Sedimentation and Mineralization of a Sandstone Lead-Zinc Occurrence in the Helena Formation Belt Supergroup Lewis and Clark County Montana

Total Page:16

File Type:pdf, Size:1020Kb

Sedimentation and Mineralization of a Sandstone Lead-Zinc Occurrence in the Helena Formation Belt Supergroup Lewis and Clark County Montana University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1986 Sedimentation and mineralization of a sandstone lead-zinc occurrence in the Helena Formation Belt Supergroup Lewis and Clark County Montana Don Herberger The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Herberger, Don, "Sedimentation and mineralization of a sandstone lead-zinc occurrence in the Helena Formation Belt Supergroup Lewis and Clark County Montana" (1986). Graduate Student Theses, Dissertations, & Professional Papers. 7511. https://scholarworks.umt.edu/etd/7511 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. COPYRIGHT ACT OF 1975 This is an unpublished manuscript in which copyright sub­ s is t s. Any further reprinting of its contents must be approved BY THE AUTHOR. Mansfield L ibrary University of Montana Date; 1 9 8 Q___ SEDIMENTATION AND MINERALIZATION OF A SANDSTONE LEAD-ZINC OCCURRENCE IN THE HELENA FORMATION, BELT SUPERGROUP LEWIS AND CLARK COUNTY, MONTANA By Don Herberger B.S., Colorado State University, 1981 Presented in partial fulfillment of the requirements for the degree of Master of science UNIVERSITY OF MONTANA 1986 Approved by: Dr. Ian M. Lange Chairman, Board of Examiners Graduate schDe Date UMI Number: EP38312 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Oissertaition PuWishing UMI EP38312 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuesf ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106 - 1346 Herberger, Don J., M.S., February 1986 Geology Sedimentation and Mineralization of a Sandstone Lead-zinc Occurrence in the Helena Formation, Belt Supergroup, Lewis and Clark County, Montana (82 ) Director: Dr. Ian M. Lange Disseminations of galena and sphalerite occur in the basal sandstone of the Helena Formation, Belt Supergroup near Wood creek, northwestern Montana. The basal sandstone is 1.5 to 2 meters thick and comprised of moderately to well-sorted, rounded, coarse-grained quartz. The coarse-grained sandstone is stratigraphieally encased in fine-grained sedimentary rocks. Siltstones and shales of the Spokane and Empire formations occur stratigraphically below the sandstone. calcareous siltstones, shales and dolomite beds of the Helena Formation overlie the sandstone. The basal sandstone of the Helena Formation was deposited as a nearshore sand along the eastern margin of the proterozoic Belt Basin. The presence of moderately to well sorted grains, oolites, low-angle bidirectional cross-stratification, intraclast-lag conglomerate and oscillation ripple marks in the sandstone indicate wave agitated sedimentation. Lithofacies in the Empire, Spokane, and Helena formations indicate deposition in a shallow water, tectonically stable environment. Mineralization of the sandstone consists of sphalerite, galena and pyrite. Sulfides occur primarily as interstitial growths between corroded quartz grains. Galena and sphalerite replace carbonate cement, pyrite, and quartz grains in the sandstone. Megascopically, the sulfides occur as spots distributed throughout the sandstone. Timing of mineralization can only be constrained to postdating partial quartz and carbonate cementation of the sand and predating Late cretaceous to Early Tertiary faulting. Mineralization was controlled by permeability, probably of secondary origin, and the presence of reduced sulfur in the sandstone. The data best support the concept of metal-bearing groundwater migrating from basement highs into the sandstone where sulfide precipitation occurred. 11 TABLE OF CONTENTS page INTRODUCTION................................................ 7 GENERAL GEOLOGY............................................. 10 STRATIGRAPHY AND SEDIMENTATION............................12 Empire-Spokane formations............................... 12 Spokane Formation.........................................14 Empire Formation.......................................... 15 Helena Formation.......................................... 16 Basal sandstone.........................................16 Helena above basal sandstone......................... 22 Snowslip Formation........................................23 Shepard Formation.........................................24 IGNEOUS ROCKS................................................ 25 STRUCTURE.....................................................2 6 PALEOGEOGRAPHIC SETTING.................................... 28 Environment of deposition............................... 28 Basement rocks............................................ 30 LEAD-ZINC MINERALIZATION...................................31 Distribution and areal extent...........................31 Mineralogy and grade..................................... 33 Mineralization textures and petrology................. 34 Structure and mineralization............................42 Metal zoning...............................................44 paragenesis................................................44 FLUID INCLUSIONS............................................ 46 ISOTOPIC COMPOSITIONS...................................... 