Final EA for Permit to Field Release GE Diamondback Moth

Total Page:16

File Type:pdf, Size:1020Kb

Final EA for Permit to Field Release GE Diamondback Moth United States Department of Agriculture Proposal to permit the Marketing and field release of Regulatory Programs genetically engineered Animal and Plant Health Inspection Service diamondback moth in New York Environmental Assessment, June 2017 Proposal to permit the field release of genetically engineered diamondback moth in New York Environmental Assessment June 2017 Agency Contact: Cindy Eck Biotechnology and Regulatory Services Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Road, Riverdale, MD 20737 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326–W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250–9410 or call (202) 720–5964 (voice and TDD). USDA is an equal opportunity provider and employer. Mention of companies or commercial products in this report does not imply recommendation or endorsement by the U.S. Department of Agriculture over others not mentioned. USDA neither guarantees nor warrants the standard of any product mentioned. Product names are mentioned solely to report factually on available data and to provide specific information. This publication reports research involving pesticides. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. ii TABLE OF CONTENTS LIST OF FIGURES .......................................................................................................... VI LIST OF TABLES ............................................................................................................ VI ACRONYMS AND ABBREVIATIONS ........................................................................ VII 1 OVERVIEW ............................................................................................................... 1 2 PURPOSE AND NEED .............................................................................................. 2 2.1 Regulatory Authority............................................................................................ 2 2.2 Regulated Organisms ........................................................................................... 2 2.3 APHIS Response to a Permit Application for a Field Release ............................ 3 2.4 Description and Purpose of the Research ............................................................ 3 2.5 Coordinated Framework Review and Regulatory Review ................................... 6 2.5.1 USDA-APHIS ............................................................................................... 6 2.5.2 FDA............................................................................................................... 7 2.5.3 EPA ............................................................................................................... 7 2.6 Public Involvement .............................................................................................. 9 2.7 Issues Considered ............................................................................................... 10 3 AFFECTED ENVIRONMENT ................................................................................ 11 3.1 Introduction ........................................................................................................ 11 3.2 EA Action Area .................................................................................................. 12 3.3 Resource Areas ................................................................................................... 16 3.4 Physical Environment ........................................................................................ 17 3.4.1 Soil Resources ............................................................................................. 17 3.4.2 Water Resources ......................................................................................... 17 3.4.3 Air Quality .................................................................................................. 18 3.4.4 Climate Change ........................................................................................... 19 3.5 Biological Environment ..................................................................................... 19 3.5.1 Wildlife ....................................................................................................... 19 3.5.2 Plant Communities ...................................................................................... 21 3.5.3 Biological Diversity .................................................................................... 22 3.6 Human Health Environment ............................................................................... 22 iii 3.6.1 Farmworker Health ..................................................................................... 23 3.6.2 Health of the General Public ....................................................................... 24 4 ALTERNATIVES..................................................................................................... 25 4.1 No Action Alternative – Deny the Permit .......................................................... 25 4.2 Preferred Alternative – Issue the APHIS Permit ................................................ 25 4.2.1 Standard and Supplemental Permit Conditions .......................................... 26 4.3 Comparison of Alternatives ............................................................................... 34 5 POTENTIAL ENVIRONMENTAL CONSEQUENCES ........................................ 41 5.1 Scope of the Analysis ......................................................................................... 41 5.2 Physical Environment ........................................................................................ 42 5.2.1 No Action Alternative: Soil Resources, Water resources, Air Quality, and Climate Change. ......................................................................................... 42 5.2.2 Preferred Alternative: Soil Resources, Water Resources, Air Quality, and Climate Change .......................................................................................... 