Fishery Bulletin/U S Dept of Commerce National Oceanic

Total Page:16

File Type:pdf, Size:1020Kb

Fishery Bulletin/U S Dept of Commerce National Oceanic FEEDING RELATIONSHIPS OF TELEOSTEAN FISHES ON CORAL REEFS IN KONA, HAWAII EDMUND S. HOBSON! ABSTRACT Feeding relationships ofteleostean fishes on coral reefs atKona, Hawaii, were studied during 1969 and 1970. Fishes that have a generalized feeding mechanism, including those carnivores whose morphologies place them close to the main line ofteleostean evolution, are predominantly nocturnal or crepuscular. These include holocentrids, scorpaenids, serranids, apogonids, priacanthids, and lutjanids. The major prey of the nocturnal species are small, motile crustaceans, which are most available to the direct attacks of generalized predators when they leave their shelters after dark. The major prey of the crepuscular species are smaller fishes, whose defenses against direct attacks of generalized predators are less effective during twilight. Feeding by generalized predators during the day depends largely on being within striking distance ofprey that make a defensive mistake, a position best attained by those predators that ambush their prey from a concealed position, or by those that stalk. Ambushing and stalking tactics have produced some highly specialized forms that, during the day, prey mostly on smaller fishes. Diurnal ambushers include the highly cryptic synodontids, scorpaenids, and bothids; diurnal stalkers include aulostomids, fistulariids, belonids, and sphyraenids-al1 ofthem long, attenuated fishes. Some predators-most notably the muraenid eels-are specialized to hunt deep in reef crevices, and here they capture some of the many small animals that shelter themselves in those crevices, day and night, when resting, injured, or distressed. Mullids use their sensory barbels to detect small animals thathave sheltered themselves amid the superficial covering on the reef, or in the surroundingsand; at least some mullids further use their barbels to drive these prey into the open. Most of the fishes on Kona reefs are among the more highly evolved teleosts, having reached, or passed, the percoid level ofstructural development. The adaptability ofthe feeding apparatus in these more advanced groups has given rise to a wide variety ofspecialized species, including both carnivores and herbivores, that have diverged from one another mostly on the basis ofdiffering food habits. These fishes, most ofwhich are diurnal, include the chaetodontids, pomacentrids, labrids, scarids, blenniids, acanthurids, and Zanclus. among the perciforms; and the balistids, monacanthids, ostraciontids, tetraodontids, canthigasterids, and the nocturnal diodontids, among the tetraodontiforms. With their specialized feeding structures and techniques, these fishes consume organisms like sponges, coelenter­ ates, large mollusks, tunicates, and tiny or cryptic crustacea that are protected by behavioral or anatomical features from fishes not appropriately specialized. Many important ecological relations among greater emphasis on detailed analysis of food marine fishes are understood only by considering habits. in broad overview during both day and night the Several other workers adopted broad overviews different forms living together under natural con­ in considering fishes of various areas. Limbaugh ditions. With this in mind, I undertook a broad (1955) studied fishes in California kelp beds dur­ study ofreeffishes at Kona, Hawaii, between June ing the day, whereas Starck and Davis (1966) 1969 and August 1970. A segment of this study described the habits offishes in the Florida Keys dealing with the twilight situation was published at night; both of these studies present extensive earlier (Hobson, 1972). The present report de­ direct observations of activity, but little data on scribes the situations that prevail throughout day food habits. On the other hand, Hiatt and Stras­ and night. The work is centered on direct observa­ burg (1960), as well as Randall (1967), and Quast tions of activity in the fishes, as was my earlier (1968), treatedextensively the food habits offishes study of predatory behavior of shore fishes in the collected during daylight in the Marshall Islands, Gulf ofCalifornia (Hobson, 1968a), but here with the West Indies, and southern California, respec­ tively, but offered relatively few direct observa­ M 1S?uthwest Fisheries Center Tiburon Laboratory, National tions ofactivity. Suyehiro (1942) comprehensively arIne Fisheries Service,_ NOAA, P.O. Box 98, Tiburon, CA 94920. treated the feeding morphology offishes in Japan Manuscript accepted February 1974, FISHERY BULLETIN: VOL. 72, NO.4, 1974. 