Page Intentionally Left Blank
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Bees in Urban Landscapes: an Investigation of Habitat Utilization ByBees in urban landscapes: An investigation of habitat utilization By Victoria Agatha Wojcik A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, & Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Joe R. McBride, Chair Professor Gregory S. Biging Professor Louise A. Mozingo Fall 2009 Bees in urban landscapes: An investigation of habitat utilization © 2009 by Victoria Agatha Wojcik ABSTRACT Bees in urban landscapes: An investigation of habitat utilization by Victoria Agatha Wojcik Doctor of Philosophy in Environmental Science, Policy, & Management University of California, Berkeley Professor Joe R. McBride, Chair Bees are one of the key groups of anthophilies that make use of the floral resources present within urban landscapes. The ecological patterns of bees in cities are under further investigation in this dissertation work in an effort to build knowledge capacity that can be applied to management and conservation. Seasonal occurrence patterns are common among bees and their floral resources in wildland habitats. To investigate the nature of these phenological interactions in cities, bee visitation to a constructed floral resource base in Berkeley, California was monitored in the first year of garden development. The constructed habitat was used by nearly one-third of the locally known bee species. Bees visiting this urban resource displayed distinct patterns of seasonality paralleling those of wildland bees, with some species exhibiting extended seasons. Differential bee visitation patterns are common between individual floral resources. The effective monitoring of bee populations requires an understanding of this variability. To investigate the patterns and trends in urban resource usage, the foraging of the community of bees visiting Tecoma stans resources in three tropical dry forest cities in Costa Rica was studied.
- 
												  Studies of North American BeesUniversity of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers from the University Studies series (The University of Nebraska) University Studies of the University of Nebraska January 1914 Studies of North American Bees Myron Harmon Swenk University of Nebraska - Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/univstudiespapers Part of the Life Sciences Commons Swenk, Myron Harmon, "Studies of North American Bees" (1914). Papers from the University Studies series (The University of Nebraska). 9. https://digitalcommons.unl.edu/univstudiespapers/9 This Article is brought to you for free and open access by the University Studies of the University of Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers from the University Studies series (The University of Nebraska) by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. VOL. XIV JANUAR Y 1914 No. I I.-STUDIES OF NORTH AMERICAN BEES BY MYRON HARMON SWENK &+ The present paper is the second of the series proposed in a previous contribution on the famil.\- Nomadidae (arztea, XII, pp. I-II~),and aims to tabulate and list the bees of the family Stelididae occurring in Nebraska, together wilth annotations con- cerning their distribution, comparative abundance and season of flight. As in the previous study, records and descriptions of specimens from outside Nebraska before the writer are included where these seem to add anything to our knowledge of the species concerned. MATERIAL In the studies upon which this paper is based over four hundred specimens have been examined and determined. From the state of Nebraska fifteen species and subspecies are recorded, and of these three species are apparently new.
- 
												  Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site a Report to the UInvertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site A report to the U. S. Army and U. S. Fish and Wildlife Service G. J. Michels, Jr., J. L. Newton, H. L. Lindon, and J. A. Brazille Texas AgriLife Research 2301 Experiment Station Road Bushland, TX 79012 2008 Report Introductory Notes The invertebrate survey in 2008 presented an interesting challenge. Extremely dry conditions prevailed throughout most of the adult activity period for the invertebrates and grass fires occurred several times throughout the summer. By visual assessment, plant resources were scarce compared to last year, with few green plants and almost no flowering plants. Eight habitats and nine sites continued to be sampled in 2008. The Ponderosa pine/ yellow indiangrass site was removed from the study after the low numbers of species and individuals collected there in 2007. All other sites from the 2007 survey were included in the 2008 survey. We also discontinued the collection of Coccinellidae in the 2008 survey, as only 98 individuals from four species were collected in 2007. Pitfall and malaise trapping were continued in the same way as the 2007 survey. Sweep net sampling was discontinued to allow time for Asilidae and Orthoptera timed surveys consisting of direct collection of individuals with a net. These surveys were conducted in the same way as the time constrained butterfly (Papilionidea and Hesperoidea) surveys, with 15-minute intervals for each taxanomic group. This was sucessful when individuals were present, but the dry summer made it difficult to assess the utility of these techniques because of overall low abundance of insects.
