Drivers, Impacts and Mitigation of Increased Sedimentation in the Hydropower Reservoirs of East Africa

Total Page:16

File Type:pdf, Size:1020Kb

Drivers, Impacts and Mitigation of Increased Sedimentation in the Hydropower Reservoirs of East Africa land Review Drivers, Impacts and Mitigation of Increased Sedimentation in the Hydropower Reservoirs of East Africa Aloyce Amasi 1,*, Maarten Wynants 2 , William Blake 2 and Kelvin Mtei 1 1 School of Material, Energy, Water and Environmental Science, The Nelson Mandela African Institution of Science and Technology, Arusha P.O. BOX 477, Tanzania; [email protected] 2 School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus Plymouth, Devon PL4 8AA, UK; [email protected] (M.W.); [email protected] (W.B.) * Correspondence: [email protected]; Tel.: +255-766-877920 Abstract: Hydropower reservoirs are essential for the climate-neutral development of East Africa. Hydropower production, however, is threatened by human activities that lead to a decrease in water storage capacity of reservoirs. Land use/land cover and climatic changes are driving accelerated soil erosion in semi-arid East Africa, which ultimately increases reservoir sedimentation and decreases energy production. Sediment delivery dynamics at the catchment scale are complex, involving the interaction of multiple factors and processes on different spatial and temporal scales. A lack of under- standing of these processes and their interactions may impede the efficiency of sediment mitigation and control strategies. A deep understanding of the processes of erosion and connectivity of the land to river channel, as well as storage of eroded material within hillslopes and floodplains, and sediment accumulation in the reservoirs supports selection of future dam locations and sustainable management of reservoirs. The sediment budget approach can provide such a holistic perspective by accounting for the various sediment sources, transport, sinks, and redistribution when the sediment Citation: Amasi, A.; Wynants, M.; is routed through that catchment. Constructing sediment budgets is challenging, but the potential Blake, W.; Mtei, K. Drivers, Impacts and Mitigation of Increased for integrating a number of different techniques offers new opportunities to collect the required Sedimentation in the Hydropower information. In East Africa, the spatial planning of dams is mainly dominated by political and Reservoirs of East Africa. Land 2021, financial motives, and impacts of land use and climate on the sediment transport dynamics are not 10, 638. https://doi.org/10.3390/ adequately considered. Production of sediment budgets under different scenarios of land use and land10060638 climate change should be an essential step when deciding the location and management strategies for dams. Selection of new hydroelectric reservoir sites must consider long-term scientific data on Academic Editor: Ioannis climate change, and the sediment budget components for sustainable land management planning, N. Daliakopoulos hydropower sustainability. Received: 28 April 2021 Keywords: climate change; land use change; hydropower; reservoir; sedimentation; sediment delivery Accepted: 12 June 2021 Published: 16 June 2021 Publisher’s Note: MDPI stays neutral 1. Introduction with regard to jurisdictional claims in published maps and institutional affil- Hydropower reservoirs are essential for producing climate-neutral energy [1] and iations. ensuring long-term energy stability for economic growth in developing countries [2]. In addition, they provide other essential economic and ecological resources, such as irriga- tion and drinking water sources for agriculture and livestock, recreational spaces, and fishing habitats [1–5]. The hydropower industry and its share of power production in East Africa are expanding linearly, while the East African population and its energy de- Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. mands are growing exponentially [6]. Despite the key socioeconomic services they offer, This article is an open access article hydropower reservoirs are currently threatened by changing water supply and sediment distributed under the terms and transport dynamics in wider catchments [6,7]. Unsustainable land use and climate changes conditions of the Creative Commons increase soil erosion and sediment delivery rates, resulting in accelerating reservoir sedi- Attribution (CC BY) license (https:// mentation [8]. Consequently, water storage capacity is decreasing, and energy production creativecommons.org/licenses/by/ capacity is declining [8]. Moreover, increased sedimentation can cause flooding that may 4.0/). disrupt the local infrastructure. Among their longer-term negative impacts, mega-projects, Land 2021, 10, 638. https://doi.org/10.3390/land10060638 https://www.mdpi.com/journal/land Land 2021, 10, 638 2 of 22 such as hydropower constructions, could also often causes loss of life and property, and involuntary resettlement which could further lead to poverty [9,10]. By confining sedi- ments to reservoirs, dams also hinder sediment transfer to the downstream river system, which subsequently lacks the sediment input required for maintaining channel shape and preserving the aquatic habitats [7]. In addition, sedimentation in reservoirs can add com- pressional forces to the dam structure, thereby exceeding the normal hydrostatic design, while clogging of water intake also hinders the production of energy [11]. Dynamics of sediment availability in a catchment are complex in time and space, and depend mainly on the climate, geology, topography, soil types, land cover, and land use [12]. The rapid expansion of agricultural land area with respect to population increase in Eastern