47 5.3 Biological Environment ..................................................................................... 48 5.3.1 No Action Alternative: Wildlife, Plant Communities, and Biological Diversity ..................................................................................................... 48 5.3.2 Preferred Alternative: Wildlife, Plant Communities, and Biological Diversity .................................................................................................................... 55 5.4 Human Health Environment ............................................................................... 61 5.4.1 No Action Alternative: Farmworker Health and Health of the General Public .................................................................................................................... 61 5.4.2 Preferred Alternative: Farmworker Health and Health of the General Public .................................................................................................................... 64 5.4.3 Preferred Alternative: Socioeconomic Impact ............................................ 65 6 CUMULATIVE IMPACTS ...................................................................................... 67 7 THREATENED AND ENDANGERED SPECIES .................................................. 69 8 CONSIDERATION OF EXECUTIVE ORDERS, STANDARDS, AND TREATIES RELATING TO ENVIRONMENTAL IMPACTS ................................................. 74 8.1 Executive Orders with Domestic Implications ................................................... 74 8.2 Consultation and Coordination with Indian Tribal Governments ...................... 75 8.3 Impacts on Unique Characteristics of Geographic Areas .................................. 75 8.4 National Historic Preservation Act (NHPA) of 1966 as Amended .................... 76 iv 9 LIST OF PREPARERS............................................................................................. 78 10 REFERENCES ......................................................................................................... 80 v LIST OF FIGURES Figure 1. Diamondback moth reproductive cycle in the absence/presence of the female autocidal trait. .................................................................................................................................................... 5 Figure 2. Action area of this Environmental Assessment. .............................................................. 15 Figure 3. Diamondback moth adult (A), larvae (B), and damage on a cruciferous crop from diamondback moth larvae. ..............................................................................................................
Recommended publications
  • The Parasitoid Complex Associated with the Invasive Swede Midge
    The parasitoid complex associated with the invasive swede midge, Contarinia nasturtii Kieffer (Diptera: Cecidomyiidae) in Europe: prospects for classical biological control in North America. By Paul K. Abram A thesis submitted to the Faculty of Graduate Studies and Research in partial fiilfillment of the requirements for the degree of Master of Science in Biology Carleton University, Ottawa, Ontario, Canada ©2012, Paul K. Abram Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-87830-9 Our file Notre reference ISBN: 978-0-494-87830-9 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Diptera: Syrphidae
    This is a repository copy of The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae).. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/80035/ Version: Accepted Version Article: Penney, HD, Hassall, C orcid.org/0000-0002-3510-0728, Skevington, JH et al. (2 more authors) (2014) The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae). The American Naturalist, 183 (2). pp. 281-289. ISSN 0003-0147 https://doi.org/10.1086/674612 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae)1 Heather D. Penney, Christopher Hassall, Jeffrey H. Skevington, Brent Lamborn & Thomas N. Sherratt Abstract Palatable (Batesian) mimics of unprofitable models could use behavioral mimicry to compensate for the ease with which they can be visually discriminated, or to augment an already close morphological resemblance.
    [Show full text]
  • The Introduction of Toxorhynchites Brevipalpis Theobald Into the Purpose of This Brief Paper Is to Place on Record an Account Of
    Vol. XIV, No. 2, March, 1951 237 The Introduction of Toxorhynchites brevipalpis Theobald into the Territory of Hawaii By DAVID D. BONNET MEDICAL ENTOMOLOGIST, DEPARTMENT OF HEALTH, HONOLULU and STEPHEN M. K. HU CHIEF, BUREAU OF MOSQUITO CONTROL, HONOLULU The purpose of this brief paper is to place on record an account of the introduction of the South African mosquito Toxorhynchites (= Megarhinus) * brevipalpis Theobald into the Territory of Hawaii. The importation of this insect and its establishment would, it is believed, aid in the control of the forest day mosquito, Aedes albopictus Skuse. Any type of container, whether it be a natural container such as a tree hole, bamboo stump, pineapple lily (Bilbergia sp.) or rock hole; or an artificial container such as a vine bowl, tin can, tub, auto tire or bottle, when filled with water, can serve as a breeding location for Aedes albopictus. This varied breeding habit complicates control as it neces sitates the treatment or elimination of a multitude of large and small water-holding containers. Adequate control has been obtained in the urban areas of Hawaii by premises-to-premises inspection, and house holder cooperation, following usual Aedes aegypti (L.) control pro cedures. There are, however, large areas outside the cities where such control measures are not feasible. These areas are principally mountain forest regions which contain a sufficient number of natural breeding situations to maintain a large mosquito population. This population of Aedes albopictus serves not only as a health menace and as a reservoir for reinvasion, but also discourages extensive use of many fine recreation areas.