47 Lead isotope ratios...................................... 47 Calcite carbon and oxygen isotopes.....................47 Sulfur isotope composition of galena and sphalerite.51 DISCUSSION....................................................53 Timing of mineralization.................................53 Mineralization controls..................................54 Genesis.....................................................55 Basin brine model...................................... 56 Groundwater model.......................................58 Review of other sandstone lead-zinc deposits.........62 CONCLUSIONS.................................................. 67 111 Page ACKNOWLEDGEMENTS............................................ 6 8 REFERENCES CITED............................................ 69 APPENDIX......................................................75 IV LIST OF TABLES Page Table 1. Lead isotope ratios of Wood Creek galena.... 48 Table 2. Carbon and oxygen isotope measurements from Wood Creek calcites....................... 49 Table 3. Sulfur isotope values of Wood Creek galena and sphalerite...........................52 V LIST OF FIGURES Page Figure 1. Location and regional geology ............ 8 Figure 2. Generalized stratigraphy ................... 13 Figure 3. Quartz overgrowths........................... 19 Figure 4a. Quartz cement................................. 20 Figure 4b. carbonate cement..............................20 Figure 5. Distribution of lead and zinc.............. 32 Figure 6. Spots of galena in sandstone............... 36 Figure 7. Sulfides along cross-beds................... 37 Figure 8. Fine disseminations in sandstone...........38 Figure 9. Band of sulfides in sandstone.............. 39 Figure 10. Interstial sphalerite........................40 Figure 11. Galena replacing rhombs of dolomite....... 41 Figure 12. Mineralization cut by fracture............. 43 Figure 13. Groundwater mineralizing model............. 59 Figure 14. spotted texture of sandstone lead- zinc deposits.................................. 65 PLATES Plate 1. Outcrop geologic map of the Wood Creek area............................In pocket Plate 2. Stratigraphy of the basal sand­ stone of the Helena Formation............In pocket VI INTRODUCTION Madge and others (1968) described disseminated galena, sphalerite and pyrite in a sandstone outcropping near Benchmark Airfield, Lewis and Clark County, Montana. The occurrence is located approximately 120 km. northeast of Missoula, Montana (Figure 1.). The mineralized sandstone is 1,5 to 2 meters thick and stratigraphically located at the base of the Helena Formation of the Belt Supergroup. Outcrops of the mineralized sandstone occur in the lower part of the Eldorado thrust sheet along Wood creek and a portion of the south fork of the Sun River (Plate 1.). Texturally, the mineralized sandstone at Wood Creek resembles ore rocks from the Laisvall sandstone-hosted lead-zinc deposit, Sweden described by Rickard and others ( 1979) . Aside from the report by Mudge and others (1968) and a brief mention of the Wood Creek prospect in a mineral resource report (Mudge and others, 1974) no other work is published on the mineralization. McGill and Sommers (1967), Eby (1977) and Mudge (1972) have described portions of the stratigraphy of the Eldorado thrust sheet in the Wood Creek area. parts of the geology in the Wood Creek area have been mapped by Mudge (1966) and Mudge and others (1974). Mudge (1972a) described the structural geology of a portion of the area. The purpose of my studies at Wood
Recommended publications
  • Sediment Transport in the San Francisco Bay Coastal System: an Overview
    Marine Geology 345 (2013) 3–17 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Sediment transport in the San Francisco Bay Coastal System: An overview Patrick L. Barnard a,⁎, David H. Schoellhamer b,c, Bruce E. Jaffe a, Lester J. McKee d a U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA, USA b U.S. Geological Survey, California Water Science Center, Sacramento, CA, USA c University of California, Davis, USA d San Francisco Estuary Institute, Richmond, CA, USA article info abstract Article history: The papers in this special issue feature state-of-the-art approaches to understanding the physical processes Received 29 March 2012 related to sediment transport and geomorphology of complex coastal–estuarine systems. Here we focus on Received in revised form 9 April 2013 the San Francisco Bay Coastal System, extending from the lower San Joaquin–Sacramento Delta, through the Accepted 13 April 2013 Bay, and along the adjacent outer Pacific Coast. San Francisco Bay is an urbanized estuary that is impacted by Available online 20 April 2013 numerous anthropogenic activities common to many large estuaries, including a mining legacy, channel dredging, aggregate mining, reservoirs, freshwater diversion, watershed modifications, urban run-off, ship traffic, exotic Keywords: sediment transport species introductions, land reclamation, and wetland restoration. The Golden Gate strait is the sole inlet 9 3 estuaries connecting the Bay to the Pacific Ocean, and serves as the conduit for a tidal flow of ~8 × 10 m /day, in addition circulation to the transport of mud, sand, biogenic material, nutrients, and pollutants.
