Prehistoric Animals, in Living Color Paleontologists Are Looking Beyond Bones to Reveal the Hues of Prehistoric Animals That Vanished Millions of Years Ago

Total Page:16

File Type:pdf, Size:1020Kb

Prehistoric Animals, in Living Color Paleontologists Are Looking Beyond Bones to Reveal the Hues of Prehistoric Animals That Vanished Millions of Years Ago NEWS FEATURE NEWS FEATURE Prehistoric animals, in living color Paleontologists are looking beyond bones to reveal the hues of prehistoric animals that vanished millions of years ago. But the young field has its share of disagreements. Amber Dance, Science Writer Michael Benton used to tell his paleontology students that Most of these colorful revelations have emerged from they would never know the true color of a dinosaur. After fossils that contain evidence of melanin pigments— all, even fossils that sport light or dark patches may not responsible for earth tones, such as red, black, brown, ’ indicate the creature s original hue. But in recent years, the and buff—or the tiny cellular bags, called melano- vertebrate paleontologist at the University of Bristol in the somes, which produce and store melanins. But some United Kingdom has had to revise those lectures. scientists are already identifying the brighter hues of In 2010, Benton and colleagues found evidence ancient snakes and insects. “Probably all of the colors that the feathered dinosaur Sinosauropteryx prima can eventually be identified,” predicts Benton. had reddish-brown stripes on its tail (1). The same year, The work is not only helping to repaint the colorful another group claimed that birdlike Anchiornis huxleyi pictures of dinosaurs that charm schoolchildren and bore a red crest on its head (2). Since then, others have discovered that a marine ichthyosaur was dark-colored, museum-goers. Color can provide clues about how and that the early bird Confuciusornis sanctus possessed animals lived, mated, or died. Bright feathers suggest dark feathers with light wing tips (3, 4) (Table 1). Sud- that animals used those hues to select a desirable denly, the color of prehistoric animals has become an mate, for example, whereas green coloration would active topic for research rather than speculation, turning offer camouflage amid foliage, indicating there must Benton into an optimist: “If you’re a scientist, never say have been predators about. “Color has roles in lots of anything is impossible,” he now tells students. different parts of animal behavior and social interactions,” Researchers reconstructed the plumage color of a Jurassic birdlike dinosaur called A. huxleyi using color-imparting melanosomes, the morphology of which had been preserved in fossil feathers. Image courtesy of Michael DiGiorgio (artist). 8552–8556 | PNAS | August 2, 2016 | vol. 113 | no. 31 www.pnas.org/cgi/doi/10.1073/pnas.1610795113 Downloaded by guest on September 27, 2021 Illustrations courtesy of Lucy Reading (graphic artist). says Nick Edwards, a paleontologist at the University be responsible for helping to preserve fossil feathers, of Manchester in the United Kingdom. says Benton. But the fledgling field of paleo-color has also gen- Nineteenth century fossil hunters certainly knew that erated controversy. Some scientists dispute whether melanins could stand the test of time. Some even wrote melanosomes could be preserved in fossils, and argue letters with the melanin pigment ink that they found that researchers are being fooled by what are in fact preserved in the ink sacs of fossilized squids. And it was fossilized bacteria. Others question the use of certain during his own studies of squid fossils in 2006 that Jakob metals as proxies for pigments. “I think what’s happening Vinther, then a graduate student at Yale University in is what often happens when people come up with new New Haven, Connecticut, began to wonder whether ideas,” says Luis Chiappe, Vice President for Research and melanins could persist in other fossils. A handful of sci- Collections at the Natural History Museum of Los Angeles. entists, including his supervisor Derek Briggs, had pre- “We got super excited because we had figured out ways viously seen minuscule, sausage-shaped formations in a of potentially devising the colors of these extinct ani- variety of fossils, and labeled them fossil bacteria (5, 6). mals... now we’re starting to realize it’snotassimple.” Vinther suggested these formations could be mela- nosomes instead. Melanosome shape, he reasoned, The Race to Color a Dinosaur could even give clues to color: sausage-shaped mela- In retrospect, it’s not so surprising that pigment traces nosomes contain the black pigment eumelanin, whereas can survive for so long. Melanins, derived from the amino round melanosomes hold reddish-brown pheomelanin. acid tyrosine, are remarkably tough polymers, and they Briggs, a paleontologist, was skeptical, but willing to tightly cross-link with proteins, such as the keratin in test the idea. He suggested that Vinther take a closer look feathers. This strengthens tissues, and could even at a fossil feather that had dark and light stripes. If the blobs Dance PNAS | August 2, 2016 | vol. 113 | no. 31 | 8553 Downloaded by guest on September 27, 2021 were