, 141–6. 13, 111–14. Herzog, I., 2014. A Review of Case Studies in Archaeological Hunt, C.O., 2015. Palynology of some archaeological deposits Least-cost Analysis. Archeologia e Calcolatori 25, 223–39. from Tas-Silġ. In Tas-Silg, Marsaxlokk (Malta) 1: Archae- Herzog, I., 2016. Potential and Limits of Optimal Path ological Excavations conducted by the University of Malta, Analysis, in Computational Approaches to Archaeological 1996–2005, ed. A. Bonanno. University of Malta, 437–50. Spaces, eds. A. Bevan & M. Lake. New York: Routledge, Hunt, C.O. & M. Fiacconi, 2018. Pollen taphonomy of cave 179–211. sediments: What does the pollen record in caves tell us Hill, E.A., P.J. Reimer, C.O. Hunt, A.L. Prendergast & G.W. about external environments and how do we assess its Barker, 2017. Radiocarbon Ecology of the Land Snail reliability? Quaternary International 485, 68–75. melanostoma in Northeastern Libya. Radiocarbon Hunt, C.O. & D. Gilbertson, 1995. Human activity, landscape 9, Special Issue 5, 1–22. change and valley alluviation in the Feccia Valley, Hobbs, W.H., 1914. The Maltese Islands: a tectonic-topo- Tuscany, Italy, in Mediterranean Quaternary River Envi- graphic study. Scottish Geographical Magazine 30, 1–13. ronments, eds. J. Lewin, M.G. Macklin & J.C. Woodward. Hodder, I. & C. Malone, 1984. Intensive survey of prehistoric Rotterdam: Balkema, 167–76. sites in the Stilo region, Calabria. Proceedings of the Hunt, C.O. & P.J. Schembri, 1999. Quaternary environments Prehistoric Society 50, 121–50. and biogeography of the Maltese Islands, in Facets of Hohlfelder, R.L. (ed.), 2008. ‘The maritime world of ancient Maltese Prehistory, eds. A. Mifsud & C. Savona Ventura. Rome,’ in Proceedings of “The Maritime World of Malta: Prehistoric Society of Malta, 41–75. Ancient Rome” Conference held at the American Hunt, C.O. & P.J. Schembri, 2018. Historic-period terrestrial Academy in Rome, 27–29 March 2003. Ann Arbor, environments and soil erosion in the Maltese Islands: Michigan: American Academy in Rome and University evidence from mollusc assemblages from cave-fills of Michigan Press. at Ghajn il-Kbira, near Victoria, Gozo. Ancient Near Holliday, V.T. & W.G. Gartner, 2007. Methods of soil P Eastern Studies, Supplement 4, 67–74. analysis in archaeology. Journal of Archaeological Science Hunt, C.O. & N.C. Vella, 2004/2005. A view from the coun- 34, 301–33. tryside: pollen from a field at Mistra Valley, Malta. Holling, C.S., 1973. Resilience and stability of ecological sys- Malta Archaeological Review 7, 61–69. tems. Annual Review of Ecology and Systematics 4, 1–23. Hunt, C.O., D.D. Gilbertson & R.E. Donohue, 1992. Palae- Hooker, D. (ed.), 1994. History of Western Art: From Ancient obiological evidence for agricultural soil erosion in Greece to the Present Day. London: Barnes and Noble. the Montagnola Senese, Italy, in Past and Present Soil Horden, P. & N. Purcell (eds.), 2000. The Corrupting Sea: A Erosion: Archaeological and Geographical Perspectives, eds. Study of Mediterranean Prehistory. Oxford: Blackwell M.G. Bell & J. Boardman. Oxford: Oxbow Monograph Publishers. 23, 163–74. Horn, P.P., 1997. The Victorian Town Child. Stroud: Sutton Hunt, C.O., D.D. Gilbertson & H.A. El-Rishi, 2007. An Publishing Ltd. 8000-year history of landscape, climate and copper House, M.R., K.C. Dunham & J.C. Wigglesworth, 1961. exploitation in the Middle East: the Wadi Faynan and Geology of the Maltese Islands, in Background for the Wadi Dana National Reserve in southern Jordan. Development, eds. H. Bowen-Jones, J.C. Dewdney & Journal of Archaeological Science 34, 1306–38. B.W. Fisher. Newcastle: University of Durham, 24–33. Hyde, H.P.T., 1955. Geology of the Maltese Islands. Malta: Hughes, J.D., 2011. Ancient deforestation revisited. Journal Lux Press. of History of Biology 44, 43–57. Imeson, A.C., F.J.P.M. Kwaad & H.J. Mucher, 1980. Hillslope Hughes, J.K., 1999. Ancient Tracks of the Maltese Islands. processes and deposits in forested areas in Lux- The Geographical Journal 165, 62–78. embourg, in Timescales in Geomorphology, eds. R.A. Hughes, Q., 1986. The Building of Malta during the Period of Cullingford, D.A. Davidson & J. Lewin. Chichester: the Knights of St. John 1530–1795. Malta: Progress Press. John Wiley & Sons, 31–42. Hughes, Q., 1993. The Architectural Development of Hospi- Indruszewski, G. & C.M. Barton, 2006. Simulating sea sur- taller Malta, in Hospitaller Malta 1530–1798: Studies on faces for modeling Viking Age seafaring in the Baltic Early Modern Malta and the Order of St. John of Jerusalem, Sea, in Computer Applications and Quantitative Methods ed. V. Mallia Milanes. Malta: Mireva, 483–507. in Archaeology, Proceedings of the 34th Conference, 616–30. Hughes, J.D. & J. Thirgood, 1982. Deforestation, erosion, IUCN, 2017. The IUCN Red List of Threatened Species. Version and forest management in ancient Greece and Rome. 2017-2. http://www.iucnredlist.org. Forest & Conservation History 26, 60–75. Jaccarini, C.J., 2002. Ir-Razzett. The Maltese Farmhouse. Malta: Hunt, C.O., 1997. Quaternary deposits in Maltese Islands: A Open Library. microcosm of environmental change in Mediterranean Jaccarini, C.J. & M.N. Cauchi, 1999. The enigmatic rock-cut lands. Geo-Journal 41 (2), 101–9. pans of Mġarr ix-Xini. Melita Historica XII (4), 419–44. Hunt, C.O., 1998. The impact of agricultural soil erosion on Jaouadi, S., V. Lebreton, V. Bout-Roumazeilles, G. Siani, R. prehistoric and historic-period valley sedimentation Lakhdar, R. Boussoffara, L. Dezilieau, N. Kallel, B. 336 References

Mannai-Tayech & N. Comborieu-Nebout, 2016. Envi- Kolb, M. J., 2005. The genesis of monuments among the ronmental changes, climate and anthropogenic impact Mediterranean islands, in The Archaeology of Mediter- in south-east Tunisia during the last 8 kyr. Climates of ranean Prehistory, eds. E. Blake & B. Knapp. Oxford: the Past 12, 1339–59. Wiley-Blackwell, 156–79. Jenks, G.F., 1967. The Data Model Concept in Statistical Kondo, Y. & Y. Seino, 2009. GPS-aided Walking Experiments Mapping. International Yearbook of Cartography 7, 186–90. and Data-driven Travel Cost Modeling on the Historical Johnson, M., 1996. An Archaeology of Capitalism. New York: Road of Nakasendō-Kisoji (Central Highland Japan), Wiley. in Making History Interactive. Computer Applications and Jolliffe, I.T., 2002. Principal Component Analysis (2nd edition). Quantitative Methods in Archaeology. Proceedings of the Dordrecht: Springer. 37th International Conference, Williamsburg, Virginia, John, C.S., M. Mutti & T. Adatte, 2003. Mixed carbonate-si- USA, March 22–26, 2009, eds. L. Fische, B. Frischer & liciclastic record on the North African margin (Malta) S. Wells. (BAR International Series.) Oxford: Archae- – coupling of weathering processes and mid Miocene opress, 158–65. climate. Geological Society of America Bulletin 115 (2), Kooistra, M.J. & M.M. Pulleman, 2010. Features related to 217–29. faunal activity, in Interpretation of Micromorphological Jones, A. & C. Hunt, 1994. Walls, wells and water supply: Features of Soils and Regoliths, eds. G. Stoops, V. Marce- aspects of the cultural landscape of Gozo. Landscape lino & F. Mees. Amsterdam: Elsevier, 397–414. Issues 15, 24–9. Kosmas, C., N. Danalatos, L.H. Cammeraat, M. Chabart, J. Jones, S., 2009. Darwin’s Island: The Galapagos in the Garden of Diamantopoulos, R. Farand, L. Gutierrez, A. Jacob, H. England. London: Little, Brown. Marques, J. Martinez-Ferenandez, A. Mizara, N. Mous- Jongerius, A., 1983. Micromorphology in agriculture, in takas, J.M. Nicolau, C. Oliveros, G. Pinna, R. Puddu, Soil Micromorphology, eds. P. Bullock & C.P. Murphy. J. Puigdefabregas, M. Roxo, A. Simao, G. Stamou, N. Berkhamsted: A.B. Academic Publishers, 111–38. Tomasi, D. Usai & A. Vacca, 1997. The effect of land use Judson, S., 1963. Erosion and deposition of Italian stream on runoff and soil erosion rates under Mediterranean valleys during historic time. Science 140, 898–9. conditions. Catena 29, 45–59. Kantner, J., 2004. Geographical Approaches for Reconstruct- Kuhn, P., J. Aguilar & R. Miedema, 2010. Textural features ing Past Human Behavior from Prehistoric Roadways, and related horizons, in Interpretation of Micromorpho- in Spatially Integrated Social Science, eds. M.F. Goodchild logical Features of Soils and Regoliths, eds. G. Stoops, V. & D.G. Janelle. Oxford: Oxford University Press, 323–44. Marcelino & F. Mees. Amsterdam: Elsevier, 217–50. Karkanas, P. & P. Goldberg, 2010. Phosphatic features, in Kwaad, F.J.P.M. & H.J. Mucher, 1979. The formation and Interpretation of Micromorphological Features of Soils evolution of colluvium on arable land in Northern and Regoliths, eds. G. Stoops, V. Marcelino & F. Mees. Luxembourg. Geoderma 22, 173–92. Amsterdam: Elsevier, 521–41. Lambeck, K., F. Antonioli, M. Anzidei, L. Ferranti, G. Leoni, Kemp, R. 1986. Pre-Flandrian Quaternary soils and pedo- G. Scicchitano & S. Silenzi, 2011. Sea level change along genic processes in Britain. In ed. V. Wright Palaeosols, the Italian coasts during Holocene and prediction for Their Recognition and Interpretation. London; Blackwell, the future. Quaternary International 232, 250–7. 242–62. Lane, C.S., V.L. Cullen, D. White, C.W.F. Bramham-Law & Kinnaird, T.C., D.C.W., Sanderson, C. Burbidge & E. V.C. Smith, 2014. Cryptotephra as a dating and cor- Peltenburg, 2007. OSL Dating of Neolithic Kissoner- relation tool in archaeology. Journal of Archaeological ga-Mylouthkia, Cyprus. Neolithics 2/07, 51–7. Science 42 (Supplement C), 42–50. Kinnaird, T.C., J.E. Dixon, A.H.F. Robertson, E. Peltenburg Lanfranco, E., 1984. Guida alle escursioni a Malta; Aprile 1984. & D.C.W. Sanderson, 2013. Mediterranean Archaeology Societa Botanica Italiana sezzione Siciliana. and Archaeometry 13, 49–62. Lanfranco, E., 1995. The vegetation of the Maltese Islands, Kinnaird, T.C., C.J. Scarre, L. Oosterbeck & D.C.W. Sanderson, in The non-marine molluscs of the Maltese Islands, eds. F. 2015. ‘OSL dating of remnants of the megalithic site of Giusti, G. Manganelli & P.J. Schembri. Torino, Italy: Cabeço dos Pendentes, Portugal.’ Unpublished SUERC Museo Regionale di Scienze Naturali, 27–9. Technical Report, University of Glasgow. Lanfranco, E. & P.J. Schembri, 1986. Maltese wetlands and King, C.H. & D. Bertsch, 2015. Historical perspective: snail wetland biota. Potamon (Malta) 15, 122–5. control to prevent schistosomiasis. PLoS Neglected Lang, D.M., 1960. Soils of Malta and Gozo. Colonial Office, Tropical Diseases 9 (4), e0003657. Colonial Research Studies Report No. 29. London: Kirch, P.V., 1986. Island Societies: Archaeological Approaches to H.M.S.O. Evolution and Transformation. Cambridge: Cambridge Lang, D.M., 1961. Soils of Malta and Gozo, in Malta. University Press. Background for Development, eds. H. Bowen-Jones, J. Kirkby, M.J., 1969. Erosion by water on hillslopes, in Water, Dewdney & W. Fisher. Durham: Department of Geog- Earth and Man, ed. R.J. Chorley. London: Methuen, raphy, Durham Colleges, 83–98. 229–38. Langgut, D., R. Cheddadi, J.S. Carrion, M. Cavanagh, D. Knapp, A.B., 1992. Archaeology and Annales: time, space, Colombaroli, W. Eastwood, R. Greenberg, T. Litt, and change, in Archaeology, Annales and Ethnohistory, A.-M. Mercuri, A. Miebach, N. Roberts, H. Woldring ed. A.B. Knapp. (New Directions in Archaeology.) & J. Woodbridge, 2019. The origin and spread of Cambridge: Cambridge University Press, 1–21. olive cultivation in the Mediterranean basin: the fossil 337 References