915 FISHERY BULLETIN: VOL. 72. NO.4 and included data on food habits; however, he in­ Food habits change over the life ofat least most cluded little information on activity. The 1970 fishes, usually along with recognizable changes in United States Tektite II program provided many behavior and morphology. Unless otherwise indi­ scientists with the opportunity to make direct ob­ cated, specimens selected for this study showed servations on a Virgin Island reef, and reports behavior and morphologyjudgedtypical ofadults. concerning the fishes have been published in one The collections were spreadovertime and space, volume (Collette and Earle, 1972). Many other so that possible effects of transient localized, reports oflimited scope are scattered through the perhaps atypical, situations were reduced. Gener­ literature, most ofthem beingfragmented data on ally, only a single individual of anyone species food habits; nevertheless, accounts of activity was collected during a single period of observa­ based on direct observations are sparse, especially tions; thus, for a given species, most individuals of nocturnal activity. each represent a separate collecting station. For The great variety of feeding mechanisms for these reasons, I judge the data from the food habit which teleostean fishes are so well known occur analysis to accurately represent the situation ex­ among coral-reef fishes far more so than among isting on Kona reefs over the 15 mo ofthis study. the fishes ofany otherhabitat. I take advantage of The collections were spaced throughout day and this circumstance in the discussion that concludes night, so that relative digestion of gut contents the present report and consider the feeding rela­ supplements direct observations ofactivity in de­ tionships among fishes on Kona reefs in the con­ termining specific feeding times. All specimens text of teleostean evolution. were sealed in individual plastic bags im­ mediately after being speared, most while still METHODS underwater. Gut contents of specimens collected while snorkeling were preserved immediately by Direct Observations injecting a concentrated formaldehyde solution directly into the gut cavity, whereas gut contents I observed activity of the fishes during 632 h offishes taken by scuba were preserved as soon as underwater at all periods of day and night using possible after emerging from the water. I was un­ scuba and by snorkeling. Except when collecting able to see a difference in the digestion undergone specimens, I tried not to influence the fishes or by material collected in each of these two ways, their environment, hoping that events were tak­ suggesting that digestion is sharply curtailed by ing a natural course. Fishes considered in this the death of the fish. Where practical, report are those thatcan be seen by an underwater identifications ofitems inthe guts were carriedfar observer at some time during day or night. Al­ enoughto establish such general prey characteris­ though this includes by far most ofthe reeffishes, tics as habitat and mode of life. some abundant species are not included because they remain secreted in the reef at all hours. Quantifying Food Habits Food Habits l<'or those species represented by enough num­ bers in the analysis ofgut contents, I state: 1) the The gut contents of 1,547 fish specimens of 102 number offish ofthat species containingeach food species were analyzed. With a few isolated excep­ item, and 2) the mean percent ofthat item in the tions, noted below, all the specimens were col­ diet volume, which is the total volume ofgut con­ lected with spears. I find spearing the most effec­ tents in all specimens ofthat species. This second tive way to collect fishes for study offood habits. figure was calculated from estimates of the per­ Using this method, specimens were collected in cent each item taken by the species contributed to specific locations atthetimes ofday and night that the gut contents of each individual fish (0 to best define diurnal-nocturnal activity patterns. 