melanosomes, they should be found only in the dark A. huxleyi specimen (8, 9). Lindgren concludes that sections. If they were bacteria, they ought to be all over the at least some of the microbodies in fossils are indeed feather. When Vinther examined the light sections with a melanosomes. scanning electron microscope, he saw nothing more than Vinther, now a paleontologist at the University of the imprint of the feather itself. But in the dark sections he Bristol, also uses ToF-SIMS; he and other scientists say found the oblong bodies, along with their impressions in this direct evidence of the chemical signature of the rock (7). His hypothesis appeared to be correct. melanin pigments clinches their argument. “As far as Once Vinther’s idea went public in 2008, the race I’m concerned, case closed,” says Briggs. was on to color in a dinosaur. It ended in a dead heat: However, some critics point out that these analysis Benton’s and Vinther’s teams unveiled the colors of methods may offer a misleading picture of pigmentation. stripe-tailed S. prima and red-headed A. huxleyi within Essentially, they can only look at a limited number of days of each other in early 2010 (1, 2). spots from a given specimen. Scientists have to chip off a Other discoveries followed fast, and Benton says small bit of the fossil to subject it to mass spectrometry; that the majority of paleontologists have come to accept to minimize damage they typically only look at a handful that the preserved blobs are melanosomes. Even Michael of chips. And Vinther and colleagues studied only Wuttke, the paleontologist recently retired from the one isolated feather to decide that Archaeopteryx lith- General Department of Cultural Heritage Rhineland- ographica was probably black (10). This kind of extrapo- Palatinate in Germany, who originally thought they were lation could be wrong, say Schweitzer and others. Imagine bacteria (5), says he is now “absolutely convinced” that trying to determine the coloration of a modern-day pea- melanosomes are preserved in hairs and feathers. cock from pigments at just a few dozen spots, she cau- However, evolutionary biologist Mary Higby Schweit- tions: you might not come up with the right pattern. zer, of North Carolina State University in Raleigh, calls To avoid this problem, Edwards and colleagues use the conclusions “overstated,” a position she admits has X-ray analysis (which causes no damage) to probe pig- made her unpopular among most paleo-color aficio- ments across an entire fossil. Along with collaborators nados. “I’m not against melanosomes preserving,” says Schweitzer. But, she adds, it’s “more parsimonious to at the Stanford Synchrotron Radiation Lightsource (SSRL) assume a microbial origin until disproven with data in Menlo Park, California, these researchers use a tech- other than pictures.” nique called synchrotron rapid-scanning X-ray fluo- rescence that causes different elements to emit a Rainbow of Possibilities characteristic burst of light. In fossil organisms such as Researchers have started to collect such data. Johan C. sanctus, the scientists see copper, which is one of Lindgren, a paleontologist at Lund University in Swe- several metal ions that can bind to melanins, and is also den, uses time-of-flight secondary ion mass spec- found in tyrosinase, an enzyme that controls the produc- trometry (ToF-SIMS) and other methods to analyze tion of melanins (4). Another technique, X-ray absorption the chemical composition of fossils. By exciting the spectroscopy, revealed that the copper was bound to or- fossil surface with an ion beam, Lindgren can mea- ganic molecules, which were “most probably derived from sure the masses of the atoms and molecules that precursor pigment molecules,” says Roy Wogelius, a Uni- fly off, and he has discovered black eumelanin pig- versity of Manchester geologist on the team. Based on ment itself in fossils, such as a fish eye and an these techniques, the researchers concluded that the tips Elucidating Structural Color Pigments are not the only source of animal colors. The bright hues of a butterfly’s wing and the metallic sheen of a beetle are structural colors, produced when light bounces off multilayer, nanoscale structures that scatter the rays. Maria McNamara, of the University College Cork in Ireland, has shown that these nano- structures can occasionally survive the fossilization process (15), allowing researchers to decipher the color of insects that lived long ago. McNamara and her team examined the greenish-blue fossils of 47-million-year-old forester moths by using electron microscopy and spectrophotometry to analyze how they scatter light (16). The researchers concluded that the moths’ wings contained multilayer structures that would have produced color in life, but the wings probably weren’t originally greenish-blue. That’s because the fossilization process can change the architecture of the nanostructures, and therefore the color they produce. To simulate this process, McNa- mara exposed modern-day beetles to high temperatures and pressure in an autoclave. She found that the highest temperatures turned their wings black, whereas lower temperatures shifted the hue toward the blue end of the spectrum (17).