pollen evidence. Holocene. Special issue. The Changing in the catchment of the southern part of the Yangtze Face of the Mediterranean: Land Cover, Demography and Delta, China. Catena 147, 586–94. Environmental Change 29 (5), 902–22. Loughran, R.J., G.L. Elliott, L.T. Maliszewski & B.L. Camp- Laparidou, S., M.N. Ramsey & A.M. Rosen, 2015. Intro- bell, 2000. Soil loss and at Pokolbin, New duction to the special issue ‘The Anthropocene in the South Wales, Australia. IAHS Publications 261, 141–52. Longue Durée’. The Holocene 25, 1537–8. Loveland, P.J. & D.C. Findlay, 1982. Composition and Le Bas, M.J., R.W. Le Maitre, A. Streckeisen & B. Zanettini, development of some soils on glauconitic Cretaceous 1986. A chemical classification of volcanic rocks based (Upper Greensand) rocks in southern England. Journal on the total alkali–silica diagram. Journal of Petrology of Soil Science 33, 279–94. 27 (3), 745–50. Lo Vetro, D. & F. Martini, 2016. Mesolithic in Central-South- Lee, R., 2012. Fernand Braudel, the Longue Durée, and World ern Italy: Overview of lithic productions. Quaternary Systems Analysis. Albany: University of New York International 423, 279–302. Press. Luo, W., 1998. Hypsometric analysis with a geographic infor- Lelong, R. & B. Souchier, 1982. Ecological significance of the mation system. Computers and Geosciences 24, 815–21. weathering complex: relative importance of general Luttrell, A.T., 1975. Approaches to Medieval Malta, inMedi - and local factors, in Constituents and Properties of Soils, eval Malta: Studies on Malta Before the Knights, ed. A.T. eds. M. Bonneau & B. Souchier. London: Academic Luttrell. London: The British School at Rome, 1–70. Press, 82–108. MacArthur, R.H. & E.O. Wilson, 1963. An equilibrium the- Lemerle, F. & Y. Pauwels, 2008. Baroque Architecture: 1600– ory of insular zoogeography. Evolution 17 (4), 373–87. 1750. Michigan: Random House Incorporated. MacArthur, R.H. & E.O. Wilson, 1967. The Theory of Island Lespez, L., 2003. Geomorphic responses to long-term land Biogeography. Princeton, NJ: Princeton University use changes in Eastern Macedonia (Greece). Catena Press. 51, 181–208. MacDonald, R., 1974. Nomenclature and petrochemistry of Lessa, G.C., R.J. Angulo, P.C. Giannini & A.D. Araújo, 2000. the peralkaline oversaturated extrusive rocks. Bulletin Stratigraphy and Holocene evolution of a regressive Volcanologique 38 (2), 498–516. barrier in south Brazil. Marine Geology 165, 87–108. MacLeod, D.A., 1980. The origin of the red Mediterranean Lewis, H., 2012. Investigating Ancient Tillage: An experimental soils in Epirus, Greece. Journal of Soil Science 31, 125–36. and soil micromorphological study. B.A.R. International Macklin, M.G., S. Tooth, P.A. Brewer, P.L. Noble & G.A.T. Series S2388. Oxford: Archaeopress. Duller, 2010. Holocene flooding and river develop- Lifton, N.A. & G.G. Chase, 1992. Tectonic, climatic and lith- ment in a Mediterranean steepland catchment: The ologic influences on landscape fractal dimension and Anapodaris Gorge, south central Crete, Greece. Global hypsometry: implications for landscape evolution in and Planetary Change 70, 35–52. the San Gabriel Mountains, California. Geomorphology Magny, M., B. Vanniere, G. Zanchetta, E. Fouache, G. 5, 77–114. Touchais, L. Petrika, C. Coussot, A-V. Walter-Simon- Lindbo, D.L., M.H. Stolt & M.J. Vepraskas, 2010. Redoxi- net & F. Arnau, F. 2009. Possible complexity of the morphic features, in Interpretation of Micromorphological climatic event around 4300–3800 cal. bp in the central Features of Soils and Regoliths, eds. G. Stoops, V. Marce- and western Mediterranean. The Holocene 19, 823–33. lino & F. Mees. Amsterdam: Elsevier, 129–47. Magny, M., B. Vanniere, C. Calo, L. Millet, A. Leroux, O. Linderholm J. & E. Lundberg, 1994. Chemical Characteri- Peyron, G. Zanchetta, T. La Mantia & W. Tinner, 2011. zation of Various Archaeological Soil Samples using Holocene hydrological changes in south-western Main and Trace Elements determined by Inductively Mediterranean as recorded by lake-level fluctuations Coupled Plasma Atomic Emission Spectrometry. Jour- at Lago Preola, a coastal lake in southern Sicily, Italy. nal of Archaeological Science 21, 303–14. Quaternary Science Reviews 30, 2459–75. Locatelli, D. 2005–2006. Nuove ricerche a San Pawl Milqi: Magri, E., 2009 (1906). Ruins of a Megalithic Temple at Xeuchia. primi risultati. Rendiconti della Pontificia Accademia (Shewkiyah), Gozo, Malta. First Report. Reprinted with Romana di Archeologi 78, 257–73. Introduction by Josef Mario Briffa SJ. Valletta: Heritage Locatelli, D., 2008. L’oro verde di Malta. Stime sulla pro- Malta – Salesians of Don Bosco (Malta). duzione olearia nella villa San Pawl Milqi, in L’Africa Magri, O., 2006. A geological and geomorphological review Romana: le ricchezze dell’Africa: risorse, produzioni, scambi. of the Maltese Islands with special reference to the Atti del XVII Convegno di studio, Sevilla, 14–17 dicembre coastal zone. Territoris 6, 7–26 2006, eds. J. Gonzaléz, P. Ruggieri, C. Vismara, & R. Magro Conti, J. & P.C. Saliba (eds.), 2007. The Significance of Zucca. Rome: Carocci, 1351–74. Cart-Ruts in Ancient Landscapes. Malta: Culture 2000 Löfgren, O., 2004. The Sweetness of Home, in The Anthro- & Midsea Books. pology of Space and Place: Locating Culture, eds. S.M. Mahoney, L., 1996. 5000 years of Architecture in Malta. Malta: Low & D. Lawrence-Zuñiga. New York: Wiley, 142–59. Valletta Publications. Lomolino, M.V., B.R. Riddle, R.J. Whittaker & J.H. Brown, Mallia-Milanes, V., 1992. Venice and Hospitaller Malta, 1530– 2010. Biogeography (4th edition) Sunderland, Mass.: 1798: aspects of a relationship. Marsa, Malta: PEG. Sinauer Associates. Mallia-Milanes, V., 1993. Hospitaller Malta, 1530–1798: Long, T., C.O. Hunt & D. Taylor, 2016. Radiocarbon anom- Studies on Early Modern Malta and the Order of St John alies suggest late onset of agricultural intensification of Jerusalem. Msida, Malta: Mireva. 338 References

Malm, A. & A. Hornborg, 2014. The geology of mankind? Brochtorff Circle at Xagħra (1987–94), eds. C. Malone, A critique of the Anthropocene narrative. The Anthro- S. Stoddart, A. Bonanno & D. Trump. Cambridge: pocene Review 1, 62–9. McDonald Institute for Archaeological Research, 41–56. Malone, C. 1985. Pots, prestige and ritual in neolithic south- Mandarini, E., 1860. Storia di S. Rocco da Mompellieri e delle ern Italy. In eds. C. Malone & S. Stoddart, Papers in sue più celebri pestilenze dal suo tempo sino ai nostri giorni Italian Archaeology IV. Vol. ii. Prehistory. Oxford: British (XIV–XIX). Venezia: Lito-tipografia Mozzoni. Archaeological Reports, 118–51. Mangerud, J.A.N. & S. Gulliksen, 1975. Apparent radiocarbon Malone, C.A.T., 1997–8. Processes of Colonisation in the ages of recent marine shells from Norway, Spitsbergen, central Mediterranean. Accordia Research Papers 7, 37–57. and Arctic Canada. Quaternary Research 5 (2), 263–73. Malone, C. 2003. The Italian Neolithic: a synthesis of research. Marchetti, M., 2002. Environmental changes in the central Journal of World Prehistory 17 (3), 235–312. Po Plain (northern Italy) due to fluvial modifications Malone, C. 2015. The Neolithic in Mediterranean Europe. and anthropogenic activities. Geomorphology 44, 361–73. In eds. C. Fowler, J. Harding, J. & D. Hofmann, The Marcus, J. & C. Stanish, 2006. Introduction, in Agricultural Oxford Handbook of Neolithic Europe. Oxford: Oxford Strategies, eds. J. Marcus & C. Stanish. Los Angeles: University Press, 175–94. Cotsen Institute of Archaeology, 1–13. Malone, C., 2017. Review of Clare Manen, in La transition Margaritis, E. & M.K. Jones, 2008. Greek and Roman Agri- néolithique en Méditerranée. Actes du colloque. Tran- culture, in The Oxford Handbook of Engineering and sitions en Méditerranée, ou comment des chasseurs Technology in the Classical World, ed. J.P. Oleson. Oxford: devinrent agriculteurs. Muséum de Toulouse, 14–15 Oxford University Press, 158–74. avril 2011, eds. T. Perrin & J. Guilaine. Germania 94, Marriner, N., T. Gambin, M. Djamali, C. Morhange & M. 291–5. Spiteri, 2012. Geoarchaeology of the Burmarrad ria and Malone, C. & S. Stoddart (eds.), 1994. Territory, Time and early Holocene human impacts in western Malta. Pal- State: The Archaeological Development of the Gubbio Basin. aeogeography, Palaeoclimatology, Palaeoecology 339, 52–65. Cambridge: Cambridge University Press. Marriner, N., D. Kaniewski, T. Gambin, B. Gambin, B. Malone, C. & S. Stoddart, 2000. The current state of pre- Vanniere, C. Morhange, M. Djamali, K. Tachikawa, V. historic ceramic studies in Mediterranean survey, in Robin, D. Rius & E. Bard, E. 2019. Fire as a motor of Extracting Meaning from Ploughsoil Assemblages, eds. R. rapid environmental degradation during the earliest Francovich, H. Patterson & G. Barker. Oxford: Oxbow peopling of Malta 7500 years ago. Quaternary Science Books, 95–104. Reviews 212, 199–205. Malone, C. & S. Stoddart, 2009. Conclusions. In C. Malone, Mathias, G., 2015. What Could the Longue Durée Mean for the S. Stoddart, A. Bonanno & D. Trump (eds.), Mortuary History of Modern Sciences? Boston: Greenstone. Customs in Prehistoric Malta. Excavations at the Broch- Matthews, R., 2005. The rise of civilization in southwest Asia, torff Circle at Xagħra (1987–94). Cambridge: McDonald in The Human Past: A Textbook of World Prehistory, ed. Institute for Archaeological Research, 361–84. C. Scarre. London: Thames & Hudson, 432–71. Malone, C. and S. Stoddart, 2013. Ritual failure and the Mauz, B., N. Elmejdoub, R. Nathan & Y. Jedoui, 2009. temple collapse of prehistoric Malta, in Ritual Failure: Last interglacial coastal environments in the Medi- Archaeological Perspectives, eds. V.G. Koutrafouri & J. terranean–Saharan transition zone. Palaeogeography, Sanders. Leiden: Sidestone Press, 63–84. Palaeoclimatology, Palaeoecology 279, 137–46. Malone, C.A.T., D.A. Barrowclough & S. Stoddart, 2007. Mayes, J., 2001. Rainfall variability in the Maltese Islands: Introduction, in Cult in Context, eds. D. Barrowclough changes, causes and consequences. Geography 86 (2), & C. Malone. Oxford: Oxbow Books, 1–7. 121–30. Malone, C., R. Grima, R. McLaughlin, E. Parkinson, S. Mayr, A., 1908. The Prehistoric Remains of Malta. Trans- Stoddart & N. Vella, In press. Temple Places: Excavating lated from the German. Malta: Printed for Private Cultural Sustainability in Prehistoric Malta. Volume 2 of Circulation. Fragility and sustainability – Studies on Early Malta, the McCarthy, F.M.G., K.N. Mertens, M. Ellegaard, K. Sherman, ERC-funded Project. Cambridge: McDonald Institute V. Pospelova, S. Ribeiro, S. Blasco & D. Vercauteren, for Archaeological Research. 2011. Resting cysts of freshwater dinoflagellates in Malone, C., S. Stoddart & D. Trump, 1988. A house for the southeastern Georgian Bay (Lake Huron) as proxies temple builders. Recent investigations on Gozo, Malta. of cultural eutrophication. Review of Palaeobotany and Antiquity 62, 297–301. Palynology 166 (1–2), 46–62. Malone, C., C. Brogan, R. McLaughlin & S. Stoddart, McLaughlin, T.R., S. Stoddart & C. Malone, 2018. Island risks 2016. Small island sustainability in a case study for and the resilience of a prehistoric civilization. World Malta. Scienze delle Antichità 2, 403–16. Archaeology 50 (4), 570–83. Malone, C., S. Stoddart, A. Bonanno & D. Trump (eds.), 2009a. Mederos Martín, A., 2005. La cronologia Fenicia entre el Mortuary Customs in Prehistoric Malta. Excavations at Mediterráneo Oriental y Occidental. Anejos del Archivo the Brochtorff Circle at Xagħra (1987–94). Cambridge: Español de Arqueología 33, 305–46. McDonald Institute for Archaeological Research. Mejdahl, V., 1979. Thermoluminescence dating: Beta-dose Malone, C., R. Grima, J. Magro-Conti, D. Trump, S. Stoddart attenuation in quartz grains. Archaeometry 21, 61–72. & H. Hardisty, 2009b. The domestic environment, in Mercieca, S., 2005. The production of salt in Malta in Early Mortuary Customs in Prehistoric Malta. Excavations at the Modern times, in La navigation du Savior: Réseau des 339 References

