WO 2018/119354 Al 28 June 2018 (28.06.2018) W ! P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2018/119354 Al 28 June 2018 (28.06.2018) W ! P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/119354 Al 28 June 2018 (28.06.2018) W ! P O P C T (51) International Patent Classification: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, C12N 9/22 (2006.01) C12N 15/10 (2006.01) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, C12N 9/75 (2006.01) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN, (21) International Application Number: TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. PCT/US20 17/068 105 (84) Designated States (unless otherwise indicated, for every (22) International Filing Date: kind of regional protection available): ARIPO (BW, GH, 22 December 2017 (22.12.2017) GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (25) Filing Language: English UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (26) Publication Language: English EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (30) Priority Data: MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, 62/438,869 23 December 2016 (23.12.2016) US TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). (71) Applicant: PRESIDENT AND FELLOWS OF HAR¬ VARD COLLEGE [US/US]; 17 Quincy Street, Cam Published: bridge, MA 02138 (US). — with international search report (Art. 21(3)) (72) Inventors: MAIANTI, Juan, Pablo; 278 Endicott Avenue, — with sequence listing part of description (Rule 5.2(a)) #2, Revere, MA 0215 1 (US). LIU, David, R.; 3 Whitman Circle, Lexington, MA 02420 (US). (74) Agent: BAKER, C , Hunter; Wolf, Greenfield & Sacks, P.C., 600 Atlantic Avenue, Boston, MA 02210-2206 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (54) Title: GENE EDITING OF PCSK9 E32K D129G S127R GOF R46L (higher A53V R125H R104C E54A LDL-C) A68T Ί PreproPCSK9 R46L V 1 14A LOF A53V G106R (lower A68T AR97 ΐ E57K 93C LDL-C) T77I Ala68fsLeu82X N-glycosylation site Figure A (57) Abstract: Provided herein are systems, compositions, and methods of introducing loss-of- function mutations in to protein factors involved in the LDL-R-mediated cholesterol clearance pathway, e.g., PCSK9, APOC3, LDL-R, or IDOL. Loss-of-function mutations may be introduced using a CRISPR/Cas9-based nucleobase editor described in. Further provided herein are compositions and methods of treating conditions related to high circulating cholesterol levels. GENE EDITING OF PCSK9 RELATED APPLICATIONS [0001] This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application, U.S.S.N. 62/438,869, filed December 23, 2016, which is incorporated herein by reference. GOVERNMENT SUPPORT [0002] This invention was made with government support under grant number GM065865, awarded by the National Institutes of Health (NIH). The government has certain rights in the invention. BACKGROUND OF THE INVENTION [0003] The liver protein Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) is a secreted, globular, auto-activating serine protease that acts as a protein-binding adaptor within endosomal vesicles to bridge a pH-dependent interaction with the low-density lipoprotein receptor (LDL-R) during endocytosis of LDL particles, preventing recycling of the LDL-R to the cell surface and leading to reduction of LDL-cholesterol clearance. Blocking or inhibiting the function of PCSK9 to boost LDL-R-mediated clearance of LDL cholesterol has been of significant interest in the pharmaceutical industry. However, current methods of generating PCSK9 protective variants and loss-of-function mutants in vivo have been ineffective due to the large number of cells that need to be modified to modulate cholesterol levels. Other concerns involve off-target effects, genome instability, or oncogenic modifications that may be caused by genome editing. SUMMARY OF THE INVENTION [0004] Provided herein are systems, compositions, kits, and methods for modifying a polynucleotide (e.g., DNA) encoding a PCSK9 protein to produce loss-of-function PCSK9 variants. Also provided herein are systems, compositions, kits, and methods for modifying a polynucleotide (e.g., DNA) encoding a LDLR, IDOL, or APOC3/C5 protein to produce loss- of-function mutants. The methodology for producing the mutatns relies on CRISPR/Cas9- based base-editing technology. The precise targeting methods described herein are superior to previously proposed strategies that create random indels in the PCSK9 genomic locus or other loci described herein using engineered nucleases. The methods also have a more favorable safety profile, due to the low probability of off-target effects. Thus, the base editing methods described herein have low impact on genomic stability, including oncogene activation or tumor suppressor