Africa has led to an increase in the rates of soil erosion from large areas [13,14]. In upstream catchments, fluvial processes are susceptible to land use and land cover changes on the basin scale, resulting in robust landscape reactions by modifying processes of soil erosion, sediment transport, and deposition [15]. Conversely, natural climate variability and climatic changes in East Africa affect the hydrological cycle and, in turn, production capacity [16]. In addition, increased runoff and gully incision also lead to an increase in sediment connectivity and sediment supply, leading to rapid transport of eroded sediment to downstream sinks [17]. Increased erosion following land use or climate change and rapid downstream transport of eroded sediment is thus the biggest threat for the sustainability of reservoirs [8,18]. All these factors ultimately influence downstream siltation and sedimentation problems in dams/reservoirs [8,19]. While unsustainable land use, climate change, and natural climate variability influ- ence sediment transport [19], the processes by which they change catchment hydrology are nonlinear in semi-arid East Africa, where the spatial and temporal dynamics of sediment connectivity are not well understood [20]. Such dynamics are often neglected in reservoir planning [21]. Sediment budgets as a functional reservoir management tool have rarely been established at the catchment scale in East Africa [22]. In this context, some pressing questions remain regarding hydropower management now and in the future. Are dam and reservoir systems managed in the same way the planners and designers intended [23] concerning managing sediment accumulation? Are there any consequences of the construc- tion and operation of the dam that were not foreseen by the designers [23]? What are the processes and features controlling sediment connectivity and sediment supply to reservoir sink zones? What are the best techniques to assess reservoir sedimentation rates? What approaches can reduce the quantity of sediment incoming to the reservoirs from upstream? What degree of the induced climate change variations in rainfall and temperature affect sediment delivery dynamics, and can these be mitigated? These unknowns need to be answered and integrated into decision making for endorsements at early planning stages of future hydropower dams. Informed policy decisions and innovative mitigation solutions are required to move hydropower towards sustainable practices and meet the rising energy demands while ensuring water availability in East Africa. This review presents an overview of reservoir siltation issues in East Africa, followed by a detailed description of the driving processes behind observed increases in sediment delivery. Subsequently, different methods to evalu- ate and quantify source siltation of hydropower reservoirs are discussed, with emphasis on their strengths and weaknesses. Finally, we give an overview of the mitigation options for reservoir sedimentation, emphasizing different techniques for (1) reducing the influx of sediments, (2) managing and evacuating sediments from reservoirs, and (3) replacing lost storage of the reservoirs. On this basis, this paper aims to provide a blueprint for sustainable catchment and reservoir management in East Africa. 2. Review Approach on Hydropower Development in East Africa This review offers an insight of the scale of reservoir siltation issues in East Africa, with a subsequent detailed description of the driving processes behind observed increases in sediment delivery to hydropower reservoirs. Lack of information on potential sedi- Land 2021, 10, x FOR PEER REVIEW 3 of 23 2. Review Approach on Hydropower Development in East Africa This review offers an insight of the scale of reservoir siltation issues in East Africa, with a subsequent detailed description of the driving processes behind observed increases Land 2021, 10, 638 in sediment delivery to hydropower reservoirs. Lack of information on potential3
Recommended publications
  • Sediment Transport in the San Francisco Bay Coastal System: an Overview
    Marine Geology 345 (2013) 3–17 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Sediment transport in the San Francisco Bay Coastal System: An overview Patrick L. Barnard a,⁎, David H. Schoellhamer b,c, Bruce E. Jaffe a, Lester J. McKee d a U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA, USA b U.S. Geological Survey, California Water Science Center, Sacramento, CA, USA c University of California, Davis, USA d San Francisco Estuary Institute, Richmond, CA, USA article info abstract Article history: The papers in this special issue feature state-of-the-art approaches to understanding the physical processes Received 29 March 2012 related to sediment transport and geomorphology of complex coastal–estuarine systems. Here we focus on Received in revised form 9 April 2013 the San Francisco Bay Coastal System, extending from the lower San Joaquin–Sacramento Delta, through the Accepted 13 April 2013 Bay, and along the adjacent outer Pacific Coast. San Francisco Bay is an urbanized estuary that is impacted by Available online 20 April 2013 numerous anthropogenic activities common to many large estuaries, including a mining legacy, channel dredging, aggregate mining, reservoirs, freshwater diversion, watershed modifications, urban run-off, ship traffic, exotic Keywords: sediment transport species introductions, land reclamation, and wetland restoration. The Golden Gate strait is the sole inlet 9 3 estuaries connecting the Bay to the Pacific Ocean, and serves as the conduit for a tidal flow of ~8 × 10 m /day, in addition circulation to the transport of mud, sand, biogenic material, nutrients, and pollutants.