Recommended publications
  • Illinois Fossils Doc 2005
    State of Illinois Illinois Department of Natural Resources Illinois Fossils Illinois Department of Natural Resources he Illinois Fossils activity book from the Illinois Department of Natural Resources’ (IDNR) Division of Education is designed to supplement your curriculum in a vari- ety of ways. The information and activities contained in this publication are targeted toT grades four through eight. The Illinois Fossils resources trunk and lessons can help you T teach about fossils, too. You will find these and other supplemental items through the Web page at https://www2.illinois.gov/dnr/education/Pages/default.aspx. Contact the IDNR Division of Education at 217-524-4126 or [email protected] for more information. Collinson, Charles. 2002. Guide for beginning fossil hunters. Illinois State Geological Survey, Champaign, Illinois. Geoscience Education Series 15. 49 pp. Frankie, Wayne. 2004. Guide to rocks and minerals of Illinois. Illinois State Geological Survey, Champaign, Illinois. Geoscience Education Series 16. 71 pp. Killey, Myrna M. 1998. Illinois’ ice age legacy. Illinois State Geological Survey, Champaign, Illinois. Geoscience Education Series 14. 67 pp. Much of the material in this book is adapted from the Illinois State Geological Survey’s (ISGS) Guide for Beginning Fossil Hunters. Special thanks are given to Charles Collinson, former ISGS geologist, for the use of his fossil illustrations. Equal opportunity to participate in programs of the Illinois Department of Natural Resources (IDNR) and those funded by the U.S. Fish and Wildlife Service and other agencies is available to all individuals regardless of race, sex, national origin, disability, age, reli-gion or other non-merit factors.
    [Show full text]
  • D Inosaur Paleobiology
    Topics in Paleobiology The study of dinosaurs has been experiencing a remarkable renaissance over the past few decades. Scientifi c understanding of dinosaur anatomy, biology, and evolution has advanced to such a degree that paleontologists often know more about 100-million-year-old dinosaurs than many species of living organisms. This book provides a contemporary review of dinosaur science intended for students, researchers, and dinosaur enthusiasts. It reviews the latest knowledge on dinosaur anatomy and phylogeny, Brusatte how dinosaurs functioned as living animals, and the grand narrative of dinosaur evolution across the Mesozoic. A particular focus is on the fossil evidence and explicit methods that allow paleontologists to study dinosaurs in rigorous detail. Scientifi c knowledge of dinosaur biology and evolution is shifting fast, Dinosaur and this book aims to summarize current understanding of dinosaur science in a technical, but accessible, style, supplemented with vivid photographs and illustrations. Paleobiology Dinosaur The Topics in Paleobiology Series is published in collaboration with the Palaeontological Association, Paleobiology and is edited by Professor Mike Benton, University of Bristol. Stephen Brusatte is a vertebrate paleontologist and PhD student at Columbia University and the American Museum of Natural History. His research focuses on the anatomy, systematics, and evolution of fossil vertebrates, especially theropod dinosaurs. He is particularly interested in the origin of major groups such Stephen L. Brusatte as dinosaurs, birds, and mammals. Steve is the author of over 40 research papers and three books, and his work has been profi led in The New York Times, on BBC Television and NPR, and in many other press outlets.