inactivation. In some embodiments, the loss-of-function variants (e.g., PCSK9, LDLR, IDOL, or APOC3/C5 variants) generated using the methods described herein have a cardioprotective function. In some embodiments, the loss-of-function variants (e.g., PCSK9, LDLR, IDOL, or APOC3/C5 variants) generated using the methods described herein reduce LDL levels. In some embodiments, the loss-of-function variants (e.g., PCSK9, LDLR, IDOL, or APOC3/C5 variants) generated using the methods described herein reduce LDL cholesterol levels. In some embodiments, the loss-of-function variants (e.g., PCSK9, LDLR, IDOL, or APOC3/C5 variants) generated using the methods described herein lower overall cholesterol levels. In some embodiments, the loss-of-function variants (e.g., PCSK9, LDLR, IDOL, or APOC3/C5 variants) generated using the methods described herein increase HDL levels. [0005] Some aspects of the present disclosure provide methods of editing a polynucleotide encoding a Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) protein, the method comprising contacting the PCSK9-encoding polynucleotide with (i) a fusion protein comprising: (a) a guide nucleotide sequence-programmable DNA binding protein domain; and (b) a cytosine deaminase domain; and (ii) a guide nucleotide sequence targeting the fusion protein of (i) to a target cytosine (C) base in the PCSK9-encoding polynucleotide, wherein the contacting results in deamination of the target C base by the fusion protein, resulting in a cytosine (C) to thymine (T) change in the PCSK9-encoding polynucleotide. [0006] In some embodiments, the guide nucleotide sequence-programmable DNA binding protein domain is selected from the group consisting of nuclease inactive Cas9 (dCas9) domains, nuclease inactive Cpfl domains, nuclease inactive Argonaute domains, and variants and combinations thereof. In some embodiments, the guide nucleotide sequence- programmable DNA-binding protein domain is a nuclease inactive Cas9 (dCas9) domain. In some embodiments, the amino acid sequence of the dCas9 domain comprises mutations corresponding to a D10A and/or H840A mutation in SEQ ID NO: 1. In some embodiments, a Cas9 nickase is used. In some embodiments, the amino acid sequence of the Cas9 nickase comprises a mutation corresponding to a D10A mutation in SEQ ID NO: 1, and wherein the dCas9 domain comprises a histidine at the position corresponding to amino acid 840 of SEQ ID NO: 1. [0007] In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein domain comprises a nuclease inactive Cpfl (dCpfl) domain. In some embodiments, the dCpfl domain is from a species of Acidaminococcus or Lachnospiraceae. [0008] In some embodiments, the guide nucleotide sequence-programmable DNA-binding protein domain comprises a nuclease inactive Argonaute (dAgo) domain. In some embodiments, the dAgo domain is from Natronobacterium gregoryi (dNgAgo). [0009] As a set of non limiting examples, any of the fusion proteins described herein that include a Cas9 domain can use another guide nucleotide sequence-programmable DNA binding protein, such as CasX, CasY, Cpfl, C2cl, C2c2, C2c3, and Argonaute, in place of the Cas9 domain. These may be nuclease inactive variants of the proteins. Guide nucleotide sequence-programmable DNA binding protein include, without limitation, Cas9 (e.g., dCas9 and nCas9), saCas9 (e.g., saCas9d, saCas9n, saKKH Cas9), CasX, CasY, Cpfl, C2cl, C2c2, C2C3, Argonaute, and any of suitable protein described herein. In some embodiments, the fusion protein described herein comprises a Gam protein, a guide nucleotide sequence- programmable DNA binding protein, and a cytidine deaminase domain. [0010] In some embodiments, the cytosine deaminase domain comprises an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the cytosine deaminase is selected from the group consisting of APOBEC 1 deaminase, APOBEC2 deaminase, APOBEC3A deaminase, APOBEC3B deaminase, APOBEC3C deaminase, APOBEC3D deaminase, APOBEC3F deaminase, APOBEC3G deaminase, APOBEC3H deaminase, APOBEC4 deaminase, activation-induced deaminase (AID), and pmCDAl. In some embodiments, the cytosine deaminase comprises the amino acid sequence of any one of SEQ ID NOs: 271-292 and 303. [0011] In some embodiments, the fusion protein of (a) further comprises a uracil glycosylase inhibitor (UGI) domain. In some embodiments, the cytosine deaminase domain is fused to the N-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain. In some embodiments, the UGI domain is fused to the C-terminus of the guide nucleotide sequence-programmable DNA-binding protein domain. [0012] In some embodiments, the cytosine deaminase is fused to the guide nucleotide sequence-programmable DNA-binding protein domain via an optional linker.