    [Show full text]
  • Global Transcriptome Analysis of Orange Wheat Blossom Midge, Sitodiplosis Mosellana
    Global Transcriptome Analysis of Orange Wheat Blossom Midge, Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae) to Identify Candidate Transcripts Regulating Diapause Zhong-Jun Gong, Yu-Qing Wu*, Jin Miao, Yun Duan, Yue-Li Jiang, Tong Li Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China, Zhengzhou, China Abstract Background: Many insects enter a developmental arrest (diapause) that allows them to survive harsh seasonal conditions. Despite the well-established ecological significance of diapause, the molecular basis of this crucial adaptation remains largely unresolved. Sitodiplosis mosellana (Gehin), the orange wheat blossom midge (OWBM), causes serious damage to wheat throughout the northern hemisphere, and sporadic outbreaks occur in the world. Traits related to diapause appear to be important factors contributing to their rapid spread and outbreak. To better understand the diapause mechanisms of OWBM, we sequenced the transcriptome and determined the gene expression profile of this species. Methodology/Principal Findings: In this study, we performed de novo transcriptome analysis using short-read sequencing technology (Illumina) and gene expression analysis with a tag-based digital gene expression (DGE) system. The sequencing results generated 89,117 contigs, and 45,713 unigenes. These unigenes were annotated by Blastx alignment against the NCBI non-redundant (nr), Clusters of orthologous groups (COG), gene orthology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. 20,802 unigenes (45.5% of the total) matched with protein in the NCBI nr database.
    [Show full text]
  • Twenty-Five Pests You Don't Want in Your Garden
    Twenty-five Pests You Don’t Want in Your Garden Prepared by the PA IPM Program J. Kenneth Long, Jr. PA IPM Program Assistant (717) 772-5227 [email protected] Pest Pest Sheet Aphid 1 Asparagus Beetle 2 Bean Leaf Beetle 3 Cabbage Looper 4 Cabbage Maggot 5 Colorado Potato Beetle 6 Corn Earworm (Tomato Fruitworm) 7 Cutworm 8 Diamondback Moth 9 European Corn Borer 10 Flea Beetle 11 Imported Cabbageworm 12 Japanese Beetle 13 Mexican Bean Beetle 14 Northern Corn Rootworm 15 Potato Leafhopper 16 Slug 17 Spotted Cucumber Beetle (Southern Corn Rootworm) 18 Squash Bug 19 Squash Vine Borer 20 Stink Bug 21 Striped Cucumber Beetle 22 Tarnished Plant Bug 23 Tomato Hornworm 24 Wireworm 25 PA IPM Program Pest Sheet 1 Aphids Many species (Homoptera: Aphididae) (Origin: Native) Insect Description: 1 Adults: About /8” long; soft-bodied; light to dark green; may be winged or wingless. Cornicles, paired tubular structures on abdomen, are helpful in identification. Nymph: Daughters are born alive contain- ing partly formed daughters inside their bodies. (See life history below). Soybean Aphids Eggs: Laid in protected places only near the end of the growing season. Primary Host: Many vegetable crops. Life History: Females lay eggs near the end Damage: Adults and immatures suck sap from of the growing season in protected places on plants, reducing vigor and growth of plant. host plants. In spring, plump “stem Produce “honeydew” (sticky liquid) on which a mothers” emerge from these eggs, and give black fungus can grow. live birth to daughters, and theygive birth Management: Hide under leaves.