Arsenaux Historiques de la Méditerranée, ed. S. Giannino. Morter, J., 1990. The Excavations at Capo Alfiere, 1987– University of Malta and UNESCO: Villefranche-sur- present, in The Chora or Croton 1983–89. (Institute of Mer: Euromed Heritage, 122–38. Classical Archaeology.) Austin: University of Texas Mercuri, A. M., C.A. Accorsi, M.B. Mazzanti, G. Bosi, A. Car- at Austin, 16–30. darelli, D. Labate, M. Marchesini & G.T. Grandi, 2006. Morris, M.W., 2002. Soil Science and Archaeology: Three Test Economy and environment of Bronze Age settlements – Cases from Minoan Crete. Philadelphia: The Institute Terramaras – on the Po Plain (Northern Italy): first results for Aegean Prehistory Academic Press. from the archaeobotanical research at the Terramara di Morris, T.O., 1952. The Water Resources of Malta. Malta: Montale. Vegetation History and Archaeobotany 16, 43–60. Government Printing Office. Metcalfe, C.R., 1996. Report on the botanical determination Morrison, K.D., 1994. The intensification of production: of charcoal samples, in Skorba: Excavations Carried Out archaeological approaches. Journal of Archaeological on Behalf of the National Museum of Malta, 1961–1963, Method and Theory 1 (2), 111–59. D.H. Trump. (Reports of the Research Committee of Moscati, S., 1993. Some reflections on Malta in the Phoenician the Society of Antiquaries of London.) London and the World. Journal of Mediterranean Studies 3 (2), 286–90. National Museum of Malta: The Society of Antiquaries, Mottershead, D.N., P. Farres & A. Pearson, 2010. The chang- Appendix V. ing Maltese soil environment: Evidence from the Micallef, A., F. Foglini, L. Bas, L. Angeletti, V. Maselli, A. Pasuto ancient cart tracks at San Pawl Tat-Tarġa, Naxxar. Geo- & M. Taviani, M. 2013. The submerged paleo-landscape logical Society London Special Publications 331, 219–29. of the Maltese Islands: Morphology evolution and Mottershead, D., A. Pearson & M. Schaefer, 2017. The cart relation to Quaternary environment change. Marine ruts of Malta: an applied geomorphology approach. Geology 335, 129–47. Antiquity 82, 1065–79. Micallef, S., 2019. The terraced character of the Maltese rural Mucher, H.J., T. Carballas, F. Guitan Ojea, P.D. Jungerius, S.B. landscape: a case study of Buskett Area, in Landscapes Kroonenberg & M.C. Villar, 1972. Micromorphological and Landforms of the Maltese Islands, eds. R. Gauci & J.A. analysis of effects of alternating phases of landscape Schembri. (World Geomorphological Landscapes.) stability and instability on two soil profiles in Galicia, Cham, Switzerland: Springer Nature, 153–65. N.W. Spain. Geoderma 8, 241–66. Middleton, W.D. & D.T. Price, 1996. Identification of activity Mucher, H.J., H. van Steijn & F.J.P.M. Kwaad, 2010. Col- areas by multi-element characterization of sediments luvial and mass wasting deposits, in Interpretation from modern and archaeological house floors using of Micromorphological Features of Soils and Regoliths, Inductively Coupled Plasma-Atomic Emission spec- eds. G. Stoops, V. Marcelino & F. Mees. Amsterdam: troscopy. Journal of Archaeological Science 23, 673–87. Elsevier, 37–48. Milanesi, C., R. Vignani, F. Ciampolini, C. Faleri, L. Cattani, A. Muhs, D.R., J. Budahn, A. Avila, G. Skipp, J. Freeman & D. Moroni, S. Arrighi, M. Scali, P. Tiberi, E. Sensi, W. Wang Paterson, 2010. The role of African dust in the forma- & M. Cresti, 2006. Ultrastructure and DNA sequence tion of Quaternary soils on Mallorca, Spain and the analysis of single Concentricystis cells from Alta Val implications for the genesis of Red Mediterranean Tiberina Holocene sediments. Journal of Archaeological soils. Quaternary Science Reviews 29, 2518–43. Science 33, 1081–7. Murphy, C.P., 1986. Thin Section Preparation of Soils and Miller, H.M-L., 2006. Water Supply, Labor Requirements, Sediments. Berkhamsted: A.B. Academic. and Land Ownership in Indus Floodplain Agricultural Murray, A.S. & A.G. Wintle, 2000. Luminescence dating of Systems, in Agricultural Strategies, eds. J. Marcus & C. quartz using an improved single-aliquot regenera- Stanish. Los Angeles: Cotsen Institute of Archaeology, tive-dose protocol. Radiation Measurements 32, 57–73. 92–128. Murray, J., 1890. The Maltese Islands, with special reference Mitchell, P. & J. Dewdney, 1961. The Maltese climate and to their geological structure. Scottish Geographical weather, in Malta, a Background for Development, eds. H. Magazine 6, 449–88. Bowen-Jones, J.C. Dewdney & W.B. Fisher. Durham: Murray, M.A., 1923–1929. Excavations in Malta. London: Durham University Press, 48–82. B. Quaritch. Mizota, M., M. Kusakabe & M. Noto, 1988. Eolian contribution Murrieta-Flores, P., 2012. Understanding human movement to soil development on Cretaceous limestones in Greece through spatial technologies. The role of natural areas as evidenced by oxygen isotope composition of quartz. of transit in the Late Prehistory of South-western Iberia. Geochemical Journal 22, 41–46. Trabajos de Prehistoria 69, 103–22. Mommsen, H., A. Bonanno, K. Chetkuti Bonavita, I. Kakoulli, Murrieta-Flores, P., 2014. Space and Temporality in Herd- M. Musumect, C. Sagona, A. Schwedt, N. C. Vella & N. ing Societies. Exploring the Dynamics of Movement Zacharias 2006. Characterization of Maltese Pottery of during the Iberian Late Prehistory, in Space and Time the Late Neolithic, Bronze Age and Punic Period by in Mediterranean Prehistory, eds. S. Souvatzi & A. Hadji. Neutron Activation Analysis, in Geomaterials in Cul- New York: Routledge, 196–213. tural Heritage, eds. M. Maggetti & B. Messiga, (Special Natali, E. & V. Forgi, 2018. The beginning of the Neolithic Publications 257.) London: The Geological Society of in Southern Italy and Sicily. Quaternary International London, 81–9. 470, 253–69. Moore, P.D., J.A. Webb & M.E. Collinson, 1991. Pollen analysis National Statistics Office, 2016.Agriculture and Fisheries 2014. (2nd edition). Oxford: Blackwell Scientific. Valletta: National Statistics Office. 340 References