Recommended publications
  • Human LDLR / LDL Receptor Protein (His Tag)
    Human LDLR / LDL Receptor Protein (His Tag) Catalog Number: 10231-H08H General Information SDS-PAGE: Gene Name Synonym: FH; FHC; LDL R; LDL Receptor; LDLCQ2 Protein Construction: A DNA sequence encoding the extracellular domain of human LDLR (NP_000518.1) precursor (Met 1-Arg 788) was expressed with a C-terminal polyhistidine tag. Source: Human Expression Host: HEK293 Cells QC Testing Purity: > 85 % as determined by SDS-PAGE Bio Activity: Protein Description Measure by its ability to bind with human PCSK9 in a functional ELISA. LDL Receptor, also known as LDLR, is a mosaic protein which belongs to 1. Immobilized human PCSK9 at 10 μg/ml (100 μl/well) can bind the Low density lipoprotein receptor gene family. The low density lipoprotein biotinylated recombinant human LDLR. The EC of biotinylated human 50 receptor (LDLR) gene family consists of cell surface proteins involved in LDLR is 0.61 μg/ml. receptor-mediated endocytosis of specific ligands. LDL Receptor consists of 2. Immobilized mouse PCSK9 at 10 μg/ml (100 μl/well) can bind 84 amino acids (after removal of signal peptide) and mediates the biotinylated recombinant human LDLR. The EC50 of biotinylated human endocytosis of cholesterol-rich LDL. Low density lipoprotein (LDL) is LDLR is 0.12 μg/ml. normally bound at the cell membrane and taken into the cell ending up in Endotoxin: lysosomes where the protein is degraded and the cholesterol is made available for repression of microsomal enzyme 3-hydroxy-3-methylglutaryl < 1.0 EU per μg of the protein as determined by the LAL method coenzyme A (HMG CoA) reductase, the rate-limiting step in cholesterol synthesis.
    [Show full text]
  • Nudel, an Unusual Mosaic Protease Involved in Defining the Embryonic Dorsal-Ventral Axis of Drosophila Melanogaster Charles Chansik Hong Yale University
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 5-1998 Nudel, an unusual mosaic protease involved in defining the embryonic dorsal-ventral axis of Drosophila Melanogaster Charles Chansik Hong Yale University. Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Part of the Medicine and Health Sciences Commons Recommended Citation Hong, Charles Chansik, "Nudel, an unusual mosaic protease involved in defining the embryonic dorsal-ventral axis of Drosophila Melanogaster" (1998). Yale Medicine Thesis Digital Library. 2217. http://elischolar.library.yale.edu/ymtdl/2217 This Open Access Dissertation is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. Nudel, an Unusual Mosaic Protease Involved in Defining the Embryonic Dorsal-Ventral Axis ofDrosophila Melanogaster A Dissertation Presented to the Faculty of the Graduate School o f Yale University in Candidacy for the Degree of Doctor of Philosophy by Charles Chansik Hong Dissertation Director: Carl Hashimoto, Ph.D. May, 1998 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. © 1998 by Charles Chansik Hong All rights reserved. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT Nudel, an Unusual Mosaic Protease Involved in Defining the Embryonic Dorsal-Ventral Axis ofDrosophila Melanogaster Charles Chansik Hong Yale University 1998 Dorsal-ventral polarity of Drosophilathe embryo is determined by positional information that originates outside of the embryo.
    [Show full text]
  • Sharon Carr Mphil Thesis
    ADENOVIRUS AND ITS INTERACTION WITH HOST CELL PROTEINS Sharon Carr A Thesis Submitted for the Degree of MPhil at the University of St. Andrews 2007 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/219 This item is protected by original copyright Adenovirus and its interaction with host cell proteins Sharon Carr School of Biomedical Sciences University of St Andrews A thesis submitted for the degree of Master of Philosophy September 2006 1 I, …………………., hereby certify that this thesis, which is approximately 75,000 words in length, has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. date…………… signature of candidate………………………… I was admitted as a research student in September 2002 and as a candidate for the degree of Doctor of Philosophy in September 2002; the higher study for which this is a record was carried out in the University of St Andrews between 2002 and 2005, and at the University of Dundee between 2005 and 2006. date…………… signature of candidate………………………… I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriated for the degree of Master of Philosophy in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree. date…………… signature of supervisors………………………… ………………………… 2 In submitting this thesis to the University of St Andrews I understand that I am giving permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby.