- 
												  Disturbance and Recovery in a Changing World; 2006 June 6–8; Cedar City, UTReproductive Biology of Larrea tridentata: A Preliminary Comparison Between Core Shrubland and Isolated Grassland Plants at the Sevilleta National Wildlife Refuge, New Mexico Rosemary L. Pendleton, Burton K. Pendleton, Karen R. Wetherill, and Terry Griswold Abstract—Expansion of diploid creosote shrubs (Larrea tridentata Introduction_______________________ (Sessé & Moc. ex DC.) Coville)) into grassland sites occurs exclusively through seed production. We compared the reproductive biology Chihuahuan Desert shrubland is expanding into semiarid of Larrea shrubs located in a Chihuahuan desert shrubland with grasslands of the Southwest. Creosote (Larrea tridentata) isolated shrubs well-dispersed into the semiarid grasslands at the seedling establishment in grasslands is a key factor in this Sevilleta National Wildlife Refuge. Specifically, we examined (1) re- conversion. Diploid Larrea plants of the Chihuahuan Des- productive success on open-pollinated branches, (2) the potential ert are not clonal as has been reported for some hexaploid of individual shrubs to self-pollinate, and (3) bee pollinator guild Mojave populations (Vasek 1980). Consequently, Larrea composition at shrubland and grassland sites. Sampling of the bee guild suggests that there are adequate numbers of pollinators at establishment in semiarid grasslands of New Mexico must both locations; however, the community composition differs between occur exclusively through seed. At McKenzie Flats in the shrub and grassland sites. More Larrea specialist bee species were Sevilleta National Wildlife Refuge, there exists a gradient found at the shrubland site as compared with the isolated shrubs. in Larrea density stretching from dense Larrea shrubland Large numbers of generalist bees were found on isolated grassland (4,000 to 6,000 plants per hectare) to semiarid desert grass- bushes, but their efficiency in pollinating Larrea is currently un- land with only a few scattered shrubs.
- 
												  Wild Bee Declines and Changes in Plant-Pollinator Networks Over 125 Years Revealed Through Museum CollectionsUniversity of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2018 WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS Minna Mathiasson University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Mathiasson, Minna, "WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS" (2018). Master's Theses and Capstones. 1192. https://scholars.unh.edu/thesis/1192 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS BY MINNA ELIZABETH MATHIASSON BS Botany, University of Maine, 2013 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences: Integrative and Organismal Biology May, 2018 This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences: Integrative and Organismal Biology by: Dr. Sandra M. Rehan, Assistant Professor of Biology Dr. Carrie Hall, Assistant Professor of Biology Dr. Janet Sullivan, Adjunct Associate Professor of Biology On April 18, 2018 Original approval signatures are on file with the University of New Hampshire Graduate School.
- 
												  A Revision of the Subgenus Micrandrena of the Genus Andrena of Eastern Asia (Hymenoptera: Apoidea: Andrenidae)九州大学学術情報リポジトリ Kyushu University Institutional Repository A Revision of the Subgenus Micrandrena of the Genus Andrena of Eastern Asia (Hymenoptera: Apoidea: Andrenidae) Xu, Huan-li Department of Entomology, College of Agriculture and Biotechnology, China Agricultural University Tadauchi, Osamu Department of Agricultural Bioresource Sciences, Faculty of Agricultur, Kyushu University https://doi.org/10.5109/20321 出版情報:九州大学大学院農学研究院紀要. 56 (2), pp.279-283, 2011-09. 九州大学大学院農学研究院 バージョン: 権利関係: J. Fac. Agr., Kyushu Univ., 56 (2), 279–283 (2011) A Revision of the Subgenus Micrandrena of the Genus Andrena of Eastern Asia (Hymenoptera: Apoidea: Andrenidae) XU Huan–li* and Osamu TADAUCHI Laboratory of Entomology, Division of Zoology & Entomology, Department of Agricultural Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812–8581, Japan (Received April 28, 2011 and accepted May 9, 2011) The subgenus Micrandrena of the genus Andrena from eastern Asia is revised and twelve species are recognized. Andrena (Micrandrena) kaguya Hirashima, A. (Micrandrena) komachi Hirashima, A. (Micrandrena) munakatai Tadauchi, A. (Micrandrena) semirugosa Cockerell, A. (Micrandrena) sub- levigata Hirashima, A. (Micrandrena) subopaca Nylander are recorded from China for the first time. Subgenus Micrandrena Ashmead INTRODUCTION Micrandrena Ashmead, 1899, Trans. Amer. ent. Soc., The subgenus Micrandrena was erected by W. H. 26: 89; Lanham, 1949, Univ. California Pub. Ent., 8: Ashmead in 1899. It is distinctly separated from the other 208–209 (in part); Hirashima, 1965, J. Fac. Agr., subgenera by the tiny body size, tessellated or polished Kyushu Univ., 13: 461; LaBerge, 1964, Bull. Univ. metasomal terga. It is characterized in having the vein Nebraska St. Mus., 4: 301–302; Ribble, 1968, Bull. first transverse cubitus ending close to the pterostigma.