National Statistics Office, 2019.Regional Statistics Malta 2019 for modeling soil erosion by water. Geosciences (Swit- Edition. Valletta: National Statistics Office. zerland) 5, 117–26. Newbery, J., 1968. The perched water table in the Upper Panagos, P., P. Borrelli, J. Poesen, K. Meuseburger, C. Ballabio, Limestone aquifer of Malta. Journal of the Institution of E. Lugato, L. Montanarella & C. Alewell, 2015c. The Engineers (India) 22, 551–70. new assessment of soil loss by water erosion in Europe. Newhard, J.M.L., N.S. Levine & A.D. Phebus, 2014. The devel- Environmental Science & Policy 54, 438–47. opment of integrated terrestrial and marine pathways Pantis, J. & N.S. Margaris, 1988. Can systems dominated by in the Argo-Saronic region, Greece. Cartography and asphodels be considered as semi-deserts? International Geographic Information Science 41 (4), 379–90. Journal of Biometeorology 32, 87–91. Noti, R., J.F.N. van Leeuwen, D. Colombaroli, E. Vescovi, Parnell, A., J. Haslett, J.R.M. Allen, C.E. Buck & B. Huntley, S. Pasta, T. La Mantia & W. Tinner, 2009. Mid- and 2008. A flexible approach to assessing synchroneity of Late-Holocene vegetation and fire history of Biviere di past events using Bayesian reconstructions of sedimen- Gela, a coastal lake in southern Sicily. Vegetation History tation history. Quaternary Science Reviews 27, 1872–85. and Archaeobotany 18, 371–87. Paskoff, R. & P. Sanlaville, 1978. Observations géomor- O’Brien, C., K. Selby, Z. Ruiz, A. Brown, M. Dinnin, C. Casel- phologiques sur les côtes de l’archipel maltais. Zeitschrift dine, P. Langdon & I. Stuijts, 2005. A sediment-based für Geomorphologie 22 (3), 310–28. multiproxy palaeoecological approach to the environ- Pásztor, E. & C. Roslund, 1997. Orientation of Maltese ‘dol- mental archaeology of lake dwellings (crannogs), central mens’. Journal of European Archaeology 5, 183–9. Ireland. The Holocene 15 (5), 707–19. Patacchini, A. & G. Nicatore, 2016. Potential paths and his- Oil Exploration Directorate, 1993. Geological Map of the Maltese torical road network between Italy and Egypt: from Islands. Sheet 1 – Malta – Scale 1:25,000. Malta: Office of predictive to postdictive approach, in Keep the Revo- the Prime Minister. lution Going. Proceedings of the 43rd Annual Conference Oonk, S., C.P. Slomp & D.J. Huisman, 2009. Geochemis- on Computer Applications and Quantitative Methods in try as an aid in archaeological prospection and site Archaeology, eds. S. Campana, R. Scopigno, G. Car- interpretation: current issues and research directions. pentiero & M. Cirillo. Oxford: Archaeopress, 669–81. Archaeological Prospection 16, 35–51. Patton, M., 1996. Islands in Time: Island Sociogeography and O’Sullivan, D. & D.J. Unwin, 2010. Geographic Information Mediterranean Prehistory. London: Routledge. Analysis (2nd edition). Hoboken: John Wiley & Sons, Inc. Peccerillo, A. & S.R. Taylor, 1976. Geochemistry of eocene Orengo, H.A. & C. Miró, 2011. Following Roman waterways calc-alkaline volcanic rocks from the Kastamonu area, from a computer screen: GIS-based approaches to the Northern Turkey. Contributions to Mineralogy and analysis of Barcino’s aqueducts, in Go Your Own Least Petrology 58, 63–81. Cost Path: Spatial Technology and Archaeological Interpre- Pedley, H.M., 1974. Miocene seafloor subsidence and later tation; Proceedings of the GIS Session at EAA 2009, eds. subaerial solution subsidence structures in the Mal- J.W.H. Verhagen, A.G. Posluschny & A. Danielisova. tese Islands. Proceedings of the Geological Association Oxford: Achaeopress, 47–53. 85, 533–47. Pace, A., 1995. Malta and the Dawn of the Metal Ages. Treas- Pedley, H.M., 1975. ‘The Oligo-Miocene Sediments of the ures of Malta 2 (1), 55–9. Maltese Islands.’ Unpublished PhD thesis, University Pace, A. (ed.), 2000. The Ħal Saflieni Hypogeum 4000 bc – 2000 of Hull. ad. Malta: National Museum of Archaeology. Pedley, H.M., 1978. A new lithostratigraphical and palaeoen- Pace, A., 2004. Malta During Prehistory: An Overview, in vironmental interpretation for the coralline limestone Malta: Roots of a Nation; The Development of Malta from an formations (Miocene) of the Maltese Islands. Over- Island People to an Island Nation, ed. K. Gambin. Malta: seas Geology and Mineral Resources 54, 1–17. London: Midsea Books Ltd., 25–44. H.M.S.O. Pace, A. & G. Azzopardi, 2008. Economic landscapes of the Pedley, H.M., 1980. The occurrence and sedimentology of a Maltese Islands during antiquity: a survey of ancient Pleistocene travertine in the Fiddien Valley, Malta. Pro- wine presses. Poster Presented at the XVII Congresso ceedings of the Geologists’ Association 91 (3), 195–202. Internazionale di Archeologia Classica, Rome. Pedley, H.M., 1993. Geological maps of the Maltese Islands. Scale, Pagnoux, C., L. Bouby, S. Ivorra, C. Petit, C., S.M. Valamoti, T. 1: 25,000, 2 sheets. In Oil Exploration Directorate, 1993. Pastor & J.F. Terral, 2015. Inferring the agrobiodiversity Sheet 1 (Malta); Sheet 2 (Gozo and Comino). Keyworth: of Vitis vinifera L. (grapevine) in ancient Greece by com- British Geological Survey. parative shape analysis of archaeological and modern Pedley, H.M., 2011. The Calabrian stage, Pleistocene high- seeds. Vegetation History and Archaeobotany 24, 75–84. stand in Malta: a new marker for unravelling the late Panagos, P., C. Ballabio, P. Borrelli, K. Meuseburger, A. Klik, Neogene and Quaternary history of the islands. Journal S. Rousseva, M.P. Tadic, S. Michaelides, M. Hrabalik- of the Geolological Society, London 168, 913–26. ova, P. Olsen, J. Aalto, M. Lakatos, A. Rymszewicz, A. Pedley, H.M. & S.M. Bennett, 1985. Phosphorites, hardgrounds Dumitrescu, S. Begueria & C. Alewell, 2015a. Rainfall and syndepositional subsidence: a paleoenvironmental erosivity in Europe. Science of The Total Environment model from Miocene of the Maltese Islands. Sedimentary 511, 801–14. Geology 45, 1–34. Panagos, P., P. Borrelli & K. Meusburger, 2015b. A new Pedley, M., D. Bosence, C. Dart & S. Pratt, 1990. Tectonic and European slope length and steepness factor (LS-factor) stratigraphic evolution of the Maltese Islands, in Field 341 References

Guide to the Cainozoic Platform Carbonates of the Maltese Features of Soils and Regoliths, eds. G. Stoops, V. Marce- Islands, ed. D. Bosence. Nottingham: International lino & F. Mees. Amsterdam: Elsevier, 195–216. Sedimentological Congress, 9–39. Pollak, M.D., 1991. Turin 1564–1680: Urban Design, Military Pedley, H.M., M. Hughes-Clarke & P. Galea, 2002. Limestone Culture and the Creation of the Absolutist Capital. Chicago: Isles in a Crystal Sea: The Geology of the Maltese Islands. University of Chicago Press. Malta: PEG Ltd. Prampolini, M., F. Foglini, S. Biolchi, S. Devoto, S. Angelini Pedley, H.M., M. House & B. Waugh, 1976. The geology of & M. Soldati, 2017. Geomorphological mapping of ter- Malta and Gozo. Proceedings of the Geologists’ Associ- restrial and marine areas, northern Malta and Comino ation 87, 325–41. (central Mediterranean Sea). Journal of Maps 13, 457–69. Pedley, H.M., M.R. House & B. Waugh, 1978. The geology Preece, R.C., 1998. , in Late Quaternary Environmental of the Pelagian block: the Maltese Islands, in The Ocean Change in North-west Europe. Excavations at Holywell Basins and Margins: 4B, the Western Mediterranean, Coombe, South-east England, eds. R.C. Preece & D. Bridg- eds. A.E.M Nairn, W.H. Kanes & F.G. Stehli. London: land. London: Chapman and Hall, 158–212. Plenum Press, 417–33. Prescott, J.R. & J.T. Hutton, 1994. Cosmic ray contributions Pedley, H.M., M.H. Clark & P. Galea, 2002. Limestone Isles to dose rates for luminescence and ESR dating: Large in a Crystal Sea: The Geology of the Maltese Islands. San depths and long-term time variations. Radiation Meas- Gwann: Publishers Enterprises Group Ltd. urements 23 (2), 497–500. Peet, T.E., 1910. Contributions to the Study of the Prehistoric Pross, J., U. Kotthoff, U.C. Muller, O. Peyron, I. Dormoy, G. Period in Malta. Papers of the British School at Rome 5 Schmiedl, S. Kalaitzidis & A.M. Smith, 2009. Massive (3), 141–63. perturbation in terrestrial ecosystems of the Eastern Pelle, T., F. Scarciglia, E. Allevato, G. Di Pasquale, M.F. Mediterranean region asociated with the 8.2 ka limatic La Russa, D. Marino, E. Natali, G. Robustelli & V. event. Geology 37, 887–90. Tine, 2013. Reconstruction of Holocene environmen- Puglisi, D., 2014. Tectonic evolution of the Sicilian Maghrebian tal changes in two archaeological sites of Calabria Chain inferred from stratigraphic and petrographic (Southern Italy) using an integrated pedological and evidences of Lower Cretaceous and Oligocene flysch. anthracological approach. Quaternary International Geologica Carpathica 65, 293–305. 288, 206–14. Pyne-O’Donnell, S.D.F., 2004. ‘The Factors Affecting the Pérez-Peña, J., J. Azañón & A. Azor, 2009. CalHypso: An Distribution and Preservation of Microtephra Particles ArcGIS extension to calculate hypsometric curves and in Lateglacial and Early Holocene Lake Sediments.’ their statistical moments. Applications to drainage Unpublished PhD, University of London. basin analysis in SE Spain. Computers & Geosciences Quintin, J., 1536. Insulae Melitae Descriptio. Lyons: Gryphius. 35, 1214–23. Rainbird, P., 1999. Islands out of time: a critique of island Peyron, O., S. Goring, I. Dormoy, U. Kotthoff, J. Pross, J-L. archaeology. Journal of Mediterranean Archaeology 12, de Beaulieu, R. Drescher-Schneider, B. Vanniuere & 216–34. M. Magny, 2011. Holocene seasonality changes in the Rainbird, P., 2007. The archaeology of islands. Cambridge: central Mediterranean region reconstructed from the Cambridge University Press. pollen sequences of Lake Accesa (Italy) and Tenaghi Ramón-Laca, L. & D.J. Mabberley, 2004. The ecological status Philippon (Greece). The Holocene 21, 131–46. of the carob-tree (Ceratonia siliqua, Leguminosae) in the Peyron, O., N. Combourieu-Nebout, D. Brayshaw, S. Gor- Mediterranean. Botanical Journal of the Linnean Society ing, V. Andrieu-Ponel, S. Desprat, W. Fletcher, B. 144, 431–6. Gambin, C. Ioakim, S. Joannin, U. Kotthoff, K. Kouli, Raneri, S., Barone, G., Mazzoleni, P., Tanasi, D. & C. Ema- V. Montade, J. Pross, L. Sadori & M. Magny, 2017. nuele, 2015. Mobility of men versus mobility of goods: Precipitation changes in the Mediterranean basin Archaeometric characterization of Middle Bronze Age during the Holocene from terrestrial and marine pottery in Malta and Sicily (15th–13th century bc). pollen records: a model-data comparison. Climate Periodico di Mineralogia 84, 23–44. Past 13, 249–65. Recchia, G., 2004–2005. Il tempio e l’area sacra megalitica di Piccarreta, M., M. Caldara, D. Capolongo & F. Boenzi, 2011. Tas-Silġ: le nuove scoperte dagli scavi nei livelli del III Holocene geomorphic activity related to climatic e del II millennio a.C. Scienze dell’Antichità 12, 233–62. change and human impact in Basilicata, Southern Recchia, G. & Cazzella, A. 2011. Maltese prehistoric ceramic Italy. Geomorphology 128, 137–47. sequence and chronology: On-going problems, in Piccarreta, M., D. Capolongo & M.N. Miccoli, 2012. Deep Ceramics of the Phoenician-Punic World: Collected Essays, gullies entrenchment in valley fills during the Late ed. C. Sagona. (Ancient Near Eastern Studies Supple- Holocene in the Basento basin, Basilicata (southern ment 36). Louvain: Peeters, 373–96. Italy). Geomorphologie: Relief, Processus, Environnement Recchia, G. & G. Fiorentino, 2015. Archipelagos adjacent 18 (2), 239–48. to Sicily around 2200 bc: attractive environments or Pingel, T.J., 2010. Modeling Slope as a Contributor to Route suitable geo-economic locations?, in 2200 bc – A climatic Selection in Mountainous Areas, Cartography and breakdown as a cause for the collapse of the old world?, Geographic Information Science 37 (2), 137–48. Proceedings of the 7th Archaeological Conference of Central Poch, R.M., O. Artieda, J. Herrero & M. Lebedeva-Verba, 2010. Germany, eds. H.H. Meller, H.W. Arz, R. Jung & R. Risch. Gypsic features, in Interpretation of Micromorphological Halle: Landesmuseums fur Vorgeschichte, 305–20. 342 References