    [Show full text]
  • Influenza H1 Mosaic Hemagglutinin Vaccine Induces Broad Immunity and Protection in Mice
    Article Influenza H1 Mosaic Hemagglutinin Vaccine Induces Broad Immunity and Protection in Mice Brigette N. Corder 1, Brianna L. Bullard 1 , Jennifer L. DeBeauchamp 2, Natalia A. Ilyushina 3 , Richard J. Webby 2 and Eric A. Weaver 1,* 1 School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA; [email protected] (B.N.C.); [email protected] (B.L.B.) 2 Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; [email protected] (J.L.D.); [email protected] (R.J.W.) 3 Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; [email protected] * Correspondence: [email protected] Received: 8 November 2019; Accepted: 20 November 2019; Published: 23 November 2019 Abstract: Annually, influenza A virus (IAV) infects ~5–10% of adults and 20–30% of children worldwide. The primary resource to protect against infection is by vaccination. However, vaccination only induces strain-specific and transient immunity. Vaccine strategies that induce cross-protective immunity against the broad diversity of IAV are needed. Here we developed and tested a novel mosaic H1 HA immunogen. The mosaic immunogen was optimized in silico to include the most potential B and T cell epitopes (PBTE) across a diverse population of human H1 IAV. Phylogenetic analysis showed that the mosaic HA localizes towards the non-pandemic 2009 strains which encompasses the broadest diversity in the H1 IAV population. We compared the mosaic H1 immunogen to wild-type HA immunogens and the commercial inactivated influenza vaccine, Fluzone.
    [Show full text]
  • SARS-Cov-2 (2019-Ncov) Proteins Biovendor Offers New SARS-Cov-2 Structural Protein Products for Virology Research
    SARS-CoV-2 (2019-nCoV) Proteins BioVendor offers new SARS-CoV-2 structural protein products for virology research Background: Coronaviruses (CoVs), within the order Nidovirales, are enveloped, single-strand, positive-sense RNA viruses with a large genome of approximately 30 kbp in length. A human infecting coronavirus (viral pneumonia) initially known as 2019 novel coronavirus (2019- nCoV) was found in the city of Wuhan, Hubei province of China in December 2019. This virus is now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with the resulting disease known as coronavirus disease 2019 (COVID-19). Coronaviruses contain at least four structural proteins: Spike (S) protein, envelope (E) protein, membrane (M) protein, and nucleocapsid (N) protein. Products Available SARS-CoV-2 (2019-nCoV) Spike SARS-CoV-2 (2019-nCoV) Spike SARS-CoV-2 (2019-nCoV) Spike-E-M Glycoprotein-S1, HEK293 Recombinant Glycoprotein-S2, HEK293 Recombinant Mosaic, E.coli Recombinant Cat. No. RP972011 Cat. No. RP972012 Cat. No. RP972014 Description: The HEK293 derived recombinant Description: The HEK293 derived recombinant Description: The E.Coli derived recombinant protein contains the SARS-CoV-2 Spike protein contains the SARS-CoV-2 Spike protein contains the SARS-CoV-2 spike (S), Glycoprotein S1, Wuhan-Hu-1 strain, amino acids Glycoprotein S2, Wuhan-Hu-1 strain, amino acids membrane (M), and envelope (E) immunodominant 1-674 fused to Fc tag at C-terminal. 685-1211 fused to Fc tag at C-terminal. regions, fused to His tag at C-terminal. Purity: Greater than 85.0% as determined by Purity: Greater than 85.0% as determined by Purity: Greater than 90.0% as determined by SDSPAGE.