    [Show full text]
  • Coleoptera: Cucujoidea) Matthew Immelg Louisiana State University and Agricultural and Mechanical College, [email protected]
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2011 Revision and Reclassification of the Genera of Phalacridae (Coleoptera: Cucujoidea) Matthew immelG Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Entomology Commons Recommended Citation Gimmel, Matthew, "Revision and Reclassification of the Genera of Phalacridae (Coleoptera: Cucujoidea)" (2011). LSU Doctoral Dissertations. 2857. https://digitalcommons.lsu.edu/gradschool_dissertations/2857 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. REVISION AND RECLASSIFICATION OF THE GENERA OF PHALACRIDAE (COLEOPTERA: CUCUJOIDEA) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Entomology by Matthew Gimmel B.S., Oklahoma State University, 2005 August 2011 ACKNOWLEDGMENTS I would like to thank the following individuals for accommodating and assisting me at their respective institutions: Roger Booth and Max Barclay (BMNH), Azadeh Taghavian (MNHN), Phil Perkins (MCZ), Warren Steiner (USNM), Joe McHugh (UGCA), Ed Riley (TAMU), Mike Thomas and Paul Skelley (FSCA), Mike Ivie (MTEC/MAIC/WIBF), Richard Brown and Terry Schiefer (MEM), Andy Cline (CDFA), Fran Keller and Steve Heydon (UCDC), Cheryl Barr (EMEC), Norm Penny and Jere Schweikert (CAS), Mike Caterino (SBMN), Michael Wall (SDMC), Don Arnold (OSEC), Zack Falin (SEMC), Arwin Provonsha (PURC), Cate Lemann and Adam Slipinski (ANIC), and Harold Labrique (MHNL).
    [Show full text]
  • Spongeweed-Synthesized Silver Nanoparticles Are Highly Effective
    Environ Sci Pollut Res (2016) 23:16671–16685 DOI 10.1007/s11356-016-6832-9 RESEARCH ARTICLE Eco-friendly drugs from the marine environment: spongeweed-synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods Kadarkarai Murugan1,2 & Chellasamy Panneerselvam3 & Jayapal Subramaniam1 & Pari Madhiyazhagan1 & Jiang-Shiou Hwang4 & Lan Wang5 & Devakumar Dinesh1 & Udaiyan Suresh1 & Mathath Roni1 & Akon Higuchi6 & Marcello Nicoletti7 & Giovanni Benelli8,9 Received: 13 April 2016 /Accepted: 4 May 2016 /Published online: 16 May 2016 # Springer-Verlag Berlin Heidelberg 2016 Abstract Mosquitoes act as vectors of devastating pathogens (EDX), and X-ray diffraction (XRD). In mosquitocidal assays, and parasites, representing a key threat for millions of humans the 50 % lethal concentration (LC50)ofC. tomentosum extract and animals worldwide. The control of mosquito-borne dis- against Anopheles stephensi ranged from 255.1 (larva I) to eases is facing a number of crucial challenges, including the 487.1 ppm (pupa). LC50 of C. tomentosum-synthesized emergence of artemisinin and chloroquine resistance in AgNP ranged from 18.1 (larva I) to 40.7 ppm (pupa). In lab- Plasmodium parasites, as well as the presence of mosquito oratory, the predation efficiency of Mesocyclops aspericornis vectors resistant to synthetic and microbial pesticides. copepods against A. stephensi larvae was 81, 65, 17, and 9 % Therefore, eco-friendly tools are urgently required. Here, a (I, II, III, and IV instar, respectively). In AgNP contaminated synergic approach relying to nanotechnologies and biological environment, predation was not affected; 83, 66, 19, and 11 % control strategies is proposed.