    [Show full text]
  • Sedimentation and Clarification Sedimentation Is the Next Step in Conventional Filtration Plants
    Sedimentation and Clarification Sedimentation is the next step in conventional filtration plants. (Direct filtration plants omit this step.) The purpose of sedimentation is to enhance the filtration process by removing particulates. Sedimentation is the process by which suspended particles are removed from the water by means of gravity or separation. In the sedimentation process, the water passes through a relatively quiet and still basin. In these conditions, the floc particles settle to the bottom of the basin, while “clear” water passes out of the basin over an effluent baffle or weir. Figure 7-5 illustrates a typical rectangular sedimentation basin. The solids collect on the basin bottom and are removed by a mechanical “sludge collection” device. As shown in Figure 7-6, the sludge collection device scrapes the solids (sludge) to a collection point within the basin from which it is pumped to disposal or to a sludge treatment process. Sedimentation involves one or more basins, called “clarifiers.” Clarifiers are relatively large open tanks that are either circular or rectangular in shape. In properly designed clarifiers, the velocity of the water is reduced so that gravity is the predominant force acting on the water/solids suspension. The key factor in this process is speed. The rate at which a floc particle drops out of the water has to be faster than the rate at which the water flows from the tank’s inlet or slow mix end to its outlet or filtration end. The difference in specific gravity between the water and the particles causes the particles to settle to the bottom of the basin.
    [Show full text]
  • Estuarine and Coastal Sedimentation Problems1
    ESTUARINE AND COASTAL SEDIMENTATION PROBLEMS1 Leo C. van Rijn Delft Hydraulics and University of Utrecht, The Netherlands. E•mail: [email protected] Abstract: This Keynote Lecture addresses engineering sedimentation problems in estuarine and coastal environments and practical solutions of these problems based on the results of field measurements, laboratory scale models and numerical models. The three most basic design rules are: (1) try to understand the physical system based on available field data; perform new field measurements if the existing field data set is not sufficient (do not reduce on the budget for field measurements); (2) try to estimate the morphological effects of engineering works based on simple methods (rules of thumb, simplified models, analogy models, i.e. comparison with similar cases elsewhere); and (3) use detailed models for fine•tuning and determination of uncertainties (sensitivity study trying to find the most influencial parameters). Engineering works should be designed in a such way that side effects (sand trapping, sand starvation, downdrift erosion) are minimum. Furthermore, engineering works should be designed and constructed or built in harmony rather than in conflict with nature. This ‘building with nature’ approach requires a profound understanding of the sediment transport processes in morphological systems. Keywords: Sedimentation, sediment transport, morphological modelling 1. INTRODUCTION This lecture addresses sedimentation and erosion engineering problems in estuaries and coastal seas and practical solutions of these problems based on the results of field measurements, laboratory scale models and numerical models. Often, the sedimentation problem is a critical element in the economic feasibility of a project, particularly when each year relatively large quantities of sediment material have to be dredged and disposed at far•field locations.