    [Show full text]
  • Tetrapod Biostratigraphy and Biochronology of the Triassic–Jurassic Transition on the Southern Colorado Plateau, USA
    Palaeogeography, Palaeoclimatology, Palaeoecology 244 (2007) 242–256 www.elsevier.com/locate/palaeo Tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau, USA Spencer G. Lucas a,⁎, Lawrence H. Tanner b a New Mexico Museum of Natural History, 1801 Mountain Rd. N.W., Albuquerque, NM 87104-1375, USA b Department of Biology, Le Moyne College, 1419 Salt Springs Road, Syracuse, NY 13214, USA Received 15 March 2006; accepted 20 June 2006 Abstract Nonmarine fluvial, eolian and lacustrine strata of the Chinle and Glen Canyon groups on the southern Colorado Plateau preserve tetrapod body fossils and footprints that are one of the world's most extensive tetrapod fossil records across the Triassic– Jurassic boundary. We organize these tetrapod fossils into five, time-successive biostratigraphic assemblages (in ascending order, Owl Rock, Rock Point, Dinosaur Canyon, Whitmore Point and Kayenta) that we assign to the (ascending order) Revueltian, Apachean, Wassonian and Dawan land-vertebrate faunachrons (LVF). In doing so, we redefine the Wassonian and the Dawan LVFs. The Apachean–Wassonian boundary approximates the Triassic–Jurassic boundary. This tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau confirms that crurotarsan extinction closely corresponds to the end of the Triassic, and that a dramatic increase in dinosaur diversity, abundance and body size preceded the end of the Triassic. © 2006 Elsevier B.V. All rights reserved. Keywords: Triassic–Jurassic boundary; Colorado Plateau; Chinle Group; Glen Canyon Group; Tetrapod 1. Introduction 190 Ma. On the southern Colorado Plateau, the Triassic– Jurassic transition was a time of significant changes in the The Four Corners (common boundary of Utah, composition of the terrestrial vertebrate (tetrapod) fauna.
    [Show full text]
  • Primitive Soft-Bodied Cephalopods from the Cambrian
    ACCEPTED DRAFT Please note that this is not the final manuscript version. Links to the published manuscript, figures, and supplementary information can be found at http://individual.utoronto.ca/martinsmith/nectocaris.html doi: 10.1038/nature09068 Smith & Caron 2010, Page 1 Primitive soft-bodied cephalopods from the Cambrian Martin R. Smith 1, 2* & Jean-Bernard Caron 2, 1 1Departent of Ecology and Evolutionary Biology, University of Toronto, 25 Harbord Street, Ontario, M5S 3G5, Canada 2Department of Palaeobiology, Royal Ontario Museum, 100 Queen ’s Park, Toronto, Ontario M5S 2C6, Canada *Author for correspondence The exquisite preservation of soft-bodied animals in Burgess Shale-type deposits provides important clues into the early evolution of body plans that emerged during the Cambrian explosion 1. Until now, such deposits have remained silent regarding the early evolution of extant molluscan lineages – in particular the cephalopods. Nautiloids, traditionally considered basal within the cephalopods, are generally depicted as evolving from a creeping Cambrian ancestor whose dorsal shell afforded protection and buoyancy 2. Whilst nautiloid-like shells occur from the Late Cambrian onwards, the fossil record provides little constraint on this model, or indeed on the early evolution of cephalopods. Here, we reinterpret the problematic Middle Cambrian animal Nectocaris pteryx 3, 4 as a primitive (i.e. stem-group), non-mineralized cephalopod, based on new material from the Burgess Shale. Together with Nectocaris, the problematic Lower Cambrian taxa Petalilium 5 and (probably) Vetustovermis 6, 7 form a distinctive clade, Nectocarididae, characterized by an open axial cavity with paired gills, wide lateral fins, a single pair of long, prehensile tentacles, a pair of non-faceted eyes on short stalks, and a large, flexible anterior funnel.
    [Show full text]
  • Annual Meeting 1998
    PALAEONTOLOGICAL ASSOCIATION 42nd Annual Meeting University of Portsmouth 16-19 December 1996 ABSTRACTS and PROGRAMME The apparatus architecture of prioniodontids Stephanie Barrett Geology Department, University of Leicester, University Road, Leicester LE1 7RH, UK e-mail: [email protected] Conodonts are among the most prolific fossils of the Palaeozoic, but it has taken more than 130 years to understand the phylogenetic position of the group, and the form and function of its fossilized feeding apparatus. Prioniodontids were the first conodonts to develop a complex, integrated feeding apparatus. They dominated the early Ordovician radiation of conodonts, before the ozarkodinids and prioniodinids diversified. Until recently the reconstruction of the feeding apparatuses of all three of these important conodont orders relied mainly on natural assemblages of the ozarkodinids. The reliability of this approach is questionable, but in the absence of direct information it served as a working hypothesis. In 1990, fossilized bedding plane assemblages of Promissum pulchrum, a late Ordovician prioniodontid, were described. These were the first natural assemblages to provide information about the architecture of prioniodontid feeding apparatus, and showed significant differences from the ozarkodinid plan. The recent discovery of natural assemblages of Phragmodus inflexus, a mid Ordovician prioniodontid with an apparatus comparable with the ozarkodinid plan, has added new, contradictory evidence. Work is now in progress to try and determine whether the feeding apparatus of Phragmodus or that of Promissum pulchrum is most appropriate for reconstructing the feeding apparatuses of other prioniodontids. This work will assess whether Promissum pulchrum is an atypical prioniodontid, or whether prioniodontids, as currently conceived, are polyphyletic.