    [Show full text]
  • Sedimentation and Clarification Sedimentation Is the Next Step in Conventional Filtration Plants
    Sedimentation and Clarification Sedimentation is the next step in conventional filtration plants. (Direct filtration plants omit this step.) The purpose of sedimentation is to enhance the filtration process by removing particulates. Sedimentation is the process by which suspended particles are removed from the water by means of gravity or separation. In the sedimentation process, the water passes through a relatively quiet and still basin. In these conditions, the floc particles settle to the bottom of the basin, while “clear” water passes out of the basin over an effluent baffle or weir. Figure 7-5 illustrates a typical rectangular sedimentation basin. The solids collect on the basin bottom and are removed by a mechanical “sludge collection” device. As shown in Figure 7-6, the sludge collection device scrapes the solids (sludge) to a collection point within the basin from which it is pumped to disposal or to a sludge treatment process. Sedimentation involves one or more basins, called “clarifiers.” Clarifiers are relatively large open tanks that are either circular or rectangular in shape. In properly designed clarifiers, the velocity of the water is reduced so that gravity is the predominant force acting on the water/solids suspension. The key factor in this process is speed. The rate at which a floc particle drops out of the water has to be faster than the rate at which the water flows from the tank’s inlet or slow mix end to its outlet or filtration end. The difference in specific gravity between the water and the particles causes the particles to settle to the bottom of the basin.
    [Show full text]
  • Estuarine and Coastal Sedimentation Problems1
    ESTUARINE AND COASTAL SEDIMENTATION PROBLEMS1 Leo C. van Rijn Delft Hydraulics and University of Utrecht, The Netherlands. E•mail: [email protected] Abstract: This Keynote Lecture addresses engineering sedimentation problems in estuarine and coastal environments and practical solutions of these problems based on the results of field measurements, laboratory scale models and numerical models. The three most basic design rules are: (1) try to understand the physical system based on available field data; perform new field measurements if the existing field data set is not sufficient (do not reduce on the budget for field measurements); (2) try to estimate the morphological effects of engineering works based on simple methods (rules of thumb, simplified models, analogy models, i.e. comparison with similar cases elsewhere); and (3) use detailed models for fine•tuning and determination of uncertainties (sensitivity study trying to find the most influencial parameters). Engineering works should be designed in a such way that side effects (sand trapping, sand starvation, downdrift erosion) are minimum. Furthermore, engineering works should be designed and constructed or built in harmony rather than in conflict with nature. This ‘building with nature’ approach requires a profound understanding of the sediment transport processes in morphological systems. Keywords: Sedimentation, sediment transport, morphological modelling 1. INTRODUCTION This lecture addresses sedimentation and erosion engineering problems in estuaries and coastal seas and practical solutions of these problems based on the results of field measurements, laboratory scale models and numerical models. Often, the sedimentation problem is a critical element in the economic feasibility of a project, particularly when each year relatively large quantities of sediment material have to be dredged and disposed at far•field locations.