Reed, J.M., A.C. Stevenson & S. Juggins, 2001. A multi-proxy Reuther, C.D. & G.H. Eisbacher, 1985. Pantelleria Rift – record of Holocene climate change in southwestern crustal extension in a convergent intraplate setting. Spain: The Laguan de Medina, Cadiz. The Holocene Geologische Rundschau 74 (3), 585–97. 11 (6), 707–19. Richards-Rissetto, H. & K. Landau, 2014. Movement as a Rehfeld, U. & A.W. Janssen, 1995. Development of phos- means of social (re)production: using GIS to measure phatized hardgrounds in the Miocene Globigerina social integration across urban landscapes. Journal of Limestone of the Maltese archipelago, including a Archaeological Science 41, 365–75. description of the Gamopleura melitensis sp. nov. Facies Rizzo, C., 1932. Geology of the Maltese Islands. Malta: Gov- 33 (1), 91–106. ernment Printing Office. Reille, M., 1992. ‘Pollen et spores d’Europe et d’Afrique du Roberts, N., 2002. Did prehistoric landscape management Nord.’ Unpublished report. Laboratoire de Botanique retard the post-glacial spread of woodland in South- Historique et Palynologie, Universite d’Aix Marseille west Asia? Antiquity 76, 1002–10. III. Robb, J., 2007. The Early Mediterranean Village: Agency, Reille, M., 1995. ‘Pollen et Spores D’Europe et D’Afrique Du Material Culture and Social Change in Neolithic Italy. nord’ (Supplement 1). Unpublished report. Marseilles: Cambridge: Cambridge University Press. Laboratoire de Botanique Historique et Palynologie. Rogers, S.R., C. Collet & R. Lugon, 2014. Least cost path Reille, M., 1998. ‘Pollen et spores d’Europe et d’Afrique du analysis for predicting glacial archaeological site nord’ (Supplement 2). Unpublished report. Marseilles: potential in central Europe, in Across Time and Space. Laboratoire de Botanique Historique et Palynologie. Papers from the 41st Computer Applications and Quantita- Reimer, P. & R. Reimer, 2001. A marine reservoir correction tive Methods in Archaeology Conference, ed. A. Traviglia. database and on-line interface. Radiocarbon 43 (2A), 2 Amsterdam: Amsterdam University Press, 261–75. Part I, 461–3. Rolé, A., 2007. The Terraced Landscapes of the Maltese Reimer, R.W. & R.J. Reimer, 2017. An online application for Islands Malta, in Europe’s Living Landscape. Essays on ΔR calculation. Radiocarbon 59 (5), 1623–7. Exploring Our Identity in the Countryside, eds. B. Pedroli, Reimer, P.J., H.S. McDonald, J.R. Reimer, S. Svyatko & M. A. Van Doom, G. De Blust, M. Paracchini, D. Wescher Thompson, 2015. Laboratory protocols used for AMS & F. Bunce. Uitgeverij: KNNV, 405–20. radiocarbon dating at the 14CHRONO Centre, The Queen’s Rosenberg, M.S. & C.D. Anderson, 2011. PASSaGE: Pattern University, Belfast. Portsmouth: English Heritage. Analysis, Spatial Statistics and Geographic Exegesis. Reimer, P.J., E. Bard, A. Bayliss, J.W. Beck, P.G. Blackwell, C. Version 2. Methods in Ecology and Evolution 2 (3), 229–32. Bronk Ramsey, C.E. Buck, H. Cheng, R.L. Edwards & Ruan, J., F. Kherbouche, D. Genty, D. Blamart, H. Cheng, M. Friedrich, 2013. IntCal13 and Marine13 radiocarbon F. Dewilde, S. Hachi, R.L. Edwards, E. Régnier & J-L. age calibration curves 0–50,000 years cal bp. Radiocarbon Michelot, 2016. Evidence of a prolonged drought ca. 55 (4), 1869–87. 4200 yr bp correlated with prehistoric settlement aban- Renard, K.G., G.R. Foster, G.A. Weesies, D.K. McCool & D.C. donment from the Gueldaman GLD1 Cave, Northern Yoder, 1997. Predicting Soil Erosion by Water: A Guide to Algeria. Climates of the Past 12, 1–14. Conservation Planning with the Revised Universal Soil Loss Ruffell, A., C. Hunt, R. Grima, R. McLaughlin, C. Malone, Equation (RUSLE). Washington: USDA Handbook 703. P.J. Schembri, C. French & S. Stoddart, 2018. Water Renfrew, C., 1972. Malta and calibrated radiocarbon chro- and cosmology in the prehistoric Maltese World: Fault nology. Antiquity 46, 141–4. control on the hydrogeology of Ġgantija. Journal of Renfrew, C., 1973. Before Civilization: The Radiocarbon Revo- Archaeological Science. Reports 20, 183–91. lution and Prehistoric Europe. London: Johnathan Cape. Russell, N.J. & S.J. Armitage, 2012. A comparison of sin- Renfrew, C. & E.V. Level, 1979. Exploring dominance: Pre- gle-grain and small aliquot dating of fine sand from dicting polities from centres, in Renfrew, C. & Cooke, Cyrenaica, northern Libya. Quaternary Geochronology K.L. (eds.) Transformations: Mathematical Approaches to 10, 62–7. Culture. New York: Academic Press, 145–68. Sabelberg, E., 1983. The persistence of palazzi and intra-ur- Renfrew, A.C. & M. Wagstaff (eds.), 1982. An island polity. ban structures in Tuscany and Sicily. Journal of The archaeology of exploitation in Melos. Cambridge: Historical Geography 9 (3), 247–64. Cambridge University Press. Sabelberg, E., 1986. The ‘South-Italian City’ – a Cultural-Ge- Renschler, C.S. & J. Harbor, 2002. Soil erosion assessment netic Type of City. GeoJournal 13, 59–66. tools from point to regional scales – The role of geo- Sadori, L., G. Zanchetta & M. Giardini, 2008. Last Glacial morphologists in land management research and to Holocene palaeoenvironmental evolution at Lago implementation. Geomorphology 47, 189–209. di Pergusa (Sicily, Southern Italy) during the Bronze Renzulli, l., P. Santi, T. Gambin & P. Bueno Serrano, 2019. Age: A multi-disciplinary approach. Quaternary Inter- Pantelleria Island as a centre of production for the national 113, 5–17. Archaic Phoenician trade in basaltic millstones: New Sadori, L., C. Giraudi, A. Masi, M. Magny, E. Ortu, G. evidence recovered and sampled from a shipwreck Zanchetta & A. Izdebski, 2016. Climate, environment off Gozo (Malta) and a terrestrial site at Cádiz (Spain). and society in southern Italy during the last 2000 Journal of Archaeological Science: Reports 24, 338–49. years. A review of the environmental, historical and Reuther, C.D., 1984. Tectonics of the Maltese Islands. Centro archaeological evidence. Quaternary Science Reviews (Malta) 1, 1–16. 136, 173–88. 343 References

Sadori, L., E. Ortu, O. Peyron, G. Zanchetta, B. Vanniere, Islands (World Geomorphological Landscapes), eds. R. M. Desmet & M. Magny, 2013. The last 7 millennia Gauci & J.A. Schembri. Cham, Switzerland: Springer of vegetation and climate changes at Lago di Pergusa Nature, 9–17. (central Sicily, Italy). Climate Past 9, 1969–84. Schembri, P.J., 1993. Physical geography and ecology of Sagona C., 2002. The Archaeology of Punic Malta. Leuven: the Maltese Islands: A brief overview, in Optiones Peeters Press. Mediterraneennes: Serie B. Etudes et Recherches 7, eds. Sagona C., 2004. Land Use in Prehistoric Malta. A Re-Ex- S. Busuttil, F. Lerin & L. Mizzi. Montpellier: Centre amination of the Maltese ‘Cart Ruts’. Oxford Journal of International de Hautes Etudes Agronomiques Med- Archaeology 23, 45–60. iterraneennes, 27–39. Sagona, C., 2015. The Archaeology of Malta: from the Neolithic Schembri, P.J., 1994. Malta’s natural heritage, in Malta culture through the Roman period. Cambridge: Cambridge and identity, eds. H. Frendo and O. Friggeeri. Valletta: University Press. Ministry of Youth and the Arts, 105–24. Said-Zammit, G.A., 1997. Population, Land Use and Settlement Schembri, P.J., 1995. Molluscan samples from the Żeb- on Punic Malta. A contextual analysis of the burial evidence. buġ tomb, in Mortuary ritual of 4th millennium bc Oxford: B.A.R. International Series 682. Malta: the Żebbuġ period chambered tomb from the Said-Zammit, G.A., 2016. The Development of Domestic Space in Brochtorff Circle at Xagħra (Gozo), eds. C. Malone, the Maltese Islands from the Late Middle Ages to the Second S. Stoddart, A. Bonanno, T. Gouder & D. Trump. Half of the Twentieth Century. Oxford: Archaeopress. Proceedings of the Prehistoric Society 61, 342. Saliba, P.C., J. Magro Conti & C. Borg, 2002. A Study of Schembri, P.J., 1997. The Maltese Islands: climate, vegetation Landscape and Irrigation Systems at Is-Simblija limits of and landscape. GeoJournal 41, 1–11. Dingli, Malta & Conservation Report. Malta: Gutenberg. Schembri, P.J., 2003. Current state of knowledge of the Sanderson, D.C.W., 1987. Thermoluminescence dating of vitrified Maltese non-marine fauna, in Malta Environment and Scottish forts. Paisley: Paisley College. Planning Authority. Malta Environment and Planning Sanderson, D.C.W., 1988. Thick source beta counting Authority Annual Report and Accounts 2003. Malta (TSBC): A rapid method for measuring beta dose- Environment and Planning Authority. Floriana: Malta, rates. International Journal of Radiation Applications and 33–65. Instrumentation. Part B. Nuclear Tracks and Radiation Schembri, P.J. & Lanfranco, E. 1993. Development and the Measurements 14, 203–7. natural environment in the Maltese Islands, in The Sanderson, D.C.W. & S. Murphy, 2010. Using simple portable development process in small island states, eds. D.G. OSL measurements and laboratory characterisation Lockhart, D. Drakakis-Smith & P.J. Schembri. London to help understand complex and heterogeneous sed- & New York: Routledge, 247–66. iment sequences for luminescence dating. Quaternary Schembri, P.J., K. Fenech & K. Terribile, 2018. Unlocking the Geochronology 5, 299–305. past through the present: exploring the use of pres- Sanderson, D.C.W., P. Bishop, I. Houston & M. Boonsener, ent-day land snail assemblages as indicators of past 2001. Luminescence characterisation of quartz-rich environments in the Maltese Islands, in The lure of the cover sands from NE Thailand. Quaternary Science antique. Essays on Malta and Mediterranean archaeology in Reviews 20, 893–900. honour of Anthony Bonanno, eds. N.C. Vella, A.J. Frendo Sanderson, D.C.W., P. Bishop, M.T. Stark & J.Q. Spencer, & H.C.R. Vella. (Ancient Near Eastern Studies Sup- 2003. Luminescence dating of anthropogenically reset plement Series 54.) Leuven, Belgium: Peeters, 75–86. canal sediments from Angkor Borei, Mekong Delta, Schembri, P.J., M. Pedley, C.O. Hunt & S. Stoddart, 2009. Cambodia. Quaternary Science Reviews 22, 1111–21. The environment of the Maltese Islands, in Mortuary Sanderson, D.C.W., T.C. Kinnaird, F. Leandri & C. Leandri, Customs in Prehistoric Malta. Excavations at the Brochtorff 2014. ‘OSL Dating of Neolithic Monuments at Capu di Circle at Xagħra (1987–94), eds. C. Malone, S. Stoddart, Lugu, Belvédère-Campomoro, SW Corsica.’ Unpub- A. Bonanno & D. Trump. Cambridge: McDonald lished SUERC Technical Report, University of Glasgow. Institute for Archaeological Research, 17–39. Scarre, C. (ed.) 2005. The world transformed: from foragers Schepanski, K., 2018. Transport of Mineral Dust and Its and farmers to states and empires. In The Human Impact on Climate. Geosciences 8 (5), 151–70. Past: A Textbook of World Prehistory. London: Thames Scheuvens, D., L. Schutz, K. Kandler, M. Ebert & S. Wein- & Hudson. bruch, S. 2013. Bulk composition of northern African Scerri, S., 2019. Sedimentary evolution and resultant geo- dust and its source sediments – A compilation. Earth logical landscapes, in Landscapes and Landforms of the Science Reviews 116, 170–90. Maltese Islands (World Geomorphological Landscapes), Schlecht, E., U. Dickhoefer, E. Gumpertsberger & A. Buerk- eds. R. Gauci & J.A. Schembri. Cham, Switzerland: ert, 2009. Grazing itineraries and forage selection of Springer Nature, 31–47. goats in the Al Jabal al Akhdar mountain range of Schembri, J.A., 2003. Coastal Land use in the Maltese islands: a northern Oman. Journal of Arid Environments 73 (3), Description and Appraisal, PhD Dissertation, University 355–63. of Durham [Available at Durham E-Theses Online: Schlecht, E., P. Hiernaux, I. Kadaouré, C. Hülsebusch & F. http://etheses.dur.ac.uk/4417/] Mahler, 2006. A spatio-temporal analysis of forage Schembri, J.A., 2019. The Geographical Context of the Mal- availability and grazing and excretion behaviour of tese Islands, in Landscapes and Landforms of the Maltese herded and free grazing cattle, sheep and goats in 344 References