    [Show full text]
  • Coastal and Shelf Sediment Transport: an Introduction
    Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Coastal and shelf sediment transport: an introduction MICHAEL B. COLLINS 1'3 & PETER S. BALSON 2 1School of Ocean & Earth Science, University of Southampton, Southampton Oceanography Centre, European Way, Southampton S014 3ZH, UK (e-mail." mbc@noc, soton, ac. uk) 2Marine Research Division, AZTI Tecnalia, Herrera Kaia, Portu aldea z/g, Pasaia 20110, Gipuzkoa, Spain 3British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG, UK. Interest in sediment dynamics is generated by the (a) no single method for the determination of need to understand and predict: (i) morphody- sediment transport pathways provides the namic and morphological changes, e.g. beach complete picture; erosion, shifts in navigation channels, changes (b) observational evidence needs to be gathered associated with resource development; (ii) the in a particular study area, in which contem- fate of contaminants in estuarine, coastal and porary and historical data, supported by shelf environment (sediments may act as sources broad-based measurements, is interpreted and sinks for toxic contaminants, depending by an experienced practitioner (Soulsby upon the surrounding physico-chemical condi- 1997); tions); (iii) interactions with biota; and (iv) of (c) the form and internal structure of sedimen- particular relevance to the present Volume, inter- tary sinks can reveal long-term trends in pretations of the stratigraphic record. Within this transport directions, rates and magnitude; context of the latter interest, coastal and shelf (d) complementary short-term measurements sediment may be regarded as a non-renewable and modelling are required, to (b) (above) -- resource; as such, their dynamics are of extreme any model of regional sediment transport importance.
    [Show full text]
  • BUIL])ING STON.E O·F WASHINGTON
    BUIL])ING STON.E o·f WASHINGTON By WAYNE S. MOEN Washington Department of Conservation Division of Mines and Geology Bulletin No. 55 1967 State of Washington DANIEL J. EV ANS, Governor Department of Conservation H. MAURICE AHLQUIST, Director DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, Supervisor Bulletin No. 55 BUILDING STONE OF WASHINGTON By WAYNE S. MOEN STATE PRINTING PLANT. OLYMPI A , WASHINGTON 1967 For sale by Department Pof? ceConsl]SliARYervation, Olympia, Washington. PACIFIC NORTHWEST FOREST AND RANGE EXPERIMENT STATION etnDTLAND. OR£00N CONTENTS Poge Introduction 7 General history .. ...... ...........................•............ 8 Production and vo lue . 10 Forms of building stone . 12 Field stone . 12 Rough building stone . 13 Rubble . • . 14 Flogging (flagstone) . 14 Ashlar . .. ......... ........ , ................. , . , . 15 Crushed stone . 16 Terrozzo . 17 Roofing granules.............. .... ..... ......... 18 Exposed aggregate . 18 Reconstituted stone . • . 19 Landscape rock . 20 Area coverage of bui Iding stone . 21 Acquisition of bui )ding stone . 22 Examination of stone deposits . 23 General quarrying methods . 24 Physical properties of building stone . 26 Strength . 26 Hardness and workabi Iity . • . 27 Color . 28 Alteration ....•...................... , ........... , . 29 Porosity and absorption ...........•. : . 31 Testing of building stone... .. .................... ................ 33 Common building stones of Washington . 34 Granite . 35 Geology and distribution . 35 Physical properties . 38 Varieties
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Descriptions of Common Sedimentary Environments
    Descriptions of Common Sedimentary Environments River systems: . Alluvial Fan: a pile of sediment at the base of mountains shaped like a fan. When a stream comes out of the mountains onto the flat plain, it drops its sediment load. The sediment ranges from fine to very coarse angular sediment, including boulders. Alluvial fans are often built by flash floods. River Channel: where the river flows. The channel moves sideways over time. Typical sediments include sand, gravel and cobbles. Particles are typically rounded and sorted. The sediment shows signs of current, such as ripple marks. Flood Plain: where the river overflows periodically. When the river overflows, its velocity decreases rapidly. This means that the coarsest sediment (usually sand) is deposited next to the river, and the finer sediment (silt and clay) is deposited in thin layers farther from the river. Delta: where a stream enters a standing body of water (ocean, bay or lake). As the velocity of the river drops, it dumps its sediment. Over time, the deposits build further and further into the standing body of water. Deltas are complex environments with channels of coarser sediment, floodplain areas of finer sediment, and swamps with very fine sediment and organic deposits (coal) Lake: fresh or alkaline water. Lakes tend to be quiet water environments (except very large lakes like the Great Lakes, which have shorelines much like ocean beaches). Alkaline lakes that seasonally dry up leave evaporite deposits. Most lakes leave clay and silt deposits. Beach, barrier bar: near-shore or shoreline deposits. Beaches are active water environments, and so tend to have coarser sediment (sand, gravel and cobbles).