- 
												  2009 Pinon Canyon Invertebrate Survey Report"- - 70.096 60.096 50.096 40.096 30.096 20.096 10.096 0.0% Fig. 1 Most abundant Apiformes species calculated as a proportion of the total abundance of Apiformes in the collection period. Pinon Canyon Maneuver Site, 2008. 04% 1 j 0.391> 0.2% 0.1% 0.0% Fig. 2 Least abundant Apiformes species calculated as a proportion of the total abundance of Apiformes in the collection period. Pinon Canyon Maneuver Site, 2008.7 Fig. 3 Most abundant Carabidae species calculated as a proportion of the total abundance of Carabidae in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 4 Least abundant Carabidae species calculated as a proportion of the total abundance of Carabidae in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 5 Asilidae species abundance calculated as a proportion of the total abundace of Asilidae in the collection period. Pinon Canyon Maneuver Site, 2008. 30.0% 25.0% 20.0% 15.0% 10.0% 5.0% 0.0% Fig. 6 Butterfly species abundance calculated as a proportion of the total abundance of butterflies in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 7 Most abundant Orthoptera species calculated as a proportion of the total abundance of Orthoptera in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 8 Moderately abundant Orthoptera species calculated as a proportion of the total abundance of Orthoptera in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 9 Least abundant Orthoptera species calculated as a proportion of the total abundance of Orthoptera in the collection period.
- 
												  Annual Variation in Bee Community Structure in the Context OfAnnual Variation in Bee Community Structure in the Context of Disturbance (Niagara Region, South-Western Ontario) ~" . by Rodrigo Leon Cordero, B.Sc. A thesis submitted to the Department of Biological Sciences in partial fulfilment of the requirements for the degree of Master of Science September, 2011 Department of Biological Sciences Brock University St. Catharines, Ontario © Rodrigo Leon Cordero, 2011 1 ABSTRACT This study examined annual variation in phenology, abundance and diversity of a bee community during 2003, 2004, 2006, and 2008 in rec~6vered landscapes at the southern end of St. Catharines, Ontario, Canada. Overall, 8139 individuals were collected from 26 genera and sub-genera and at least 57 species. These individuals belonged to the 5 families found in eastern North America (Andrenidae, Apidae, Colletidae, Halictidae and Megachilidae). The bee community was characterized by three distinct periods of flight activity over the four years studied (early spring, late spring/early summer, and late summer). The number of bees collected in spring was significantly higher than those collected in summer. In 2003 and 2006 abundance was higher, seasons started earlier and lasted longer than in 2004 and 2008, as a result of annual rainfall fluctuations. Differences in abundance for low and high disturbance sites decreased with years. Annual trends of generic richness resembled those detected for species. Likewise, similarity in genus and species composition decreased with time. Abundant and common taxa (13 genera and 18 species) were more persistent than rarer taxa being largely responsible for the annual fluctuations of the overall community. Numerous species were sporadic or newly introduced. The invasive species Anthidium oblongatum was first recorded in Niagara in 2006 and 2008.
- 
												  Floral Guilds of Bees in Sagebrush Steppe: Comparing Bee Usage OfABSTRACT: Healthy plant communities of the American sagebrush steppe consist of mostly wind-polli- • nated shrubs and grasses interspersed with a diverse mix of mostly spring-blooming, herbaceous perennial wildflowers. Native, nonsocial bees are their common floral visitors, but their floral associations and abundances are poorly known. Extrapolating from the few available pollination studies, bees are the primary pollinators needed for seed production. Bees, therefore, will underpin the success of ambitious seeding efforts to restore native forbs to impoverished sagebrush steppe communities following vast Floral Guilds of wildfires. This study quantitatively characterized the floral guilds of 17 prevalent wildflower species of the Great Basin that are, or could be, available for restoration seed mixes. More than 3800 bees repre- senting >170 species were sampled from >35,000 plants. Species of Osmia, Andrena, Bombus, Eucera, Bees in Sagebrush Halictus, and Lasioglossum bees prevailed. The most thoroughly collected floral guilds, at Balsamorhiza sagittata and Astragalus filipes, comprised 76 and 85 native bee species, respectively. Pollen-specialists Steppe: Comparing dominated guilds at Lomatium dissectum, Penstemon speciosus, and several congenerics. In contrast, the two native wildflowers used most often in sagebrush steppe seeding mixes—Achillea millefolium and Linum lewisii—attracted the fewest bees, most of them unimportant in the other floral guilds. Suc- Bee Usage of cessfully seeding more of the other wildflowers studied here would greatly improve degraded sagebrush Wildflowers steppe for its diverse native bee communities. Index terms: Apoidea, Asteraceae, Great Basin, oligolecty, restoration Available for Postfire INTRODUCTION twice a decade (Whisenant 1990). Massive Restoration wildfires are burning record acreages of the The American sagebrush steppe grows American West; two fires in 2007 together across the basins and foothills over much burned >500,000 ha of shrub-steppe and 1,3 James H.