    [Show full text]
  • Biochemical and Functional Characterization of Zonadhesin: a Sperm Protein Potentially Mediating Species-Specific Sperm-Egg Adhe
    BIOCHEMICAL AND FUNCTIONAL CHARACTERIZATION OF ZONADHESIN: A SPERM PROTEIN POTENTIALLY MEDIATING SPECIES-SPECIFIC SPERM-EGG ADHESION DURING FERTILIZATION by MING BI, B.S., M.S. A DISSERTATION IN MEDICAL BIOCHEMISTRY Submitted to the Graduate Faculty of Texas Tech University Health Sciences Center Ln Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Advisory Committee Daniel M. Hardy (Chairperson) Beverly S. ChUton Charles H. Faust S. Sridhara Simon C. Williams Accepted AssociateTDean of the Graduate School of Biomedical Sciences Texas Tech University Health Sciences Center May, 2002 © 2002, Ming Bi ACKNOWLEDGMENTS This major accomplishment in my life was made possible by numerous supports from many people who helped me in many different ways. First of all, I would like to thank my mentor Dr. Daniel Hardy. I have learned a lot from him in last five years. He taught me not only academic knowledge and lab techniques in my research field, but also the way to think wisely and to maintain a correct scientific attitude. In addition, his confidence based on his broad knowledge always made me feel comfortable and encouraged during my down time. Beside his great help in study and research, he also helped me to overcome the culture shock and showed great patience in dealing with my poor English. My thanks are also due to all other members in my committee, Dr. Chilton, Dr. Faust, Dr. Sridhara, and Dr. Williams. They gave me lots of valuable suggestions for my research project, and also helped me to keep on track of my study and research plan.
    [Show full text]
  • Clonagem De Promotores De Cana-De-Açúcar E Análise Do Transcriptoma De Genótipos Segregantes Para Teor De Sacarose
    UNIVERSIDADE DE SÃO PAULO INSTITUTO DE QUÍMICA Programa de Pós-Graduação em Ciências Biológicas (Bioquímica) RODRIGO FANDIÑO DE ANDRADE Clonagem de promotores de cana-de-açúcar e análise do transcriptoma de genótipos segregantes para teor de sacarose Versão corrigida da dissertação defendida São Paulo Data do Depósito na SPG: !"#$%#&$!&' RODRIGO FANDIÑO DE ANDRADE Clonagem de promotores de cana-de-açúcar e análise do transcriptoma de genótipos segregantes para teor de sacarose Dissertação apresentada ao Instituto de Química da Universidade de São Paulo para obtenção do Título de Mestre em Ciências Biológicas (Bioquímica) Orientadora: Prof(a). Dr(a). Glaucia Mendes Souza São Paulo 2012 Rodrigo Fandiño de Andrade Clonagem de promotores de cana-de-açúcar e análise do transcriptoma de genótipos segregantes para teor de sacarose Dissertação apresentada ao Instituto de Química da Universidade de São Paulo para obtenção do Título de Mestre em Ciências Biológicas (Bioquímica) Aprovado em: ____________ Banca Examinadora Prof. Dr(a). _______________________________________________________ Instituição: _______________________________________________________ Assinatura: _______________________________________________________ Prof. Dr(a). _______________________________________________________ Instituição: _______________________________________________________ Assinatura: _______________________________________________________ Prof. Dr(a). _______________________________________________________ Instituição: _______________________________________________________
    [Show full text]
  • Of Pseudomonas Aeruginosa Mccb 123 and Their Applications
    PROTEASES FROM AN ENVIRONMENTAL ISOLATE OF PSEUDOMONAS AERUGINOSA MCCB 123 AND THEIR APPLICATIONS Thesis submitted to Cochin University of Science and technology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Enviironmentall Biiotechnollogy Under the Facullty of Enviironmentall Studiies Schooll of Enviironmentall Studiies Cochiin Uniiversiity of Sciience and Technollogy by DIVYA JOSE Reg. No. 3065 NATIONAL CENTRE FOR AQUATIC ANIMAL HEALTH COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY KOCHI 682016, KERALA November 2011 This is to certify that the research work presented in the thesis entitled “PROTEASES FROM AN ENVIRONMENTAL ISOLATE OF PSEUDOMONAS AERUGINOSA MCCB 123 AND THEIR APPLICATIONS” is based on the original work done by Ms. Divya Jose (Reg. No. 3065) under the guidance of Dr. A Mohandas, Professor Emeritus, National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi -682016 and co- guidance of Dr. I.S Bright Singh, Coordinator, National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi- 682016, in partial fulfilment of the requirements for the degree of Doctor of Philosophy and that no part of this work has previously formed the basis for the award of any degree, diploma, associateship, fellowship or any other similar title or recognition. Supervising Guide Co-Guide Dr. A Mohandas Dr. I.S Bright Singh Professor Emeritus, Coordinator, National Centre for Aquatic Animal Health, National Centre for Aquatic Animal Health, CUSAT CUSAT Kochi -682016 Kochi -682016 Kochi-682016 November, 2011 Decllaratiion I hereby do declare that the thesis entitled “PROTEASES FROM AN ENVIRONMENTAL ISOLATE OF PSEUDOMONAS AERUGINOSA MCCB 123 AND THEIR APPLICATIONS” is a genuine record of research work done by me under the guidance of Dr.