    [Show full text]
  • Soil Erosion, Runoff, and Sedimentation Construction Site Fact Sheet No
    Soil Erosion, Runoff, and Sedimentation Construction Site Fact Sheet No. 1 What Is Soil Erosion? What Problems Happen On Construction Soil erosion is the detachment and movement of soil Sites? particles by water, wind, ice, or gravity. Safety and Nuisance Issues – Sediment on roadways and in the air can cause safety hazards. Flooding– Excessive sediment accumulation in drainage systems can create blockages that promote flooding. Sediment Build‐Up – Sediment that accumulates in streams, lakes, and bays can only be remediated by costly dredging. Increased Costs – Uncontrolled erosion and sedimentation requires costly maintenance and What Is Sedimentation? repair. It is cheaper and easier to PREVENT Sediment is the result of erosion. Sedimentation is erosion than to fix sedimentation problems. the build‐ up of eroded soil particles that are transported in runoff from their site of origin and Negative Public Perception ‐Observing muddy deposited in drainage systems, on other ground water flowing from construction sites negatively surfaces, or in bodies of water or wetlands. effects public perception. Why Should I Care? It’s the Law– Federal, State and local regulations require construction sites to be compliant with the Clean Water Act. Water Quality‐Erosion from construction projects can be a non‐point source pollutant that deteriorates the health of our lakes, streams and Narragansett Bay. Soil Loss ‐ Much of the total sediment loss that occurs each year is generated by highway construction and land development projects. Quality of Life‐ If you enjoy fishing, eating local Sediment‐filled runoff from a RIDOT construction site shellfish or swimming at one of Rhode Island’s beautiful beaches, this pollution can threaten your quality of life.
    [Show full text]
  • Sandstone Problems
    CONSERVATION TALK Michael Trinkley Why Sandstone Monuments Have So Many Problems Whether in the Carolinas, Utah or Massachusetts biggest cause is the effect of moisture, brought on by many sandstone are in very poor condition. Why? And capillary action, humidity and even a monument's perhaps even more importantly, what can be done? environment and micro-climate. Sources not related to Sandstone is a sedimentary rock, meaning that moisture include solar and UV radiation, as well as minerals or organic particles have settled in layers and the structural issues-although I don't believe any of these layers have gradually formed into rock. They often (but not are as important as moisture. Contributing to the always) have distinct bedding planes-or layers. Geologists problems caused by moisture are salts and air pollution. generally divided sedimentary rocks into three categories So let's look at a few of the more common problems. and most of what we see in cemeteries may be classified as Keep in mind that relatively little conservation research "clastic." These are formed by the accumulation of has been conducted concerning these problems, so there mechanically distintegrated rocks that are cemented remains much debate-and few simple answers. together. Air pollution can cause what are known as Sandstones are composed of quartz, feldspar, silicates, pollution crusts-often hard and brittle, leaving the stone mica, hornblende, and clay minerals that are cemented with beneath soft, friable, and disaggregating. They may also either siliceous or carbonate/calcite cement (see Table 1). It be known as carbon deposits. Found in urban settings is largely these cementing materials that affect the they are formed from pollution products, including longevity of one sandstone over another.