100%). The food items are listed in order of a Because I speared all the specimens myself, I ranking index, which is computed by multiplying know what each individual was doing when cap­ the ratio offish containingthe item to the number tured, and this knowledge significantly influenced of fish sampled, by the mean percent that item analysis of the data. Even the response of the represented ofthe diet volume. Thus, for example, various fishes to being stalked and speared (or for Holocentrus sammara (Table 10), the number missed) provided.certain behavioral insights. one prey, xanthid crabs, has a ranking index of 916 HOBSON: FEEDING RELATIONSHIPS OF FISHES 12/17 x 52.5 = 37.05. The data are tabulatedwhen Keawekaheka Point just north of Kealakekua there are more than a few items in the gut con­ Bay, to Alahaka Bay, south ofHonaunau (Figure tents of a given species. 1). This is part ofwhat is known as the Kona coast. In species with a well-defined stomach, usually Except for short
Recommended publications
  • «Etude De La Diversité Biologique Et De La Santé Des Récifs Coralliens Des
    Gough, C., Harris, A., Humber, F. and Roy, R. «Etude de la diversité biologique et de la santé des récifs coralliens des sites pilotes du projet Gestion des Ressources Naturelles Marines du Sud de Toliara» (Projet MG0910.01) Biodiversity and health of coral reefs at pilot sites south of Toliara WWF Southern Toliara Marine Natural Resource Management project MG 0910.01 2D Aberdeen Studios, 22-24 Highbury Grove, London N5 2EA, UK. [email protected] Tel: +44 (0)20 3176 0548 Fax: +44 (0)800 066 4032 Blue Ventures Conservation Report Acknowledgements: The authors would like to thank the WWF teams in Toliara and Antananarivo and the Blue Ventures London staff for logistical support. Thanks to Vola Ramahery and Gaetan Tovondrainy from WWF Toliara for their support in the field and Mathieu Sebastien Raharilala and Soalahatse for their technical assistance. Thanks also go to the Blue Ventures dive team for their hard work and scientific expertise. Many thanks also to each of the village communities for their kind help and hospitality. Our sincere thanks also to Geo-Eye for their kind donation of the high-resolution satellite imagery. Recommended citation: Gough, C., Harris, A., Humber, F. and Roy, R. (2009). Biodiversity and health of coral reefs at pilot sites south of Toliara WWF Marine resource management project MG 0910.01 Author’s contact details: Charlotte Gough ([email protected]); Alasdair Harris ([email protected]); Frances Humber ([email protected]); Raj Roy ([email protected]) ii Blue Ventures Conservation Report Table of Contents List of Abbreviations ............................................ 2 Zone C – Itampolo (commune Itampolo)...........
    [Show full text]
  • A Multifunction Trade-Off Has Contrasting Effects on the Evolution of Form and Function ∗ KATHERINE A
    Syst. Biol. 0():1–13, 2020 © The Author(s) 2020. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please email: [email protected] DOI:10.1093/sysbio/syaa091 Downloaded from https://academic.oup.com/sysbio/advance-article/doi/10.1093/sysbio/syaa091/6040745 by University of California, Davis user on 08 January 2021 A Multifunction Trade-Off has Contrasting Effects on the Evolution of Form and Function ∗ KATHERINE A. CORN ,CHRISTOPHER M. MARTINEZ,EDWARD D. BURRESS, AND PETER C. WAINWRIGHT Department of Evolution & Ecology, University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA, 95616 USA ∗ Correspondence to be sent to: University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA 95618, USA; E-mail: [email protected] Received 27 August 2020; reviews returned 14 November 2020; accepted 19 November 2020 Associate Editor: Benoit Dayrat Abstract.—Trade-offs caused by the use of an anatomical apparatus for more than one function are thought to be an important constraint on evolution. However, whether multifunctionality suppresses diversification of biomechanical systems is challenged by recent literature showing that traits more closely tied to trade-offs evolve more rapidly. We contrast the evolutionary dynamics of feeding mechanics and morphology between fishes that exclusively capture prey with suction and multifunctional species that augment this mechanism with biting behaviors to remove attached benthic prey. Diversification of feeding kinematic traits was, on average, over 13.5 times faster in suction feeders, consistent with constraint on biters due to mechanical trade-offs between biting and suction performance.