    [Show full text]
  • Coleoptera: Coccinellidae) in the Palearctic Region
    Oriental Insects ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/toin20 Review of the genus Hippodamia (Coleoptera: Coccinellidae) in the Palearctic region Amir Biranvand, Oldřich Nedvěd, Romain Nattier, Elizaveta Nepaeva & Danny Haelewaters To cite this article: Amir Biranvand, Oldřich Nedvěd, Romain Nattier, Elizaveta Nepaeva & Danny Haelewaters (2021) Review of the genus Hippodamia (Coleoptera: Coccinellidae) in the Palearctic region, Oriental Insects, 55:2, 293-304, DOI: 10.1080/00305316.2020.1763871 To link to this article: https://doi.org/10.1080/00305316.2020.1763871 Published online: 15 May 2020. Submit your article to this journal Article views: 87 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=toin20 ORIENTAL INSECTS 2021, VOL. 55, NO. 2, 293–304 https://doi.org/10.1080/00305316.2020.1763871 Review of the genus Hippodamia (Coleoptera: Coccinellidae) in the Palearctic region Amir Biranvanda, Oldřich Nedvěd b,c, Romain Nattierd, Elizaveta Nepaevae and Danny Haelewaters b aYoung Researchers and Elite Club, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran; bFaculty of Science, University of South Bohemia, České Budějovice, Czech Republic; cBiology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic; dInstitut de Systématique, Evolution, Biodiversité, ISYEB, Muséum National d’Histoire Naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France; eAltai State University, Barnaul, Russian Federation ABSTRACT ARTICLE HISTORY Hippodamia Chevrolat, 1836 currently comprises 19 species. Received 9 December 2019 Four species of Hippodamia are native to the Palearctic region: Accepted 29 April 2020 Hippodamia arctica (Schneider, 1792), H.
    [Show full text]
  • Hoverfly Newsletter No
    Dipterists Forum Hoverfly Newsletter Number 48 Spring 2010 ISSN 1358-5029 I am grateful to everyone who submitted articles and photographs for this issue in a timely manner. The closing date more or less coincided with the publication of the second volume of the new Swedish hoverfly book. Nigel Jones, who had already submitted his review of volume 1, rapidly provided a further one for the second volume. In order to avoid delay I have kept the reviews separate rather than attempting to merge them. Articles and illustrations (including colour images) for the next newsletter are always welcome. Copy for Hoverfly Newsletter No. 49 (which is expected to be issued with the Autumn 2010 Dipterists Forum Bulletin) should be sent to me: David Iliff Green Willows, Station Road, Woodmancote, Cheltenham, Glos, GL52 9HN, (telephone 01242 674398), email:[email protected], to reach me by 20 May 2010. Please note the earlier than usual date which has been changed to fit in with the new bulletin closing dates. although we have not been able to attain the levels Hoverfly Recording Scheme reached in the 1980s. update December 2009 There have been a few notable changes as some of the old Stuart Ball guard such as Eileen Thorpe and Austin Brackenbury 255 Eastfield Road, Peterborough, PE1 4BH, [email protected] have reduced their activity and a number of newcomers Roger Morris have arrived. For example, there is now much more active 7 Vine Street, Stamford, Lincolnshire, PE9 1QE, recording in Shropshire (Nigel Jones), Northamptonshire [email protected] (John Showers), Worcestershire (Harry Green et al.) and This has been quite a remarkable year for a variety of Bedfordshire (John O’Sullivan).