    [Show full text]
  • Sedimentary Rock Formation Models
    Sedimentary Rock Formation Models 5.7 A Explore the processes that led to the formation of sedimentary rock and fossil fuels. The Formation Process Explained • Formation of these rocks is one of the important parts of the rock cycle. For millions of years, the process of deposition and formation of these rocks has been operational in changing the geological structure of earth and enriching it. Let us now see how sedimentary rocks are formed. Weathering The formation process begins with weathering of existent rock exposed to the elements of nature. Wind and water are the chisels and hammers that carve and sculpt the face of the Earth through the process of weathering. The igneous and metamorphic rocks are subjected to constant weathering by wind and water. These two elements of nature wear out rocks over a period of millions of years creating sediments and soil from weathered rocks. Other than this, sedimentation material is generated from the remnants of dying organisms. Transport of Sediments and Deposition These sediments generated through weathering are transported by the wind, rivers, glaciers and seas (in suspended form) to other places in the course of flow. They are finally deposited, layer over layer by these elements in some other place. Gravity, topographical structure and fluid forces decide the resting place of these sediments. Many layers of mineral, organics and chemical deposits accumulate together for years. Layers of different deposits called bedding features are created from them. Crystal formation may also occur in these conditions. Lithification (Compaction and Cementation) Over a period of time, as more and more layers are deposited, the process of lithification begins.
    [Show full text]
  • Sedimentary Rocks
    Sedimentary Rocks • a rock resulting from the consolidation of loose sediment that has been derived from previously existing rocks • a rock formed by the precipitation of minerals from solution Sedimentary Stages of the Rock Cycle Weathering Erosion Transportation Deposition (sedimentation) Burial Diagenesis Fig. 5.1 1 Table 5.1 Sorting Fig 5.2 Transport will effect the sediment in several ways Sorting:Sorting a measure of the variation in the range of grain sizes in a rock or sediment • Well-sorted sediments have been subjected to prolonged water or wind action. • Poorly-sorted sediments are either not far- removed from their source or deposited by glaciers. 2 Fig. 5.3 Sedimentary Environments Fig. Story 5.5 Table 5.2 3 Sedimentary Structures Stratification = Bedding = Layering This layering that produces sedimentary structures is due to: • Particle size • Types (s) of particles Sedimentary Layering Other Examples of Sedimentary Structures • Cross-beds • Ripple marks • Mudcracks • Raindrop impressions • Fossils 4 Cross-bedded sandstone Fig. 5.6 Fig. 5.7 Ripples on a beach Fig. 5.8 5 Ripples Preserved in Sandstone Fig. 5.9 Fig. 5.9 6 Fig. 5.10 Turbidity Currents Suspension of water sand, and mud that moves downslope (often very rapidly) due to its greater density that the surrounding water (often triggered by earthquakes). The speed of turbidity currents was first appreciated in 1920 when a current broke lines in the Atlantic. This event also demonstrated just how far a single deposit could travel. From Sediment to Sedimentary Sock (lithification) • Compaction:Compaction reduces pore space. clays and muds are up to 60 % water; 10% after compaction • Cementation:Cementation chemical precipitation of mineral material between grains (SiO2, CaCO3, Fe2O3) binds sediment into hard rock.
    [Show full text]
  • Erosion and Sediment Control for Agriculture
    Chapter 4C: Erosion and Sediment Control 4C: Erosion and Sediment Control Management Measure for Erosion and Sediment Apply the erosion component of a Resource Management System (RMS) as defined in the Field Office Technical Guide of the U.S. Department of Agriculture–Natural Resources Conservation Service (see Appendix B) to minimize the delivery of sediment from agricultural lands to surface waters, or Design and install a combination of management and physical practices to settle the settleable solids and associated pollutants in runoff delivered from the contributing area for storms of up to and including a 10-year, 24-hour frequency. Management Measure for Erosion and Sediment: Description Application of this management measure will preserve soil and reduce the mass of sediment reaching a water body, protecting both agricultural land and water quality. This management measure can be implemented by using one of two general strategies, or a combination of both. The first, and most desirable, strategy is to implement practices on the field to minimize soil detachment, erosion, and transport of sediment from the field. Effective practices include those that maintain crop residue or vegetative cover on the soil; improve soil properties; Sedimentation reduce slope length, steepness, or unsheltered distance; and reduce effective causes widespread water and/or wind velocities. The second strategy is to route field runoff through damage to our practices that filter, trap, or settle soil particles. Examples of effective manage- waterways. Water ment strategies include vegetated filter strips, field borders, sediment retention supplies and wildlife ponds, and terraces. Site conditions will dictate the appropriate combination of resources can be practices for any given situation.
    [Show full text]