Western Niger. Agriculture, Ecosystems & Environment National de la Recherche Scientifique (France), http:// 113 (1–4), 226–42. www.lsis.org/groplan/papers/groplan_livrableXlen- Sciberras, D., 1999. The Maltese dolmens, in Facets of Maltese diCargaisonOctobre2015.pdf Prehistory, eds. A. Mifsud & C. Savona Ventura. Malta: Spratt, T.A.B., 1843. On the geology of the Maltese Islands. Prehistoric Society of Malta, 101–6. Proceedings of the Geological Society 4, 225–9. Seddon, M.B., Ü. Kebapçı, M. Lopes-Lima, D.V. Damme & Spratt, T.A.B., 1854. The and Gozo. Valletta, K.G. Smith, 2014. Freshwater mollusks, in The Status Malta: Literary and Scientific Society of Malta. and Distribution of Freshwater Biodiversity in the Eastern Stanley, D.J. & A.K. Hait, 2000. Deltas, radiocarbon dating, Mediterranean, eds. K.G. Smith, V. Barrios, W.R.T. and measurements of sediment storage and subsid- Darwall & C. Numa. ICUN: Cambridge, UK, Malaga, ence. Geology 28 (4), 295–8. Spain and Gland, Switzerland: ICUN, 43–56. Stavi, I., E.D. Ungar, H. Lavee & P. Sarah, 2008. Surface Shackleton, J.C., T.H. van Andel & C.N. Runnels, 1984. microtopography and soil penetration resistance asso- Coastal Paleogeography of the Central and Western ciated with shrub patches in a semiarid rangeland. Mediterranean during the last 125,000 Years and its Geomorphology 94 (1–2), 69–78. archaeological implications. Journal of Field Archaeology Stockmarr, J., 1971. Tablets with spores used in absolute 11, 307–14. pollen analysis. Pollen Spores 13, 614–21. Shennan, S., 2018. The First Farmers of Europe: An Evolutionary Stoddart, S. n.d. Survey Instructions. Unpublished archive Perspective. Cambridge: Cambridge University Press. held in the National Museum of Malta. Shepherd, J.D. & J.R. Dymond, 2003. Correcting satellite Stoddart, S., 1997–8. Contrasting political strategies in the imagery for the variance of reflectance and illumina- islands of the southern central Mediterranean. Accordia tion with topography. International Journal of Remote Research Papers 7, 59–73. Sensing 24, 3503–14. Stoddart, S.K.F., 1999. Long term dynamics of an island Siani, G., M. Paterne, M. Arnold, E. Bard, B. Métivier, N. community: Malta 5500 bc – 2000 ad, in Social Dynamics Tisnerat & F. Bassinot, 2000. Radiocarbon Reservoir in the Central Mediterranean, ed. R.H. Tykot. Sheffield: Ages in the Mediterranean Sea and Black Sea. Radio- Sheffield Academic Press, 137–47. carbon 42 (2), 271–80. Stoddart, S.K.F., 2015. Mediating the Dominion of Death in Simberloff, D.S., 1974. Equilibrium theory of island bioge- Prehistoric Malta. In Death Rituals, Social Order and the ography and ecology. Annual Review of Ecology and Archaeology of Immortality in the Ancient World. ‘Death Systematics 5, 161–82. Shall Have No Dominion’, eds. A.C. Renfrew, M. Boyd Simpson, D.J. & C.O. Hunt, 2009. Scoping the past human & I. Morley. Cambridge: Cambridge University Press, environment: a case study of pollen taphonomy at the 130–7. Haua Fteah, Cyrenaica, Libya. Archaeological Review Stoddart, S. & C. Malone, 2015. Prehistoric Maltese Death: from Cambridge 24, 2, 27–46. Democratic Theatre or Elite Democracy?, eds. Z.L. Simpson, I.A., 1998. Early land management at Tofts Ness, Devlin & E.-J. Graham, Death Embodied: Archaeologi- Sanday, Orkney: the evidence of thin section micro- cal Approaches to the Treatment of the Corpse. Oxford: morphology, in Life on the Edge: Human Settlement and Oxbow, 160–74. Marginality, eds. C.M. Mills & G. Coles. Oxford: Oxbow Stoddart, S., G. Barber, C. Duhig, G. Mann, T. O’Connell, L. Monograph 100, 91–8. Lai, D. Redhouse, R.H. Tykot, & C. Malone, 2009. The Simpson, I.A., E.B. Guttman & A. Shepherd, 2006. Charac- Human and Animal Remains, in Mortuary Customs terising midden in Neolithic settlement construction: in Prehistoric Malta. Excavations at the Brochtorff Circle an assessment from Skara Bare, Orkney. Geoarchaeology at Xagħra (1987–94), eds. C. Malone, S. Stoddart, A. 21, 221–35. Bonanno & D. Trump. Cambridge: McDonald Institute Soil Survey Staff, 1999. Soil Taxonomy. (U.S. Department of for Archaeological Research, 315–40. Agriculture, Agriculture Handbook 436.) Washington, Stoddart, S., J. Woodbridge, A. Palmisano, A.-M. Mercuri, D.C.: Department of Agriculture. S. Mensing, D. Colombaroli, L. Sadori, D. Magri, F. di Soto-Berelov, M., P.L. Fall, S.E. Falconer & E. Ridder, 2015. Rita, M. Giardini, M. Mariotti Lippi, C. Montanari, C. Modeling vegetation dynamics in the Southern Levant Bellini, A. Florenzano, P. Torri, A. Bevan, S. Shennan, through the Bronze Age. Journal of Archaeological Science R. Fyfe & N. Roberts. 2019. Tyrrhenian central Italy: 53, 94–109. Holocene population and landscape ecology. Holocene. Smith, B.D., 2011. General patterns of niche construction and Special issue 29 (5), 761–75. the management of ‘wild’ plant and animal resources Stoddart, S. R. Power, J. Thompson, B. Mercieca Spiteri, R. by small-scale pre-industrial societies. Philosophical McLaughlin & C. Malone (eds.), in press. Temple People: Transactions of the Royal Society B: Biological Sciences 366 Bioarchaeology, Resilience and Culture in Prehistoric Malta. (1566), 836–48. Volume 3 of Fragility and Sustainability – Studies Smith, R.M., 1986. Comparing Traditional Methods for in Early Malta, the ERC-funded FRAGSUS Project. Selecting Class Intervals on Choropleth Maps. The Cambridge: McDonald Institute for Archaeological Professional Geographer 38, 62–7. Research. Sourisseau, J.-C. 2015. Xlendi, réflexions sur la cargaison Stoops, G., 2003. Guidelines for analysis and description of soil de l’épave. Homepage of Laboratoire des Sciences de l'In- and regolith thin sections. Madison, Wisconsin: Soil formation et des Systèmes, Centre Camille-Jullian, Centre Science Society of America, Inc. 345 References

Stoops, G. & V. Marcelino, 2010. Lateritic and bauxitic mate- Thake, M.A. 1985a. The biogeography of the Maltese Islands rials, in Interpretation of Micromorphological Features of illustrated by the Clausiliidae. Journal of Biogeography Soils and Regoliths, eds. G. Stoops, V. Marcelino & F. 12, 269–87. Mees. Amsterdam: Elsevier, 329–50. Thake, M.A., 1985b. Land snails from the Mellieha Quater- Stoops, G., V. Marcelino & F. Mees (eds.), 2010. Interpretation nary Deposit. Potamon (Malta) 14, 93. of Micromorphological Features of Soils and Regoliths. Thompson, A., 2006. The Character of a Wall. The changing Amsterdam: Elsevier. construction of agricultural walls on the island of Gozo. Strahler, A.N., 1952. Hypsometric (area-altitude) analysis OMERTAA Journal of Applied Anthropology 2007, 31–7. of erosional topography. Geological Society of America Thompson, J.E., E. Parkinson, R. McLaughlin, R.P. Barratt, Bulletin 63, 1117–42. R.K. Power, B. Mercieca-Spiteri, S. Stoddart & C. Stuiver, M. & H.A. Pollach, 1977. Discussion: Reporting of Malone, 2020. Placing and remembering the dead in 14C data. Radiocarbon 19 (3), 355–63. late Neolithic Malta: bioarchaeological and spatial Stuiver, M., G.W. Pearson & T.F. Braziunas, 1986. Radiocar- analysis of the Xagħra Circle Hypogeum, Gozo. World bon age calibration of marine samples back to 9000 cal Archaeology. DOI: 10.1080/00438243.2019.1745680. yr bp. Radiocarbon 28, 980–1021. Thornes, J.B., 2007. Modelling soil erosion by grazing: Recent Stuiver, M., P.J. Reimer, E. Bard, J.W. Beck, G.S. Burr, K.A. developments and new approaches. Geographical Hughen, B. Kromer, G. McCormac, J. van der Plicht & Research 45 (1), 13–26. M. Spurk, 1998. INTCAL98 radiocarbon age calibration Tinè, V. & S. Tusa, 2012. Il Neolitico in Sicilia. Dai Ciclopodi 24,000–0 cal bp. Radiocarbon 40 (3), 1041–83. Agli Ecisti, Societa e Territorio Nella Sicilia Preistorica Sultana, D., 2015. Numerical Modelling of Soil Erosion e Protostorica. Atti dell’Istituto Italiano di Preistoria e Susceptibility in the Maltese Islands using Geographic Protostoria. San Cipirello (PA), 16–19 Novembre 2006. Information Systems and the Revised Universal Soil Florence: Istituto Italiano di Preistoria e Protostoria, Loss Equation (RUSLE). Xjenza Online – Journal of The 49–80. Malta Chamber of Scientists 3, 41–50. Tinner, W. & A.F. Lotter, 2001. Central European vegetation Svarajasingham, S., 1971. The soils of Malta. (UNOP/SF Project response to abrupt climate change at 8.2 ka. Geology MAT/5, Water disposal and water supply). Rome: Food 29, 551–4. and Agriculture Organization of the United Nations. Tinner, W., J.F.N. van Leeuwen, D. Colombaroli, E. Vescovi, Tanasi, D., 2008. La Sicilia e l’arcipelago Maltese nell’eta del W.O. van der Knaap, P.D. Henne, S. Pasta, S. D’Angelo Bronzo Medio. (1. ed.) Palermo: Officina di studi & T. La Mantia, 2009. Holocene environment and cli- medievali. mate changes at Gorgo Basso, a coastal lake in southern Tanasi, D., 2010. Bridging the gap, New data on the rela- Sicily, Italy. Quaternary Science Reviews 28, 1498–510. tionship between Sicily, the Maltese Archipelago and Tite, M.S. & C. Mullins, 1971. Enhancement of the magnetic the Aegean in the Middle Bronze Age. Mare Internum susceptibility of soils on archaeological sites. Archae- 2, 111–19. ometry 13, 209–19. Tanasi, D., 2013. Prehistoric painted pottery in Malta: a Tobler, W., 1993. Three Presentations on Geographical century later. Malta Archaeological Review 2008–2009 Analysis and Modeling, Technical Report 93–1, NCGIA (9), 5–13. Technical Reports 1, 1–26. Tanasi, D., 2014. Lighting up the dark: the role of Għar Mir- Tonna, S., 1985. ‘Origins of Planning on Malta Island and Its dum in Maltese Prehistory, in From Cave to Dolmen. Evolution – A Study of Human Settlements.’ Unpub- Ritual and symbolic aspects in the prehistory between lished BE & A thesis, University of Malta. Sciacca, Sicily and the central Mediterranean, ed. D. Gulli. Trechmann, C.T., 1938. Quaternary Conditions in Malta. Oxford: Archaeopress Archaeology, 287–308. The Geological Magazine 75, 1–26. Tanasi, D. & N.C. Vella, 2011a. Taking Stock, in Site, Artefacts Tripcevich, N., 2007. Quarries, Caravans, and Routes to Com- and Landscape. Prehistoric Borg in-Nadur, Malta, eds. D. plexity. Prehispanic Obsidian in the South-Central Andes. Tanasi & N.C. Vella. (Praehistorica Mediterranea 3). University of California (Santa Barbara). Monza: Polimetrica, 413–7. Trump, D.H., 1961a. Skorba, Malta and the Mediterranean. Tanasi, D. & Vella, N.C. (eds.) 2011b. Site, Artefacts and Antiquity 35, 300–3. Landscape: Prehistoric Borġ in-Nadur, Malta. Monza: Trump, D.H., 1961b. The later prehistory of Malta. Proceed- Polimetrica. ings of the Prehistoric Society 27, 253–62. Tanasi, D. & N. C. Vella, 2014. Islands and mobility: exploring Trump D.H., 1962. In-Nuffara, Rabat, Gozo, storage pit. Bronze Age connectivity in the south-central Mediter- Report on the Working of the Museum Department for ranean, in The Cambridge Prehistory of the Bronze and Iron the Year 1960. Malta: Department of Information, 5. Age Mediterranean, eds. P. Van Dommelen & B. Knapp. Trump, D.H., 1966. Skorba. Excavations carried out on behalf Cambridge: Cambridge University Press, 184–201. of the National Museum of Malta. 1961–3. (Research Tanasi, D. & N.C. Vella (eds.), 2015. The Late Prehistory of Reports of the Society of Antiquaries of London 22.) Malta: Essays on Borġ in-Nadur and other sites. Oxford: London: Society of Antiquaries. Archaeopress. Trump, D.H., 1972. Malta: an archaeological guide. London: Teeter, S.L., 2012. A GIS Analysis of Archaeological Trails and Faber and Faber. Site Catchments in the Grand Canyon, Arizona. Northern Trump, D.H., 1995–6. Radiocarbon dates from Malta. Accor- Arizona University. dia Research Papers 6, 173–8. 346 References