    [Show full text]
  • Coastal and Shelf Sediment Transport: an Introduction
    Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Coastal and shelf sediment transport: an introduction MICHAEL B. COLLINS 1'3 & PETER S. BALSON 2 1School of Ocean & Earth Science, University of Southampton, Southampton Oceanography Centre, European Way, Southampton S014 3ZH, UK (e-mail." mbc@noc, soton, ac. uk) 2Marine Research Division, AZTI Tecnalia, Herrera Kaia, Portu aldea z/g, Pasaia 20110, Gipuzkoa, Spain 3British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG, UK. Interest in sediment dynamics is generated by the (a) no single method for the determination of need to understand and predict: (i) morphody- sediment transport pathways provides the namic and morphological changes, e.g. beach complete picture; erosion, shifts in navigation channels, changes (b) observational evidence needs to be gathered associated with resource development; (ii) the in a particular study area, in which contem- fate of contaminants in estuarine, coastal and porary and historical data, supported by shelf environment (sediments may act as sources broad-based measurements, is interpreted and sinks for toxic contaminants, depending by an experienced practitioner (Soulsby upon the surrounding physico-chemical condi- 1997); tions); (iii) interactions with biota; and (iv) of (c) the form and internal structure of sedimen- particular relevance to the present Volume, inter- tary sinks can reveal long-term trends in pretations of the stratigraphic record. Within this transport directions, rates and magnitude; context of the latter interest, coastal and shelf (d) complementary short-term measurements sediment may be regarded as a non-renewable and modelling are required, to (b) (above) -- resource; as such, their dynamics are of extreme any model of regional sediment transport importance.
    [Show full text]
  • Soil Erosion, Runoff, and Sedimentation Construction Site Fact Sheet No
    Soil Erosion, Runoff, and Sedimentation Construction Site Fact Sheet No. 1 What Is Soil Erosion? What Problems Happen On Construction Soil erosion is the detachment and movement of soil Sites? particles by water, wind, ice, or gravity. Safety and Nuisance Issues – Sediment on roadways and in the air can cause safety hazards. Flooding– Excessive sediment accumulation in drainage systems can create blockages that promote flooding. Sediment Build‐Up – Sediment that accumulates in streams, lakes, and bays can only be remediated by costly dredging. Increased Costs – Uncontrolled erosion and sedimentation requires costly maintenance and What Is Sedimentation? repair. It is cheaper and easier to PREVENT Sediment is the result of erosion. Sedimentation is erosion than to fix sedimentation problems. the build‐ up of eroded soil particles that are transported in runoff from their site of origin and Negative Public Perception ‐Observing muddy deposited in drainage systems, on other ground water flowing from construction sites negatively surfaces, or in bodies of water or wetlands. effects public perception. Why Should I Care? It’s the Law– Federal, State and local regulations require construction sites to be compliant with the Clean Water Act. Water Quality‐Erosion from construction projects can be a non‐point source pollutant that deteriorates the health of our lakes, streams and Narragansett Bay. Soil Loss ‐ Much of the total sediment loss that occurs each year is generated by highway construction and land development projects. Quality of Life‐ If you enjoy fishing, eating local Sediment‐filled runoff from a RIDOT construction site shellfish or swimming at one of Rhode Island’s beautiful beaches, this pollution can threaten your quality of life.
    [Show full text]
  • Sedimentary Rock Formation Models
    Sedimentary Rock Formation Models 5.7 A Explore the processes that led to the formation of sedimentary rock and fossil fuels. The Formation Process Explained • Formation of these rocks is one of the important parts of the rock cycle. For millions of years, the process of deposition and formation of these rocks has been operational in changing the geological structure of earth and enriching it. Let us now see how sedimentary rocks are formed. Weathering The formation process begins with weathering of existent rock exposed to the elements of nature. Wind and water are the chisels and hammers that carve and sculpt the face of the Earth through the process of weathering. The igneous and metamorphic rocks are subjected to constant weathering by wind and water. These two elements of nature wear out rocks over a period of millions of years creating sediments and soil from weathered rocks. Other than this, sedimentation material is generated from the remnants of dying organisms. Transport of Sediments and Deposition These sediments generated through weathering are transported by the wind, rivers, glaciers and seas (in suspended form) to other places in the course of flow. They are finally deposited, layer over layer by these elements in some other place. Gravity, topographical structure and fluid forces decide the resting place of these sediments. Many layers of mineral, organics and chemical deposits accumulate together for years. Layers of different deposits called bedding features are created from them. Crystal formation may also occur in these conditions. Lithification (Compaction and Cementation) Over a period of time, as more and more layers are deposited, the process of lithification begins.