    [Show full text]
  • A Serine Protease Zymogen Functions As a Pattern-Recognition Receptor for Lipopolysaccharides
    A serine protease zymogen functions as a pattern-recognition receptor for lipopolysaccharides Shigeru Ariki, Kumiko Koori, Tsukasa Osaki, Kiyohito Motoyama, Kei-ichiro Inamori, and Shun-ichiro Kawabata* Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan Edited by John H. Law, University of Arizona, Tucson, AZ, and approved November 20, 2003 (received for review October 24, 2003) Bacterial lipopolysaccharide (LPS)-induced exocytosis of granular the Imd pathway (13). Overexpression of peptidoglycan- hemocytes is a key component of the horseshoe crab’s innate recognition protein-LE, a receptor for the diaminopimelic-acid- immunity to infectious microorganisms; stimulation by LPS induces type peptidoglycan, leads to the activation of prophenoloxidase the secretion of various defense molecules from the granular cascade in Drosophila larvae (14). hemocytes. Using a previously uncharacterized assay for exocyto- The presence of circulating hemocytes is essential to inverte- sis, we clearly show that hemocytes respond only to LPS and not brates’ innate immunity, such as self-͞non-self recognition, to other pathogen-associated molecular patterns, such as ␤-1,3- phagocytosis, encapsulation, and melanization (15). In horse- glucans and peptidoglycans. Furthermore, we show that a granular shoe crabs, granular hemocytes comprise 99% of all hemocytes protein called factor C, an LPS-recognizing serine protease zymo- and are involved in the storage and release of defense molecules, gen that initiates the hemolymph coagulation cascade, also exists including serine protease zymogens, a clottable protein coagu- on the hemocyte surface as a biosensor for LPS. Our data demon- logen, protease inhibitors, antimicrobial peptides, and lectins strate that the proteolytic activity of factor C is both necessary and (16–18).
    [Show full text]
  • Biovendor R&D New Products, April, 2020
    BioVendor new products April, 2020: Dear customer, we would like to introduce our new products and hope you will find them interesting. miRNA NEW miREIA KITS CAT. NO. NAME ASSAY FORMAT RDM0039H hsa-miR-100a-5p miREIA miREIA – miRNA enzyme immunoassay RDM0035H hsa-miR-192-5p miREIA miREIA – miRNA enzyme immunoassay RDM0040H hsa-miR-203a-3p miREIA miREIA – miRNA enzyme immunoassay RDM0041H hsa-miR-625-5p miREIA miREIA – miRNA enzyme immunoassay RDM0042H hsa-miR-5100 miREIA miREIA – miRNA enzyme immunoassay miREIA - miRNA Enzyme Immunoassay FEATURED PRODUCT: hsa-miR-625-5p miREIA miR-625 has been found in various tumors, and it also exhibits diverse functions in cardiovascular diseases and pulmonary diseases. Oncology • responsible for the regulation of metastasis in gastric tumor cells • knockdown of RHPN1-AS1 inhibited the proliferation, migration and invasion activity of glioma cells via regulating miR-625-5p/REG3A expression • r•egulated PKM2 expression on mRNA and protein level in melanoma cells (MC) • negative relationship between miR-625-5p and PKM2 expression in clinical melanoma samples suggesting miR-625-5p/PKM2 plays a role in MC glucose metabolism Cardiovascular disease • negative regulator of cardiac hypertrophy • inhibited cardiac hypertrophy through targeting STAT3 and CaMKII. miR-625-5p directly targeted CaMKII and inhibited its expression • attenuated Ang II–induced cardiac hypertrophy through CaMKII/STAT3 • expression levels of miR-421, miR-1233-3p and miR-625-5p are lower in TOF patients with symptomatic right heart failure • downregulation was confirmed in aortic valve stenosis as a major cause of morbidity and mortality Pulmonary disease • inhibitor of asthma airway inflammation in human bronchial epithelial cells by targeting AKT2 • downregulated in the asthma • overexpression inhibited interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) secretion in 16HBECs See more about hsa-miR-625-5p miREIA For these and more BioVendor miREIA kits, please visit www.biovendor.com/mirna.