Trump, D.H., 2002. Malta: prehistory and temples. (Malta’s Vella, C., 2010. ‘The Mediterranean context of the art and living heritage). Malta: Midsea Books. architecture of medieval Malta.’ Unpublished MA Trump, D.H., 2010. Malta. An archaeological Guide. Valletta: thesis, University of Malta. Allied Publications. Vella, E., 2002. The archaeological legacy, in Catania, J. (ed.) Trump, D. H. & D. Cilia, 2008. Cart-ruts and their Impact on the Mellieha through the tides of time. Malta: Mellieħa Local Maltese Landscape. Sta. Venera, Malta: Heritage Books. Council, 25–40. Tucker, C.J., 1979. Red and Photographic Infrared Linear Vella, N.C., 1998. ‘Ritual, Landscape, and Territory. Phoe- Combinations for Monitoring Vegetation. Remote nician and Punic Non-Funerary Religious Sites in the Sensing of the Environment 8, 127–50. Mediterranean: An Analysis of the Archaeological Tusa, S., 1983. La Sicilia Nella Preistoria. Palermo: Sellerio. Evidence.’ Unpublished PhD, University of Bristol. Ugolini, L.M., 1934. Malta. Origini Della Civiltà Mediterranea. Vella, N.C., 1999. ‘Trunkess legs of stone’: debating ritual Roma: La Libreria dello Stato. continuity at Tas-Silg, Malta, in Facets of Maltese Pre- van Andel, T.H., 1998. Paleosols, red sediments, and the Old history, eds. A. Mifsud & C. Savona-Ventura. Malta: Stone Age in Greece. Geoarchaeology 13, 361–3. The Prehistoric Society of Malta, 225–39. Van Andel, T.J. & C. Runnels, 1987. Beyond the Acropolis: A Vella, N.C., 2005. Phoenician and Punic Malta. Journal of Rural Greek Past. Stanford: Stanford University Press. Roman Archaeology 18, 436–50. Van Andel, T., E. Zangger & A. Demitrack, 1990. Land use Vella, N. C. 2014. The invention of the Phoenicians: on object and soil erosion in prehistoric Greece. Journal of Field definition, decontextualization and display, in The Archaeology 17, 379–96. Punic Mediterranean: Identities and Identification from Van der Hammen, T., T.A. Wijmstra & W.H. Van der Molen, Phoenician Settlement to Roman Rule, eds. J.C. Quinn & 1965. Palynological study of a very thick peat section N.C. Vella. Cambridge: Cambridge University Press, in Greece, and the Würm-Glacial vegetation in the 24–41. Mediterranean region. Geologie en Mijnbouw 44, 37–9. Vella, N. & M. Anastasi 2019. Malta and Gozo, in The Oxford Van Der Knijff, J.M., R.J.A. Jones & L. Montanarella, 2000. Handbook of Phoenician and Punic Studies, eds. C. López- Soil Erosion Risk Assessment in Europe. Brussels: Euro- Ruiz & B. R. Doak, Oxford: Oxford University Press, pean Soil Bureau. 553–68. Van der Leeuw, S. & C. Redman, 2002. Placing archaeology Vella, N.C., A. Borg, B. Borg, N.J. Cardona, K. Chetcu- at the center of socio-natural studies. American Antiq- ti-Bonavita, A. Corrado, E. De Gaetano, K. Fenech, C. uity 67, 597–605. Sagona, J. Zamut-Tagliaferro & I. Vella Gregory, 2001. Van Geel, B., 1978. A palaeoecological study of Holocene peat Report on the excavation of a Punic tomb, Bajda Ridge, bog sections in the Netherlands and Germany based Xemxija (Malta). Malta Archaeological Review 5, 16–22. on the analyses of pollen, spores, and macro – and Vella, N. C., A. Bonanno, M. Anastasi, B. Bechtold, R. Farru- microscopic remains of fungi, algae, cormophytes and gia, K. Fenech, D. Mizzi, L. Verdonck & A. R. Zammit. . Review of Palaeobotany and Palynology 25, 1–120. 2017. A view from the countryside: the nature of the Van Geel, B., S.J.P. Bohncke & H. Dee, 1981. A palaeoeco- Late Punic and Early Roman activity at the Żejtun Villa logical study of an upper Late Glacial and Holocene site, Malta. Rivista di Studi Fenici 45, 109–43. sequence from ‘De Borchert’, The Netherlands. Review Vella, S.J., 2000. The Status of Soil Mapping in the Maltese of Palaeobotany and Palynology 31, 367–448. Islands, in The European Soil Information System, Pro- Van Geel, B., G.R. Coope & T. van der Hammen, 1989. Palae- ceedings of a Technical Consultation Rome, Italy, 2–3 oecology and stratigraphy of the lateglacial type section September 1999. (European Soil Bureau European at Usselo (the Netherlands). Review of Palaeobotany and Commission and Food and Agriculture Organisation Palynology 60, 25–129. of the United Nations.) Rome: FAO. van Geel, B., J. Buurman, O. Brinkkemper, J. Schelvis, A. Vella, S.J., 2001. Soil information in the Maltese Islands, in Aptroot, G. van Reenen & T. Hakbijl, 2003. Environ- Soil Resources of Southern and Eastern Mediterranean mental reconstruction of a Roman Period settlement site Countries, eds. P. Zdruli, P. Steduto, C. Lacirignola & in Uitgeest (The Netherlands), with special reference L. Montanarella. Bari: Centre International de Hautes to coprophilous fungi. Journal of Archaeological Science Etudes Agronomiques Mediterranéennes, 171–91. 30, 873–83. Vella, S.J., 2003. Soil Survey and Soil Mapping in the Maltese Van Leusen, P.M., 2002. Pattern to Process: Methodological Islands: the 2003 Position, in Soil Resources of Europe, Investigations into the Formation and Interpretation of eds. R. Jones, B. Houšková, P. Bullock & L. Mon- Spatial Patterns in Archaeological Landscapes. University tanarella. (European Soil Bureau, Research Report of Groningen. No. 9.) Luxembourg: European Office for Official Vayda, A.P. & R.A. Rappaport, 1968. Ecology, cultural and Publications of the European Communities, 235–44. non-cultural, in Introduction to Cultural Anthropology, Vellinga, M. & R.A. Wood, 2002. Global climatic impacts ed. J.A. Clifton. Boston: Houghton Mifflin, 477–97. of a collapse of the Atlantic thermohaline circulation. Vayda, A., J.C. Woodward, M.G. Macklin & J. Lewin (eds.), Climatic Change 54, 251–67. 1995. Mediterranean Quaternary River Environments. Verhagen, J.W.H., A.G. Posluschny & A. Danielisova, 2011. Rotterdam: Balkema. Go Your Own Least Cost Path. Spatial Technology and Vella, C., 2009. The lithic toolkit of Late Neolithic Ta’ Hagrat, Archaeological Interpretation. Oxford: Archaeopress-Brit- Malta. Origini 31, 85–103. ish Archaeological Reports. 347 References