    [Show full text]
  • The First Report of Nors and Chromosome Analysis of Tripletail Wrasse, Cheilinus Trilobatus (Perciformes: Labridae)
    © 2014 The Japan Mendel Society Cytologia 79(4): 437–443 The First Report of NORs and Chromosome Analysis of Tripletail Wrasse, Cheilinus trilobatus (Perciformes: Labridae) Sarawut Kaewsri1, 4, Pasakorn Saenjundaeng2, Sarun Jumrusthanasan1, Ratree Suksuwan3, Alongklod Tanomtong1* and Weerayuth Supiwong2 1 Applied Taxonomic Research Center (ATRC), Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand 2 Faculty of Applied Science and Engineering, Khon Kaen University, Nong Kai Campus, Muang, Nong Kai 43000,Thailand 3 Phuket Marine Biological Center (PMBC), 51 Moo 8 Sakdided Road, Wichit, Muang, Phuket 83000, Thailand 4 Biology Program, Department of Science, Faculty of Science, Buriram Rajabhat University, Muang, Buriram 31000, Thailand Received June 17, 2013; accepted October 20, 2013 Summary We report the first chromosome analysis and chromosomal characteristics of nucleolar organizer regions/NORs in the tripletail wrasse (Cheilinus trilobatus) from the Andaman Sea, Southern Thailand. Kidney cell samples were taken from three male and three female fishes. The mitotic chromosome preparation was prepared directly from kidney cells. Conventional staining and Ag-NOR banding techniques were applied to stain the chromosomes. The results showed that the diploid chromosome number of C. trilobatus was 2n=38, the fundamental number (NF) was 54 in both males and females. The types of chromosomes were 6 large metacentric, 4 medium metacentric, 2 medium submetacentric, 4 medium telocentric, 4 small submetacentric, and 18 small telocentric chromosomes. The region adjacent to the short arms near the telomeres of submetacentric chromosome pair 7 showed clearly observable NORs. There was no observation of irregularly sized chromosomes related to sex. The karyotype formula for C.
    [Show full text]
  • Centropomidae
    click for previous page CENTRP 1983 FAO SPECIES IDENTIFICATION SHEETS FISHING AREA 51 (W. Indian Ocean) CENTROPOMIDAE Barramundis, sea perches Body elongate or oblong, compressed, dorsal profile concave at nape. Mouth large, jaws equal or with lower longer than upper; teeth small, in narrow or villiform bands on jaws and on vomer and palatines (roof of mouth), sometimes also on tongue; preopercle with a serrated posterior border or with 2 ridges; opercle with a single spine. Dorsal fin almost wholly separated into 2, with 7 or 8 stronq spines in front, followed by 1 spine and 10 to 15 soft rays; pelvic fins below pectoral fins, with a stronq spine and 5 soft rays; anal fin short, with 3 spines and 8 to 13 soft rays; caudal fin rounded. Scales usually large, ctenoid and adherent; lateral line continued onto caudal fin. Colour: usually dark grey or green above and silvery below. Medium- to large-sized bottom-living fishes occurring in coastal waters, estuaries and lagoons, in depths between about 10 and 30 m. Highly esteemed food and sport fishes taken mainly by artisanal fisheries. dorsal fins almost separate lateral line single spine continued onto tail concave - 2 - FAO Sheets CENTROPOMIDAE Fishing Area 51 SIMILAR FAMILIES OCCURRING IN THE AREA: Serranidae: spinous and soft parts of dorsal fin not as deeply notched; also, colour pattern distinctive and/or caudal fin truncate or weakly emarginate in some. Lethrinidae, Lutjanidae: dorsal fin not deeply notched, head profile not concave over eye and canine teeth present in some. Sciaenidae: lateral line also extends onto tail, but only 2 anal spines.