    [Show full text]
  • Sedimentary Rocks
    Sedimentary Rocks • a rock resulting from the consolidation of loose sediment that has been derived from previously existing rocks • a rock formed by the precipitation of minerals from solution Sedimentary Stages of the Rock Cycle Weathering Erosion Transportation Deposition (sedimentation) Burial Diagenesis Fig. 5.1 1 Table 5.1 Sorting Fig 5.2 Transport will effect the sediment in several ways Sorting:Sorting a measure of the variation in the range of grain sizes in a rock or sediment • Well-sorted sediments have been subjected to prolonged water or wind action. • Poorly-sorted sediments are either not far- removed from their source or deposited by glaciers. 2 Fig. 5.3 Sedimentary Environments Fig. Story 5.5 Table 5.2 3 Sedimentary Structures Stratification = Bedding = Layering This layering that produces sedimentary structures is due to: • Particle size • Types (s) of particles Sedimentary Layering Other Examples of Sedimentary Structures • Cross-beds • Ripple marks • Mudcracks • Raindrop impressions • Fossils 4 Cross-bedded sandstone Fig. 5.6 Fig. 5.7 Ripples on a beach Fig. 5.8 5 Ripples Preserved in Sandstone Fig. 5.9 Fig. 5.9 6 Fig. 5.10 Turbidity Currents Suspension of water sand, and mud that moves downslope (often very rapidly) due to its greater density that the surrounding water (often triggered by earthquakes). The speed of turbidity currents was first appreciated in 1920 when a current broke lines in the Atlantic. This event also demonstrated just how far a single deposit could travel. From Sediment to Sedimentary Sock (lithification) • Compaction:Compaction reduces pore space. clays and muds are up to 60 % water; 10% after compaction • Cementation:Cementation chemical precipitation of mineral material between grains (SiO2, CaCO3, Fe2O3) binds sediment into hard rock.
    [Show full text]
  • Erosion and Sediment Control for Agriculture
    Chapter 4C: Erosion and Sediment Control 4C: Erosion and Sediment Control Management Measure for Erosion and Sediment Apply the erosion component of a Resource Management System (RMS) as defined in the Field Office Technical Guide of the U.S. Department of Agriculture–Natural Resources Conservation Service (see Appendix B) to minimize the delivery of sediment from agricultural lands to surface waters, or Design and install a combination of management and physical practices to settle the settleable solids and associated pollutants in runoff delivered from the contributing area for storms of up to and including a 10-year, 24-hour frequency. Management Measure for Erosion and Sediment: Description Application of this management measure will preserve soil and reduce the mass of sediment reaching a water body, protecting both agricultural land and water quality. This management measure can be implemented by using one of two general strategies, or a combination of both. The first, and most desirable, strategy is to implement practices on the field to minimize soil detachment, erosion, and transport of sediment from the field. Effective practices include those that maintain crop residue or vegetative cover on the soil; improve soil properties; Sedimentation reduce slope length, steepness, or unsheltered distance; and reduce effective causes widespread water and/or wind velocities. The second strategy is to route field runoff through damage to our practices that filter, trap, or settle soil particles. Examples of effective manage- waterways. Water ment strategies include vegetated filter strips, field borders, sediment retention supplies and wildlife ponds, and terraces. Site conditions will dictate the appropriate combination of resources can be practices for any given situation.
    [Show full text]
  • Description of a Contourite Depositional System on the Demerara Plateau: Results from Geophysical Data and Sediment Cores
    1 Marine Geology Achimer August 2016, Volume 378, Pages 56-73 http://dx.doi.org/10.1016/j.margeo.2016.01.003 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00308/41957/ © 2016 Elsevier B.V. All rights reserved Description of a contourite depositional system on the Demerara Plateau: Results from geophysical data and sediment cores Tallobre Cédric 1, 2, *, Loncke Lies 1, 2, Bassetti Maria-Angela 1, 2, Giresse Pierre 1, 2, Bayon Germain 3, Buscail Roselyne 1, 2, Durrieu De Madron Xavier 1, 2, Bourrin François 1, 2, Vanhaesebroucke Marc 1, 2, Sotin Christine 1, 2, Iguanes Scientific Party 1 Univ. Perpignan Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens (CEFREM), UMR 5110, 52 Avenue Paul Alduy, 66860 Perpignan, France 2 CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens (CEFREM), UMR 5110, 52 Avenue Paul Alduy, 66860 Perpignan, France 3 IFREMER, Unité de Recherche Géosciences Marines, 29280 Plouzané, France * Corresponding author : Cédric Tallobre, email address : [email protected] Abstract : The Demerara Plateau, belonging to the passive transform margin of French Guiana, was investigated during the IGUANES cruise in 2013. The objectives of the cruise were to explore the poorly-known surficial sedimentary column overlying thick mass transport deposits as well as to understand the factors controlling recent sedimentation. The presence of numerous bedforms at the seafloor was observed thanks to newly acquired IGUANES bathymetric, high resolution seismic and chirp data, while sediment cores allowed the characterization of the deposits covering the mass transport deposits. Modern oceanographic conditions were determined in situ, using mooring monitoring over a 10-month period.