    [Show full text]
  • Central Nervous System of a 310-My-Old Horseshoe Crab
    https://doi.org/10.1130/G49193.1 Manuscript received 2 March 2021 Revised manuscript received 26 April 2021 Manuscript accepted 2 June 2021 © 2021 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Central nervous system of a 310-m.y.-old horseshoe crab: Expanding the taphonomic window for nervous system preservation Russell D.C. Bicknell1*, Javier Ortega-Hernández2, Gregory D. Edgecombe3, Robert R. Gaines4 and John R. Paterson1 1 Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia 2 Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138, USA 3 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK 4 Geology Department, Pomona College, 185 E. Sixth Street, Claremont, California 91711, USA ABSTRACT reconstructing the complex evolutionary history The central nervous system (CNS) presents unique insight into the behaviors and ecology of Euarthropoda (Lamsdell, 2016). Euproops of extant and extinct animal groups. However, neurological tissues are delicate and prone danae shares similar prosomal appendage or- to rapid decay, and thus their occurrence as fossils is mostly confined to Cambrian Burgess ganization with the extant Limulus polyphemus Shale–type deposits and Cenozoic amber inclusions. We describe an exceptionally preserved (Linnaeus, 1758) (Haug and Rötzer, 2018) and CNS in the horseshoe crab Euproops danae from the late Carboniferous (Moscovian) Mazon is one of the best-documented fossil xiphosurids Creek Konservat-Lagerstätte in Illinois, USA. The E. danae CNS demonstrates that the general both within Mazon Creek (Raymond, 1945) prosomal synganglion organization has remained essentially unchanged in horseshoe crabs and globally (Haug and Rötzer, 2018; Bicknell for >300 m.y., despite substantial morphological and ecological diversification in that time.
    [Show full text]
  • Ninety-Third Annual Saturday Morning the Seventeenth of May Two Thousand and Eight at Half Past Nine
    SOUTHERN METHODIST UNIVERSITY Ninety-Third Annual COMMENCEMENT CONVOCATION Saturday Morning The Seventeenth of May Two Thousand and Eight at Half Past Nine MOODY COLISEUM THIS IS FLY SHEET - CURIOUS TRANSLUCENTS IRREDECENTS SILVER #27 TEXT DOES NOT PRINT GRAY THIS IS FLY SHEET - CURIOUS TRANSLUCENTS IRREDECENTS SILVER #27 TEXT DOES NOT PRINT GRAY SOUTHERN METHODIST UNIVERSITY In 1911, a Methodist education commission made a commitment to establish a major Methodist university in Texas. More than 600 acres of open prairie and $300,000 pledged by a group of Dallas citizens secured the university for Dallas, and it was chartered as Southern Methodist University. In appreciation of the city’s support, the first building to be constructed on the campus was named Dallas Hall. It remains the centerpiece and symbol of SMU. When the University opened in 1915, it consisted of two buildings, 706 students, a 35-member faculty, and total assets of $636,540. The original schools of SMU were the College of Arts and Sciences, the School of Theology, and the School of Music. SMU is owned by the South Central Jurisdiction of the United Methodist Church. The first charge of its founders, however, was that it become a great university, not necessarily a great Methodist university. From its founding, SMU has been nonsectarian in its teaching and committed to the values of academic freedom and open inquiry. Today, Southern Methodist University offers a comprehensive curriculum through Dedman College – the college of humanities and sciences – and six schools: Meadows School of the Arts, Edwin L. Cox School of Business, School of Engineering, Perkins School of Theology, Dedman School of Law, and Annette Caldwell Simmons School of Education and Human Development.