    [Show full text]
  • Fishes Collected During the 2017 Marinegeo Assessment of Kāne
    Journal of the Marine Fishes collected during the 2017 MarineGEO Biological Association of the ā ‘ ‘ ‘ United Kingdom assessment of K ne ohe Bay, O ahu, Hawai i 1 1 1,2 cambridge.org/mbi Lynne R. Parenti , Diane E. Pitassy , Zeehan Jaafar , Kirill Vinnikov3,4,5 , Niamh E. Redmond6 and Kathleen S. Cole1,3 1Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 159, Washington, DC 20013-7012, USA; 2Department of Biological Sciences, National University of Singapore, Original Article Singapore 117543, 14 Science Drive 4, Singapore; 3School of Life Sciences, University of Hawai‘iatMānoa, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI 96822, USA; 4Laboratory of Ecology and Evolutionary Biology of Cite this article: Parenti LR, Pitassy DE, Jaafar Aquatic Organisms, Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690091, Russia; 5Laboratory of Z, Vinnikov K, Redmond NE, Cole KS (2020). 6 Fishes collected during the 2017 MarineGEO Genetics, National Scientific Center of Marine Biology, Vladivostok 690041, Russia and National Museum of assessment of Kāne‘ohe Bay, O‘ahu, Hawai‘i. Natural History, Smithsonian Institution DNA Barcode Network, Smithsonian Institution, PO Box 37012, MRC 183, Journal of the Marine Biological Association of Washington, DC 20013-7012, USA the United Kingdom 100,607–637. https:// doi.org/10.1017/S0025315420000417 Abstract Received: 6 January 2020 We report the results of a survey of the fishes of Kāne‘ohe Bay, O‘ahu, conducted in 2017 as Revised: 23 March 2020 part of the Smithsonian Institution MarineGEO Hawaii bioassessment. We recorded 109 spe- Accepted: 30 April 2020 cies in 43 families.
    [Show full text]
  • Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
    Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S.
    [Show full text]
  • Authorship, Availability and Validity of Fish Names Described By
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stuttgarter Beiträge Naturkunde Serie A [Biologie] Jahr/Year: 2008 Band/Volume: NS_1_A Autor(en)/Author(s): Fricke Ronald Artikel/Article: Authorship, availability and validity of fish names described by Peter (Pehr) Simon ForssSSkål and Johann ChrisStian FabricCiusS in the ‘Descriptiones animaliumÂ’ by CarsSten Nniebuhr in 1775 (Pisces) 1-76 Stuttgarter Beiträge zur Naturkunde A, Neue Serie 1: 1–76; Stuttgart, 30.IV.2008. 1 Authorship, availability and validity of fish names described by PETER (PEHR ) SIMON FOR ss KÅL and JOHANN CHRI S TIAN FABRI C IU S in the ‘Descriptiones animalium’ by CAR S TEN NIEBUHR in 1775 (Pisces) RONALD FRI C KE Abstract The work of PETER (PEHR ) SIMON FOR ss KÅL , which has greatly influenced Mediterranean, African and Indo-Pa- cific ichthyology, has been published posthumously by CAR S TEN NIEBUHR in 1775. FOR ss KÅL left small sheets with manuscript descriptions and names of various fish taxa, which were later compiled and edited by JOHANN CHRI S TIAN FABRI C IU S . Authorship, availability and validity of the fish names published by NIEBUHR (1775a) are examined and discussed in the present paper. Several subsequent authors used FOR ss KÅL ’s fish descriptions to interpret, redescribe or rename fish species. These include BROU ss ONET (1782), BONNATERRE (1788), GMELIN (1789), WALBAUM (1792), LA C E P ÈDE (1798–1803), BLO C H & SC HNEIDER (1801), GEO ff ROY SAINT -HILAIRE (1809, 1827), CUVIER (1819), RÜ pp ELL (1828–1830, 1835–1838), CUVIER & VALEN C IENNE S (1835), BLEEKER (1862), and KLUNZIN G ER (1871).