    [Show full text]
  • Chrysoperla Carnea by Chemical Cues from Cole Crops
    Biological Control 29 (2004) 270–277 www.elsevier.com/locate/ybcon Mediation of host selection and oviposition behavior in the diamondback moth Plutella xylostella and its predator Chrysoperla carnea by chemical cues from cole crops G.V.P. Reddy,a,* E. Tabone,b and M.T. Smithc a Agricultural Experiment Station, College of Agriculture and Life Sciences, University of Guam, Mangilao, GU 96923, USA b INRA, Entomologie et Lutte Biologique, 37 Bd du Cap, Antibes F-06606, France c USDA, ARS, Beneficial Insect Introduction Research Unit, University of Delaware, 501 S. Chapel, St. Newark, DE 19713-3814, USA Received 28 January 2003; accepted 15 July 2003 Abstract Host plant-mediated orientation and oviposition by diamondback moth (DBM) Plutella xylostella (L.) (Lepidoptera: Ypo- nomeutidae) and its predator Chrysoperla carnea Stephens (Neuroptera: Chrysopidae) were studied in response to four different brassica host plants: cabbage, (Brassica oleracea L. subsp. capitata), cauliflower (B. oleracea L. subsp. botrytis), kohlrabi (B. oleracea L. subsp. gongylodes), and broccoli (B. oleracea L. subsp. italica). Results from laboratory wind tunnel studies indicated that orientation of female DBM and C. carnea females towards cabbage and cauliflower was significantly greater than towards either broccoli or kohlrabi plants. However, DBM and C. carnea males did not orient towards any of the host plants. In no-choice tests, oviposition by DBM did not differ significantly among the test plants, while C. carnea layed significantly more eggs on cabbage, cauliflower, and broccoli than on kohlrabi. However, in free-choice tests, oviposition by DBM was significantly greater on cabbage, followed by cauliflower, broccoli, and kohlrabi, while C.
    [Show full text]
  • Dakota Skipper (Hesperia Dacotae)
    Plan for the Controlled Propagation, Augmentation, and Reintroduction of Dakota skipper (Hesperia dacotae) April 30th 2017 Authors: Phil Delphey, Fish & Wildlife Biologist, U.S. Fish & Wildlife Service, Bloomington, MN Erik Runquist, Butterfly Conservation Biologist, Minnesota Zoo, Apple Valley, MN Cale Nordmeyer, Butterfly Conservation Specialist, Minnesota Zoo, Apple Valley, MN Plan for the Controlled Propagation, Augmentation, and Reintroduction of Dakota skipper 2017 Contents I. Executive Summary ............................................................................................................................... 4 II. Introduction .......................................................................................................................................... 5 III. Definitions of Terms Used in this Plan .............................................................................................. 5 IV. Justification for Captive Rearing, Augmentation and Reintroduction .............................................. 6 A. Status of the species ......................................................................................................................... 6 B. Likely Population Trends ................................................................................................................. 10 C. Threats ............................................................................................................................................ 11 D. Contributions to the Species’ Recovery .........................................................................................
    [Show full text]
  • Toxicity, Sublethal and Low Dose Effects of Imidacloprid and Deltamethrin on the Aphidophagous Predator Ceratomegilla Undecimnotata (Coleoptera: Coccinellidae)
    insects Article Toxicity, Sublethal and Low Dose Effects of Imidacloprid and Deltamethrin on the Aphidophagous Predator Ceratomegilla undecimnotata (Coleoptera: Coccinellidae) Panagiotis J. Skouras 1,* , Anastasios I. Darras 2 , Marina Mprokaki 1, Vasilios Demopoulos 3, John T. Margaritopoulos 4 , Costas Delis 2 and George J. Stathas 1 1 Laboratory of Agricultural Entomology and Zoology, Department of Agriculture, Kalamata Campus, University of the Peloponnese, 24100 Antikalamos, Greece; [email protected] (M.M.); [email protected] (G.J.S.) 2 Department of Agriculture, Kalamata Campus, University of the Peloponnese, 24100 Antikalamos, Greece; [email protected] (A.I.D.); [email protected] (C.D.) 3 Laboratory of Plant Protection, Department of Agriculture, Kalamata Campus, University of the Peloponnese, 24100 Antikalamos, Greece; [email protected] 4 Department of Plant Protection, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization “DEMETER”—NAGREF, 38446 Volos, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-27210-45277 Simple Summary: Chemical insecticides are used to control agricultural pests all over the world. However, extensive use of chemical insecticides can be harmful to human health and negatively Citation: Skouras, P.J.; Darras, A.I.; impact the environment and biological control agents. We studied the toxicity and sublethal effects Mprokaki, M.; Demopoulos, V.; of imidacloprid and deltamethrin on the aphidophagous coccinellid predator Ceratomegilla
    [Show full text]