    [Show full text]
  • An Early Late Triassic Long-Necked Reptile with a Bony Pectoral Shield and Gracile Appendages
    An early Late Triassic long-necked reptile with a bony pectoral shield and gracile appendages JERZY DZIK and TOMASZ SULEJ Dzik, J. and Sulej, T. 2016. An early Late Triassic long-necked reptile with a bony pectoral shield and gracile appendages. Acta Palaeontologica Polonica 61 (4): 805–823. Several partially articulated specimens and numerous isolated bones of Ozimek volans gen. et sp. nov., from the late Carnian lacustrine deposits exposed at Krasiejów in southern Poland, enable a reconstruction of most of the skeleton. The unique character of the animal is its enlarged plate-like coracoids presumably fused with sterna. Other aspects of the skeleton seem to be comparable to those of the only known specimen of Sharovipteryx mirabilis from the latest Middle Triassic of Kyrgyzstan, which supports interpretation of both forms as protorosaurians. One may expect that the pectoral girdle of S. mirabilis, probably covered by the rock matrix in its only specimen, was similar to that of O. volans gen. et sp. nov. The Krasiejów material shows sharp teeth, low crescent scapula, three sacrals in a generalized pelvis (two of the sacrals being in contact with the ilium) and curved robust metatarsal of the fifth digit in the pes, which are unknown in Sharovipteryx. Other traits are plesiomorphic and, except for the pelvic girdle and extreme elongation of appendages, do not allow to identify any close connection of the sharovipterygids within the Triassic protorosaurians. Key words: Archosauromorpha, Sharovipteryx, protorosaurs, gliding, evolution, Carnian, Poland. Jerzy Dzik [[email protected]], Instytut Paleobiologii PAN, ul. Twarda 51/55, 00-818 Warszawa, Poland and Wydział Biologii Uniwersytetu Warszawskiego, Centrum Nauk Biologiczno-Chemicznych, ul.
    [Show full text]
  • Paleontology and the History of Life
    36954_u01.qxd 7/11/08 2:01 PM Page 80 Paleontology and the History of Life Michael Benton And out of the ground the Lord God formed every beast of the field, and every fowl of the air; and brought them unto Adam to see what he would call them: and whatsoever Adam called every living creature, that was the name thereof. Genesis 2:19 People have always been astounded by the diversity of life, although perhaps in different ways. In prescientific times farmers saw how their crops and live- stock were merely part of a much larger richness of life, and people have al- ways striven to understand the complexity and arrangement of living things. From Aristotle to Linnaeus, scientists attempted to catalog life and to under- stand where it had come from. During the eighteenth century it became clear to all savants that the earth had been populated formerly by strange and mar- velous creatures that had since become extinct. By 1820 some rough picture of the succession of floras and faunas through geological time was beginning to emerge. Charles Darwin, during the voyage of HMS Beagle in the early 1830s, became increasingly convinced that life was more diverse than he had imagined—every island he visited sported a new crop of plants and animals. He saw the lateral (geographic) and vertical (historic) links between species and realized by 1837 that species were all linked by a great tree. The tree con- cept made it clear why species that in his time were geographically close should also be genealogically close.
    [Show full text]
  • Jgs2018-088.Pdf by Univ College Cork User on 28 February 2019 2 T
    UCC Library and UCC researchers have made this item openly available. Please let us know how this has helped you. Thanks! Title The Mazon Creek Lagerstätte: a diverse late Paleozoic ecosystem entombed within siderite concretions Author(s) Clements, Thomas; Purnell, Mark; Gabbott, Sarah Publication date 2018 Original citation Clements, T., Purnell, M. and Gabbott, S., 2019. The Mazon Creek Lagerstätte: a diverse late Paleozoic ecosystem entombed within siderite concretions. Journal of the Geological Society, 176(1), 1-11. DOI: 10.1144/jgs2018-088 Type of publication Article (peer-reviewed) Link to publisher's https://pubs.geoscienceworld.org/jgs/article- version lookup?doi=10.1144/jgs2018-088 http://dx.doi.org/10.1144/jgs2018-088 Access to the full text of the published version may require a subscription. Rights © 2018 The Author(s) http://creativecommons.org/licenses/by/3.0/ Item downloaded http://hdl.handle.net/10468/7570 from Downloaded on 2021-10-06T08:54:20Z Review focus Journal of the Geological Society Published online October 4, 2018 https://doi.org/10.1144/jgs2018-088 | Vol. 176 | 2019 | pp. 1–11 The Mazon Creek Lagerstätte: a diverse late Paleozoic ecosystem entombed within siderite concretions Thomas Clements1,2*, Mark Purnell1 & Sarah Gabbott1* 1 Department of Geology, University of Leicester, Leicester LE1 7RH, UK 2 School of Biological, Earth and Environmental Sciences (BEES), University College Cork, Cork, Ireland T.C., 0000-0002-6563-4720; M.P., 0000-0002-1777-9220 * Correspondence: [email protected]; [email protected] Abstract: One of the best records of late Paleozoic ecosystems, the Mazon Creek Lagerstätte is world famous for its striking flora and fauna preserved within siderite concretions.