    [Show full text]
  • Review of the Sharpnose Pufferfishes (Subfamily Canthigasterinae) of the Indo-Pacific
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Allen, Gerald R., and J. E. Randall, 1977. Review of the sharpnose pufferfishes (Subfamily Canthigasterinae) of the Indo-Pacific. Records of the Australian Museum 30(17): 475–517. [31 December 1977]. doi:10.3853/j.0067-1975.30.1977.192 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia REVIEW OF THE SHARPNOSE PUFFERFISHES (SUBFAMILY CANTHIGASTERINAE) OF THE INDO-PAClFIC GERALD R. ALLEN Department of Fishes, Western Australian Museum, Perth and JOHN E. RANDALL Fish Division, Bernice P. Bishop Museum, Honolulu SUMMARY Twenty-two species of Canthigaster (Tetraodontidae; Canthigasterinae), including seven which are described as new, are recognized from the tropical Indo-Pacific: C. amboinensis (widespread Indo-Pacific), C. bennetti (widespread Indo-W. Pacific), C. callisterna (New South Wales; Lord Howe, Norfolk, and Kermadec islands; northern New Zealand), C. compressa (E. Indies; Melanesia; Philippine Islands), C. coronata (widespread Indo-W. Pacific), C. epilampra (W. Pacific), C. inframacula n. sp. (Hawaiian Islands), C. investigatoris (Andaman Islands), C. jactator (Hawaiian Islands), C. janthinoptera (widespread Indo-W. Pacific), C. margaritata (Red Sea), C. marquesensis n. sp. (Marquesas Islands), C. nata/ensis (Mauritius; South Africa), C. ocellicincta n. sp. (Melanesia; Great Barrier Reef), C. punctatissima (eastern Pacific), C. pygmaea n. sp. (Red Sea), C. rapaensis n. sp. (Rapa), C. rivulata (widespread Indo-W. Pacific), C. smithae n.sp. (Mauritius, and South Africa), C.
    [Show full text]
  • A Revision of the Labrid Fish Genus Anampses
    A Revision of the Labrid Fish Genus Anampses JoHN E. RANDALL1 Abstract The tropical Indo-Pacific wrasse genus Anampses is distinctive in possessing a single pair of broad· projecting incisiform teeth at the front of the jaws, scaleless head, smooth preopercular margin, complete lateral line, IX, 12 dorsal rays, and III, 12 anal rays. It is represented by two subgenera, Pseudanampses with 48 to 50 lateral-line scales (one species, A. geographicus) and Anampses with 26 or 27 lateral-line scales (11 species). Anampses femininus is described as new from specimens collected at Easter Island, Pitcairn, Rapa, New Caledonia, and Lord Howe Island. The female, bright orange with dark-edged blue stripes and a blue caudal peduncle and fin, is unusual in being even more colorful than the male, which is dusky yellow to blackish with vertical blue lines on the scales. The following pairs of nominal Anampses are here recognized as males and females of the same species (the first name of each pair has priority): 1) A. caeruleopunctatus Riippell 2) A. diadematus Riippell (male) 1) A. cuvier Quoy and Gaimard 2) A. godeffroyi Gunther (male) 1) A. chrysocephalus Randall (male) 2) A. rubrocaudatus Randall 1) A. neoguinaicus Bleeker (male) 2) A. fidjensis Sauvage 1) A. meleagrides Cuvier and Valenciennes 2) A. amboinensis Bleeker (male) More evidence is needed for the last pair in the above list, however, to be certain of conspecificity. A. tinkhami Fowler (1946) from the Ryukyu Islands is placed in the synonymy of A. caeruleopunctatus, the species with the broadest distribution of the genus: Red Sea to Easter Island, but not Hawaii.
    [Show full text]
  • Entire Issue (PDF 3MB)
    E PL UR UM IB N U U S Congressional Record United States th of America PROCEEDINGS AND DEBATES OF THE 116 CONGRESS, FIRST SESSION Vol. 165 WASHINGTON, THURSDAY, JUNE 13, 2019 No. 99 House of Representatives The House met at 9 a.m. and was ANNOUNCEMENT BY THE SPEAKER Son americanos en todo el sentido de called to order by the Speaker. The SPEAKER. The Chair will enter- la palabra—menos en un papel. tain up to five requests for 1-minute Tuve el honor de ser un profesor en f speeches on each side of the aisle. un colegio en mi distrito, Modesto Jun- ior College. f PRAYER Una de mis estudiantes era una joven The Chaplain, the Reverend Patrick IT IS TIME TO PROVIDE que estaba estudiando para ser J. Conroy, offered the following prayer: STABILITY TO DACA RECIPIENTS farmace´utica. God our Father, we give You thanks (Mr. HARDER of California asked Pero como su familia la trajo a este for giving us another day. and was given permission to address paı´s cuando tenı´a solo tres meses, su Bless the Members of this people’s the House for 1 minute and to revise futuro esta´ en peligro. House as they gather at the end of an- and extend his remarks.) Historias como la suya son comunes, other week in the Capitol. Endow each (English translation of the statement especialmente en mi distrito en el with the graces needed to attend to the made in Spanish is as follows:) Valle Central de California. issues of the day with wisdom, that the Mr.