    [Show full text]
  • Enterokinase, the Initiator of Intestinal Digestion, Is a Mosaic Protease Composed of a Distinctive Assortment of Domains
    Proc. Natl. Acad. Sci. USA Vol. 91, pp. 7588-7592, August 1994 Biochemistry Enterokinase, the initiator of intestinal digestion, is a mosaic protease composed of a distinctive assortment of domains (serne proteases/tryngen activation) YASUNORI KITAMOTO*, XIN YUANt, QINGYU Wu*, DAVID W. MCCOURTt, AND J. EVAN SADLER*t* tHoward Hughes Medical Institute, *Departments of Medicine and Biochemistry and Molecular Biophysics, The Jewish Hospital of St. Louis, Washington University School of Medicine, St. Louis, MO 63110 Communicated by Earl W. Davie, April 19, 1994 ABSTRACT Enterokinase is a protease of the intestinal brates (7), except for the similar sequences of trypsinogens brush border that specifically cleaves the acidic propeptide from lungfish (IEEDK and LEDDK) and African clawed frog from trypsinogen to yield active trypsin. This cleavage initiates (FDDDK). Enterokinase prefers substrates with the se- a cascade of proteolytic reactions leading to the activation of quence DDDDK, whereas the presence ofaspartate residues many pancreatic zymogens. The full-length cDNA sequence for markedly inhibits the ability of trypsin to cleave such sub- bovine enterokinase and partial cDNA sequence for human strates (8). For example, toward bovine trypsinogen the enterokinase were determined. The deduced amino acid se- catalytic efficiency of enterokinase is 12,000-fold (porcine) quences indicate that active two-chain enterokinase is derived (9) or 34,000-fold (bovine) (10) greater than that of bovine from a single-chain precursor. Membrane association may be trypsin. This reciprocal specificity protects trypsinogen mediated by a potential sigal-anchor sequence near the amino against autoactivation by trypsin and promotes activation by terminus. The amino terminus of bovine enterokinase also enterokinase in the gut.
    [Show full text]
  • Dicalcin, a Zona Pellucida Protein That Regulates Fertilization Competence of the Egg Coat in Xenopus Laevis
    J Physiol Sci (2015) 65:507–514 DOI 10.1007/s12576-015-0402-7 MINI-REVIEW Dicalcin, a zona pellucida protein that regulates fertilization competence of the egg coat in Xenopus laevis Naofumi Miwa1 Received: 22 July 2015 / Accepted: 11 September 2015 / Published online: 29 September 2015 Ó The Physiological Society of Japan and Springer Japan 2015 Abstract Fertilization is a highly coordinated process Abbreviations whereby sperm interact with the egg-coating envelope ZP Zona pellucida (called the zona pellucida, ZP) in a taxon-restricted man- VE Vitelline envelope ner, Fertilization triggers the resumption of the cell cycle of AR Acrosome reaction the egg, ultimately leading to generation of a new organism Gal/GalNAc Galactose/N-acetylgalactosamine that contains hereditary information of the parents. The RCA-I Ricinus communis agglutinin I complete sperm-ZP interaction comprises sperm recogni- tion of the ZP, the acrosome reaction, penetration of the ZP, and fusion with the egg. Recent evidence suggests that these processes involve oligosaccharides associated with a ZP constituent (termed ZP protein), the polypeptide back- Introduction bone of a ZP protein, and/or the proper three-dimensional filamentous structure of the ZP. However, a detailed Oocytes are surrounded by an extracellular envelope that is description of the molecular mechanisms involved in called either the zona pellucida (ZP) in mammals or the sperm-ZP interaction remains elusive. Recently, I found vitelline envelope (VE) in non-mammals [1]. This extra- that dicalcin, a novel ZP protein-associated protein, sup- cellular matrix, with a thickness of several micrometers, presses fertilization through its association with gp41, the plays multiple roles in zygote generation and development, frog counterpart of the mammalian ZPC protein.
    [Show full text]