    [Show full text]
  • Sedimentation
    Sedimentation Sedimentation, or clarification, is the processes of letting suspended material settle by gravity. Suspended material may be particles, such as clay or silts, originally present in the source water. Suspended material or floc is typically created from materials in the water and chemicals used in coagulation or, in other treatment processes, such as lime softening (see Lime Softening chapter). Sedimentation is accomplished by decreasing the velocity of the water to a point which the particles will no longer remain in suspension. When the velocity no longer supports the particles, gravity will remove them from the water flow. PARTICLE SIZE The size and type of particles to be removed have a significant effect on the operation of the sedimentation tank. Sand or silt can be removed very easily because of their density. The velocity of the water-flow channel can be slowed to less than one foot per second and most of the sand and silt will be removed by simple gravitational forces. In contrast, colloidal material (small particles that stay in suspension and make the water seem cloudy) will not settle until the material is coagulated and flocculated by adding a chemical, such as iron salt or aluminum sulfate. The shape of the particle also affects its settling characteristics. A round particle, for example, will settle much more readily than a particle that has ragged or irregular edges. All particles also tend to have a slight electrical charge. Particles with the same charge tend to repel each other. This repelling action keeps the particles from congregating into flocs and settling.
    [Show full text]
  • Why and How Do We Study Sediment Transport? Focus on Coastal Zones and Ongoing Methods
    water Editorial Why and How Do We Study Sediment Transport? Focus on Coastal Zones and Ongoing Methods Sylvain Ouillon ID LEGOS, Université de Toulouse, IRD, CNES, CNRS, UPS, 14 Avenue Edouard Belin, 31400 Toulouse, France; [email protected]; Tel.: +33-56133-2935 Received: 22 February 2018; Accepted: 22 March 2018; Published: 27 March 2018 Abstract: Scientific research on sediment dynamics in the coastal zone and along the littoral zone has evolved considerably over the last four decades. It benefits from a technological revolution that provides the community with cheaper or free tools for in situ study (e.g., sensors, gliders), remote sensing (satellite data, video cameras, drones) or modelling (open source models). These changes favour the transfer of developed methods to monitoring and management services. On the other hand, scientific research is increasingly targeted by public authorities towards finalized studies in relation to societal issues. Shoreline vulnerability is an object of concern that grows after each marine submersion or intense erosion event. Thus, during the last four decades, the production of knowledge on coastal sediment dynamics has evolved considerably, and is in tune with the needs of society. This editorial aims at synthesizing the current revolution in the scientific research related to coastal and littoral hydrosedimentary dynamics, putting into perspective connections between coasts and other geomorphological entities concerned by sediment transport, showing the links between many fragmented approaches of the topic, and introducing the papers published in the special issue of Water on “Sediment transport in coastal waters”. Keywords: sediment transport; cohesive sediments; non cohesive sediments; sand; mud; coastal erosion; sedimentation; morphodynamics; suspended particulate matter; bedload 1.
    [Show full text]
  • Guidance for Thin-Layer Sediment Placement As a Strategy to Enhance Tidal Marsh Resilience to Sea-Level Rise
    GUIDANCE FOR THIN-LAYER SEDIMENT PLACEMENT AS A STRATEGY TO ENHANCE TIDAL MARSH RESILIENCE TO SEA-LEVEL RISE RAPOSA, WASSON, NELSON, FOUNTAIN, WEST, ENDRIS, WOOLFOLK GUIDANCE FOR THIN-LAYER SEDIMENT PLACEMENT AS A STRATEGY Table of Contents TO ENHANCE TIDAL MARSH RESILIENCE TO SEA-LEVEL RISE Chapter 1: Consensus statement on thin-layer sediment placement in tidal January 2020 marsh ecosystems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �1 Background � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �1 Prepared by: Appendix A � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 4 Researchers from eight National Estuarine Endnotes �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 4 Research Reserves (NERRs) collaborated on a two-year NERRS Science Collaborative-funded field Appendix B � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 8 experiment investigating thin-layer placement of Glossary of terms� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 8 sediment in tidal marshes, beginning in Fall 2017. Literature cited in this Glossary �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 8 An expert Advisory Committee
    [Show full text]