    [Show full text]
  • Tully Monster’ Is Not a Vertebrate: Characters, Convergence and Taphonomy in Palaeozoic Problematic A
    [Palaeontology, Vol. 60, Part 2, 2017, pp. 149–157] RAPID COMMUNICATION THE ‘TULLY MONSTER’ IS NOT A VERTEBRATE: CHARACTERS, CONVERGENCE AND TAPHONOMY IN PALAEOZOIC PROBLEMATIC ANIMALS by LAUREN SALLAN1 ,SAMGILES2,ROBERTS.SANSOM3,JOHNT. CLARKE1 , ZERINA JOHANSON4 ,IVANJ.SANSOM5 and PHILIPPE JANVIER6 1Department of Earth & Environmental Science, University of Pennsylvania, Philadelphia, PA USA; [email protected], [email protected] 2Department of Earth Sciences, Oxford University, Oxford, UK; [email protected] 3School of Earth & Environmental Sciences, University of Manchester, Manchester, UK; [email protected] 4Department of Earth Sciences, Natural History Museum, London, UK; [email protected] 5School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK; [email protected] 6CR2P, Museum national d’Histoire naturelle, Paris, France; [email protected] Typescript received 18 November 2016; accepted in revised form 19 January 2017 Abstract: The affinity of Tullimonstrum gregarium, a pin- identity and implies that convergence or deeper origins are cer-mouthed, soft bodied bilaterian, has been subject to responsible for vertebrate-like traits. Further, phylogenetic debate since its recovery from Carboniferous coal deposits at placement within vertebrates is only made possible by the Mazon Creek, Illinois. After decades of impasse focused on constraints of a chordate-only dataset with limited outgroups mollusc, arthropod and annelid attributes, two recent, yet and use of selective characters. Long-discussed alternative conflicting, high-profile studies concluded that the ‘Tully placements among molluscs (e.g. heteropod gastropods), Monster’ is a vertebrate, a relative of lampreys or jawed arthropods (e.g. anomalocarids) or elsewhere within non- fishes.
    [Show full text]
  • Fossils, Histology, and Phylogeny: Why Conodonts Are Not Vertebrates
    234 by Alain Blieck1, Susan Turner2,3, Carole J. Burrow3, Hans-Peter Schultze4, Carl B. Rexroad5, Pierre Bultynck6 and Godfrey S. Nowlan7 Fossils, histology, and phylogeny: Why conodonts are not vertebrates 1Université Lille 1: Sciences de la Terre, FRE 3298 du CNRS «Géosystèmes», F-59655 Villeneuve d’Ascq cedex, France. E-mail: [email protected] 2Monash University, Geosciences, Box 28E, Victoria 3800, Australia 3Queensland Museum, Geosciences, 122 Gerler Road, Hendra, Queensland 4011, Australia 4Kansas University, Biodiversity Institute & Natural History Museum, 1345 Jayhawk Blvd., Lawrence, KS 66045-7593, USA 5Indiana Geological Survey, 611 North Walnut Grove, Bloomington, IN 47405-2208, USA 6Institut Royal des Sciences Naturelles de Belgique, Département de Paléontologie, Rue Vautier, 29, B-1000 Bruxelles, Belgium 7Geological Survey of Canada, 3303 – 33rd Street NW, Calgary, AB T2L 2A7, Canada The term vertebrate is generally viewed by help resolve the phylogenetic relationships of conodonts systematists in two contexts, either as Craniata and chordates, the analysis should be extended to (myxinoids or hagfishes + vertebrates s.s., i.e. basically, include non-chordate taxa. animals possessing a stiff backbone) or as Vertebrata (lampreys + other vertebrae-bearing animals, which Historical background we propose to call here Euvertebrata). Craniates are characterized by a skull; vertebrates by vertebrae A recent paper by Sweet and Cooper (2008), within the classic paper series of Episodes, drew our attention and prompted this (arcualia); euvertebrates are vertebrates with hard response. Their paper concerned the discovery and the concept of phosphatised tissues in the skeleton. The earliest conodonts by Christian Heinrich Pander (1856). He was the first known possible craniate is Myllokunmingia (syn.
    [Show full text]