    [Show full text]
  • Introduced Marine Species in Pago Pago Harbor, Fagatele Bay and the National Park Coast, American Samoa
    INTRODUCED MARINE SPECIES IN PAGO PAGO HARBOR, FAGATELE BAY AND THE NATIONAL PARK COAST, AMERICAN SAMOA December 2003 COVER Typical views of benthic organisms from sampling areas (clockwise from upper left): Fouling organisms on debris at Pago Pago Harbor Dry Dock; Acropora hyacinthus tables in Fagetele Bay; Porites rus colonies in Fagasa Bay; Mixed branching and tabular Acropora in Vatia Bay INTRODUCED MARINE SPECIES IN PAGO PAGO HARBOR, FAGATELE BAY AND THE NATIONAL PARK COAST, AMERICAN SAMOA Final report prepared for the U.S. Fish and Wildlife Service, Fagetele Bay Marine Sanctuary, National Park of American Samoa and American Samoa Department of Marine and Natural Resources. S. L. Coles P. R. Reath P. A. Skelton V. Bonito R. C. DeFelice L. Basch Bishop Museum Pacific Biological Survey Bishop Museum Technical Report No 26 Honolulu Hawai‘i December 2003 Published by Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright © 2003 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2003-007 to the Pacific Biological Survey EXECUTIVE SUMMARY The biological communities at ten sites around the Island of Tutuila, American Samoa were surveyed in October 2002 by a team of four investigators. Diving observations and collections of benthic observations using scuba and snorkel were made at six stations in Pago Pago Harbor, two stations in Fagatele Bay, and one station each in Vatia Bay and Fagasa Bay. The purpose of this survey was to determine the full complement of organisms greater than 0.5 mm in size, including benthic algae, macroinvertebrates and fishes, occurring at each site, and to evaluate the presence and potential impact of nonindigenous (introduced) marine species.
    [Show full text]
  • Development of Fisheries Management Tools for Trade in Humphead Wrasse, Cheilinus Undulatus, in Compliance with Article IV of CITES
    AC22 Inf. 5 (English only/Únicamente en inglés/Seulement en anglais) This document has been submitted by the CITES Secretariat. Development of fisheries management tools for trade in humphead wrasse, Cheilinus undulatus, in compliance with Article IV of CITES Final Report of CITES Project No. A-254 undertaken by the International Union for the Conservation of Nature and Natural Resources - World Conservation Union/Species Survival Commission (IUCN/SSC) Groupers & Wrasses Specialist Group and led by Dr Yvonne Sadovy. © Secretariat of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), June 2006 Reproduction of the texts in this publication for educational or non-commercial purposes is authorized without prior written permission from the CITES Secretariat, provided the source is fully acknowledged. Reproduction for resale or other commercial purposes by any means – photographic, electronic or mechanical, including photocopying, recording, taping or information storage and retrieval systems – is prohibited without the prior written permission of the copyright holders. The geographical designations employed in this book do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. For further information, please visit www.cites.org or contact: CITES Secretariat International Environment House Chemin des Anémones CH-1219 CHÂTELAINE, Geneva Switzerland Telephone: +41 (22) 917 81 39/40 Fax: +41 (22) 797 34 17 Email: [email protected] FINAL REPORT CITES Project No. A-254 Development of fisheries management tools for trade in humphead wrasse, Cheilinus undulatus, in compliance with Article IV of CITES IUCN Groupers & Wrasses Specialist Group Submitted by Yvonne Sadovy Photo: P.
    [Show full text]