Verhagen, P. & K. Jeneson, 2012. A Roman Puzzle. Trying Wettinger, G., 1969. The Militia list of 1419–20: a new start- to Find the Via Belgica with GIS, in Thinking Beyond ing point for the study of Malta’s population. Melita the Tool. Archaeological Computing and the Interpretive Historica 2, 80–106. Process, eds. A. Chrysanthi, P. Murrieta-Flores & C. Wettinger, G., 1975. The Lost Villages and Hamlets of Malta, Papadopoulus. Oxford: Archaeopress, 123–30. in Medieval Malta, Studies on Malta Before the Knights, ed. Verhaye, W. and G. Stoops, 1974. Micromorphological evi- A.T. Luttrell. London: British School at Rome, 181–216. dences for the identification of an argillic horizon in Wettinger, G., 1982. Agriculture in Malta in the Late Middle terra rossa, in Soil microscopy: Proceedings of the Fourth Ages, in Proceedings of History Week, ed. M. Buhagiar. International Working Meeting on Soil Micromorphology, Malta: The Historical Society, 1–48. ed. G.K. Rutherford. Kingston: Limestone Press, 817–31. Wettinger, G., 2000.Place-Names of the Maltese Islands. Malta: Verstraeten, G. & J. Poesen, 2001. Factors controlling sediment PEG. yield from small intensively cultivated catchments in Wettinger, G., 2011. Malta in the high middle ages. Melita a temperate humid climate. Geomorphology 40, 123–44. Historica (Malta) 15 (4), 367–90. Viruel, J., F. Medail, M. Juin, A. Haguenauer, G.N. Feliner, Wheatley, D.W. & M. Gillings, 2002. Spatial Technology and M. Bou Dagher Kharrat, S. La Malfa, L. Ouahmane, Archaeology. The Archaeological Applications of GIS. H. Sanguin & A. Baumel, 2016. Mediterranean carob London-New York: Taylor & Francis. populations, native or naturalized? A continuing riddle. White, D.A., 2015. The Basics of Least Cost Analysis for OPTIMA XV, June 2016. Montpellier, France. https:// Archaeological Applications, Advances in Archaeological hal.archives-ouvertes.fr/hal-01794260 Practice 3 (4), 407–14. Vita-Finzi, C., 1969. The Mediterranean Valleys. Cambridge: Whittle, A., 1996.Europe in the Neolithic: The Creation of New Cambridge University Press. Worlds. Cambridge: Cambridge University Press. Vogel, J.S., J.R. Southen, D.E. Nelson & T.A Brown, 1984. Whitley, T.G. & L.M. Hicks, 2003. A GIS approach to Under- Performance of catalytically condensed carbon for use standing potential prehistoric and historic travel in accelerator mass spectrometry. Nuclear Instruments corridors. Southeastern Archaeology 22, 77–91. and Methods 223 (B5), 289–93. Wiener, M.H., 2013. ‘Minding the Gap’: Gaps, Destructions, Vossmerbäumer, H., 1972. Malta, ein Beitrag zur Geolo- and Migrations in the Early Bronze Age Aegean. gie und Geomorphologie des Zentralmediterranen Causes and Consequences. American Journal of Archae- Raumes. Wurzburger Geograpische Arbeiten 38, 1–213. ology 117 (4), 581–92. Wainwright, J. & J.B. Thornes, 2004. Environmental issues in Wiersma, A.P. & H. Renssen, 2006. Model-data compari- the Mediterranean: Processes and Perspectives from the Past son for the 8.2 ka bp event: Confirmation of a forcing and Present. London: Routledge Taylor. mechanism by catastrophic drainage of Laurentide Walker, B., C.S. Holling, S.R. Carpenter & A. Kinzig, 2004. Lakes. Quaternary Science Reviews 25, 63–88. Resilience, adaptability and transformability in Wigand, P. & M. McCallum, 2017. The Varying Impact social-ecological systems. Ecology and Society 9 (2), 5 of Land Use and Climate in Holocene Landscape (http://www.ecologyandsociety.org/vol9/iss2/art5/). Dynamics in the Mezzogiorno. Journal of Mediterranean Wallace, A.R., 1892. Island Life (2nd and revised edition). Studies 3 (2), 121–50. London: Macmillan and Co. Willgoose, C. & G. Hancock, 1998. Revisiting the hypso- Ward-Perkins, J.B., 1938–9. Tombs at Mtarfa. Annual Report metric curve as an indicator of form and process in of the National Museum of Archaeology, Malta, 12. transport-limited catchment. Earth Surface Processes Ward-Perkins, J.B., 1942. Problems of Maltese Prehistory. and Landforms 23, 611–23. Antiquity 16 (61), 19–35. Williams, A.N., 2012. The use of summed radiocarbon Waters, C.N., J. Zalasiewicz, C. Summerhayes, A.D. Barnosky, probability distributions in archaeology; a review of C. Poirier, A. Gałuszka, A. Cearreta, M. Edgeworth, E.C. methods. Journal of Archaeological Science 39, 578–89. Ellis, M. Ellis, C. Jeandel, R. Leinfelder, J.R. McNeill, Wilson C.A., D.A. Davidson & M. Cresser, 2005. An D. de B. Richter, W. Steffen, J. Syvitski, D. Vidas, M. evaluation of multielement analysis of historic soil Wagreich, M. Williams, A. Zhisheng, J. Grinevald, E. contamination to differentiate space use and former Odada, N. Oreskes & A.P. Wolfe, 2016. The Anthro- function in and around abandoned farms. The Holocene pocene is functionally and stratigraphically distinct 15 (7), 1094–9. from the Holocene. Science 8, 351. Wilson, C.A., D.A. Davidson & M. Cresser, 2009. An evalu- Webster, D. & S.T. Evans, 2005. Mesoamerican civilization. ation of the site specificity of soil elemental signatures In The Human Past: A Textbook of World Prehistory, ed. for identifying and interpreting former functional C Scarre. London: Thames & Hudson, 594–639. areas. Journal of Archaeological Science 36, 2327–34. Weissel, J.K., L.F. Pratson & A. Malinverno, 1994. The Wilson, C.A., D.A. Davidson, S. Malcolm & M. Cresser, length-scaling properties of topography. Journal of 2008. Multi-element soil analysis: an assessment of Geophysical Research: Solid Earth 99, 13997–14012. its potential as an aid to archaeological interpretation. Weninger, B., E. Alram-Stern, E. Bauer, E. Clare, U. Danze- Journal of Archaeological Science 35, 412–24. glocke, O. Jöris, C. Kubatzki, G. Rollefson, H. Todorova Wilson, M.A. & D. Righi, 2010. Spodic materials, in Interpreta- & T. van Andel, 2006. Climate forcing due to the 8200 tion of Micromorphological Features of Soils and Regoliths, cal yr bp event observed at Early Neolithic sites in the eds. G. Stoops, V. Marcelino & F. Mees. Amsterdam: eastern Mediterranean. Quaternary Research 66, 401–20. Elsevier, 251–73. 348 References

Wischmeier, W.H. & D.D. Smith, 1978. Predicting Rainfall Zammit-Maempel, G., 1977. An outline of Maltese Geology and Erosion Losses: A Guide to Conservation Planning. Agri- guide to the geology hall of the National Museum of Natural culture Handbook 537. Washington: USDA. History, Mdina, Malta. Malta: Progress Press Co. Ltd. W.R.B., 2014. World Reference Base for Soil Resources. World Zanchetta, G., R. Sulpizio, N. Roberts, R. Cioni, W.J. Eastwood, Soil Resources Report No. 106. Rome: F.A.O. G. Siani, B. Caron, M. Paterne & R. Santacroce, 2011. Wright, H.E. Jr., J.H. McAndrews & W. van Zeist, 1967. Tephrostratigraphy, chronology and climatic events Modern pollen rain in western Iran, and its relation to of the Mediterranean basin during the Holocene: An plant geography and Quaternary vegetational history. overview. The Holocene 21, 33–52. Journal of Ecology 55, 415–43. Zealand, A.M. & M.J. Jeffries, 2009. The distribution of pond www.alsglobal.com>europe>west>spain>andalucia (Seville snail communities across a landscape: separating out the – Geochemistry) influence of spatial position from local habitat quality www.calib.org (CALIB Marine Reservoir Correction CAL- for ponds in south-east Northumberland, UK. Hydro- IBomb IntCal) biologia 632, 177–87. www.geog.cam.ac.uk/facilities/laboratories/techniques/ Zeder, M.A., 2008. Domestication and early agriculture in the psd.html Mediterranean Basin: Origins, diffusion, and impact. Wyatt, A.R., 1993. Continental size, eustasy and sediment Proceedings of the National Academy of Sciences, USA 105 yield. Geologische Rundschau 82, 185–8. (33), 11597–604. Yaalon, D.H., 1997. Soils in the Mediterranean region: what Zettler, M.L. & D. Daunys, 2007. Long-term macrozoobenthos makes them different? Catena 28, 157–69. changes in a shallow boreal lagoon: comparison of a Yaalon, D.H. & E. Ganor, 1973. The influence of dust on recent biodiversity inventory with historical data. Lim- soils during the Quaternary. Soil Science 116, 146–55. nologica-Ecology and Management of Inland Waters 37 (2), Yan, H., J. Liu, H.Q. Huang, B. Tao & M. Cao, 2009. Assessing 170–85. the consequence of land use change on agricultural Zielhofer, C. & D. Faust, 2008. Mid- and Late Holocene flu- productivity in China. Global and Planetary Change vial chronology of Tunisia. Quaternary Science Reviews 67, 13–19. 27, 580–8. Yellin-Dror, A., M. Grasso, Z. Ben-Avraham & G. Tibor, Zielhofer, C., J. Bussmann, H. Ibhouten & K. Fenech, 2010. 1997. The subsidence history of the northern Hyblean Flood frequencies reveal Holocene rapid climate changes plateau margin, southeastern Sicily. Tectonophysics (Lower Moulouya River, northeastern Morocco). Journal 282, 277–89. of Quaternary Science 25, 700–14. Zabenskie, S. & K. Gajewski, 2007. Post-glacial climatic Zielhofer, C., W.J. Fletcher, S. Mischke, M. De Batist, J.F.E. change on Boothia Peninsula, Nunavut, Canada. Campbell, S. Joannin, R. Tjallingii, N. El Hamouti, A. Quaternary Research 68, 261–70. Junginger, A. Stele, J. Bussmann, B. Schneider, T. Lauer, Zacharias, N., Y. Bassiakos, B. Hayden, K. Theodorakopou- K. Spitzer, M. Strupler, T. Brachert & A. Mikdad, 2017a. lou & C.T. Michael, 2009. Luminescence dating of Atlantic forcing of Western Mediterranean winter rain deltaic deposits from eastern Crete, Greece: Geoar- minima during the last 12,000 years. Quaternary Science chaeological implications. Geomorphology 109, 46–53. Reviews 157, 29–51. Zammit, M.-E., 2006. ‘An Archaeological Survey of Baħrija.’ Zielhofer, C., H. von Suchodoletz, W.J. Fletcher, B. Schneider, Unpublished M.A. thesis, Department of Classics and E. Dietze, M. Schegel, K. Schepanski, B. Weninger, S. Mis- Archaeology, University of Malta. chke & A. Mikdad, 2017b. Millennial-scale fluctuations Zammit, T. 1928a. The Neolithic Hypogeum at Ħal-Saflieni. in Saharan dust supply across the decline of the African Casal Paula-Malta. Valletta: Empire Press. Humid Period. Quaternary Science Reviews 171, 119–35. Zammit, T. 1928b. Prehistoric cart-tracks in Malta. Antiquity Zilhāo, J., 2001. Radiocarbon evidence for a maritime pioneer 2 (5), 18–25. colonisation at the origins of farming in West Mediter- Zammit, T., 1930. Prehistoric Malta, the Tarxien Temples. ranean Europe. Proceedings of the National Academy of Oxford: Oxford University Press. Sciences, USA 98, 14180–5. Zammit Ciantar, J., 2002. Life in Għar il-Kbir. Malta: Dingli Zolt, M.S. & S. Dombay, 2012. Determining minimum hiking Local Council. time using DEM. Geographica Napocensis 6 (2), 124–9.

349

Temple landscapes

The ERC-funded FRAGSUS Project (Fragility and sustainability in small island environments: adaptation, cultural change and collapse in prehistory, 2013–18), led by Caroline Malone (Queens University Belfast) has explored issues of environmental fragility and Neolithic social resilience and sustainability during the Holocene period in the Maltese Islands. This, the first volume of three, presents the palaeo-environmental story of early Maltese landscapes. The project employed a programme of high-resolution chronological and stratigraphic investigations of the valley systems on Malta and Gozo. Buried deposits extracted through coring and geoarchaeological study yielded rich and chronologically controlled data that allow an important new understanding of environmental change in the islands. The study combined AMS radiocarbon and OSL chronologies with detailed palynological, molluscan and geoarchaeological analyses. These enable environmental reconstruction of prehistoric landscapes and the changing resources exploited by the islanders between the seventh and second millennia bc. The interdisciplinary studies combined with excavated economic and environmental materials from archaeological sites allows Temple landscapes to examine the dramatic and damaging impacts made by the first farming communities on the islands’ soil and resources. The project reveals the remarkable resilience of the soil-vegetational system of the island landscapes, as well as the adaptations made by Neolithic communities to harness their productivity, in the face of climatic change and inexorable soil erosion. Neolithic people evidently understood how to maintain soil fertility and cope with the inherently unstable changing landscapes of Malta. In contrast, second millennium bc Bronze Age societies failed to adapt effectively to the long-term aridifying trend so clearly highlighted in the soil and vegetation record. This failure led to severe and irreversible erosion and very different and short-lived socio-economic systems across the Maltese islands.

Editors: Charles French is Professor of Geoarchaeology in the Department of Archaeology, University of Cambridge. Chris O. Hunt is a Professor in the School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool. Reuben Grima is a Senior Lecturer in the Department of Conservation and Built Heritage, University of Malta. Rowan McLaughlin is Senior Researcher in the Department of Scientific Research at the British Museum and honorary research scholar at Queen’s University Belfast. Caroline Malone is a Professor in the School of Natural and Built Environment, Queen’s University Belfast. Simon Stoddart is Reader in Prehistory in the Department of Archaeology, University of Cambridge.

Published by the McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK.

Cover design by Dora Kemp and Ben Plumridge.

ISBN: 978-1-902937-99-1 ISBNISBN 978-1-902937-99-1 978-1-902937-99-1

9 781902 937991