- 
												  Land Uses That Support Wild Bee (Hymenoptera: Apoidea: Anthophila) Communities Within an Agricultural MatrixLand uses that support wild bee (Hymenoptera: Apoidea: Anthophila) communities within an agricultural matrix A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Elaine Celeste Evans IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Dr. Marla Spivak December 2016 © Elaine Evans 2016 Acknowledgements Many people helped me successfully complete this project. Many years ago, my advisor, mentor, hero, and friend, Marla Spivak, saw potential in me and helped me to become an effective scientist and educator working to create a more bee-friendly world. I have benefitted immensely from her guidance and support. The Bee Lab team, both those that helped me directly in the field, and those that advised along the way through analysis and writing, have provided a dreamy workplace: Joel Gardner, Matt Smart, Renata Borba, Katie Lee, Gary Reuter, Becky Masterman, Judy Wu, Ian Lane, Morgan Carr- Markell. My committee helped guide me along the way and steer me in the right direction: Dan Cariveau (gold star for much advice on analysis), Diane Larson, Ralph Holzenthal, and Karen Oberauser. Cooperation with Chip Eullis and Jordan Neau at the USGS enabled detailed land use analysis. The bee taxonomists who helped me with bee identification were essential for the success of this project: Jason Gibbs, John Ascher, Sam Droege, Mike Arduser, and Karen Wright. My friends and family eased my burden with their enthusiasm for me to follow my passion and their understanding of my monomania. My husband Paul Metzger and my son August supported me in uncountable ways.
- 
												  Hymenoptera: Apoidea) Habitat in Agroecosystems Morgan Mackert Iowa State UniversityIowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 Strategies to improve native bee (Hymenoptera: Apoidea) habitat in agroecosystems Morgan Mackert Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Recommended Citation Mackert, Morgan, "Strategies to improve native bee (Hymenoptera: Apoidea) habitat in agroecosystems" (2019). Graduate Theses and Dissertations. 17255. https://lib.dr.iastate.edu/etd/17255 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Strategies to improve native bee (Hymenoptera: Apoidea) habitat in agroecosystems by Morgan Marie Mackert A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Ecology and Evolutionary Biology Program of Study Committee: Mary A. Harris, Co-major Professor John D. Nason, Co-major Professor Robert W. Klaver The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2019 Copyright © Morgan Marie Mackert, 2019. All rights reserved ii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ............................................................................................... iv ABSTRACT ....................................................................................................................... vi CHAPTER 1.
- 
												  Common Pollinators of British Columbia – a Visual IdentificationCOMMON POLLINATORS OF BRITISH COLUMBIA A Visual Identification Guide Created by Border Free Bees and the Environmental Youth Alliance 1 · Navigation Honey Bee Bumble Bee Other Bees Hover Fly Butterfly Wasp Navigation 2 Introduction 3 Insight Citizen Science 3 Basic Insect Anatomy Pollinator Categories 4 Honey Bee 8 Bumble Bee 12 Other Bees 20 Hover Fly 24 Butterfly 28 Wasp 31 Complimentary Resources 32 Acknowledgments 33 Field Notes Introduction This visual guide was created to help as a field guide to use in comparing educate the public on how to identify closely similar species. Rather, treat common pollinators in British Columbia. this guide as a visual aid to direct your Bees are by far the most representative skills towards different families of group, and critically important bees and general characteristics you to providing pollination service to may be able to see while outdoors. terrestrial ecosystems and agricultural The guide breaks pollinators down landscapes. They effectively transfer into 6 categories: Honey Bees, Bumble pollen with feather-like hairs on their Bees, Other Bees, Wasps, Hover Flies and bodies capturing pollen grains. It is Butterflies. With a basic understanding estimated that there are around 500 of the characteristics that differentiate species of bees in British Columbia. these types of pollinators you can This guide serves as an introduction to participate in pollinator citizen science the common groups of pollinators that programs with ease. you may observe, and does not stand Basic Insect Anatomy Antenna Proboscis (tongue) Compound Eye Insight is a mobile app created by Border Free Bees that Thorax makes it easy for citizens to record pollinator observations Forewing using their smart phones.