Identification of Sex Hormone Binding Globulin-Interacting Proteins in the Brain Using Phage Display Screening

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Sex Hormone Binding Globulin-Interacting Proteins in the Brain Using Phage Display Screening Gnanasekar 16/04 14/8/2009 12:23 ÌÌ Page 421 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 24: 421-426, 2009 421 Identification of sex hormone binding globulin-interacting proteins in the brain using phage display screening M. GNANASEKAR1, F.G. SULEMAN2, K. RAMASWAMY1 and J.D. CALDWELL3 1Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL 61107; 2Thermo Fisher Scientific, 3747 N. Meridian Road, Rockford, IL 61105; 3Department of Pharmacology, Lake Erie College of Osteopathic Medicine, 1858 West Grandview Boulevard, Erie, PA 16509, USA Received April 16, 2009; Accepted June 2, 2009 DOI: 10.3892/ijmm_00000248 Abstract. The present study reports the identification of Nakhla et al (2,3) demonstrated that SHBG binds to a receptor human sex hormone binding globulin (SHBG)-interacting or receptor complex which then results in increases of intra- proteins in the brain using a phage display-based screening cellular cAMP. Studies by Rosner and colleagues (3,4) suggest technology. Phage display is a system in which a foreign that the putative SHBG receptor is a G protein-coupled receptor protein is displayed on the surface of a bacteriophage as a or functionally linked to one. In these studies (1) a 167-kDa fusion protein with one of the coat proteins of the bacteriophage. protein was solubilized from membranes of human prostate T7 phage clones expressing normal human brain proteins glands and its binding activity to SHBG was demonstrated (human normal brain phage-display cDNA expression library) using 125I-SHBG. Other studies (5,6) also suggested that there were screened using SHBG as bait. The bound phage clones are membrane-associated receptors for SHBG in the uterus. were then identified by DNA sequencing and by BLAST These membrane-associated receptors may be important for search analysis. Of the twenty binding proteins analyzed, three internalization of SHBG, which was observed in many tissues were found to be membrane-associated proteins: synaptosomal (7-14) including the brain (15). The Nykjaer and Willnow associated protein 25 (SNAP25), Thy-1 cell surface antigen and laboratory demonstrated that a membrane-associated protein zonadhesin. Further studies will determine if the interactions of called megalin, a 600-kDa member of the LDL receptor gene SHBG with these proteins have any role in the internalization family, is capable of binding to and facilitating the internalization and cell signaling events or whether they contribute to steroid of both SHBG and its bound steroid (16). It is the protein that delivery to specific cells. the same laboratory previously suggested was involved in the uptake of other steroids and demonstrated that it belonged to Introduction a larger class of proteins responsible for the uptake of a broad range of lipophilic molecules (17). Megalin is important in Examining the roles of steroid binding globulins as active steroid effects. This group demonstrated that without megalin, participants in steroid actions has received attention recently. mice showed a delayed onset of puberty (16). The same One reason is that there are membrane-associated receptors laboratory demonstrated the importance of binding globulins for binding globulins. Hryb et al (1) showed that sex hormone in mediating the effects of steroids. Mice lacking a cortico- binding globulin (SHBG) binds with high affinity to a specific steroid-binding globulin, another steroid-binding globulin membrane receptor in prostate stromal and epithelial cells. found in the brain (18,19), had more free steroids in the blood but showed fewer physiological responses to them, suggesting that the presence of this binding globulin was necessary in _________________________________________ order to see the effects of corticosteroids (20). The first indication that there were SHBG receptors in the Correspondence to: Dr Munirathinam Gnanasekar, Department brain was when SHBG facilitated female sexual receptivity (21) of Biomedical Sciences, University of Illinois College of Medicine, except when coupled to dihydrotestosterone (22). Our laboratory 1601 Parkview Avenue, Rockford, IL 61107, USA and others also found that SHBG is produced in the brain, E-mail: [email protected] where it is often co-localized with the neuropeptides oxytocin Dr Jack D. Caldwell, Department of Pharmacology, Lake Erie and vasopressin (23-25). Since both SHBG and oxytocin are College of Osteopathic Medicine, 1858 West Grandview Boulevard, often found together in synaptic vesicles in axonal varicosities, Erie, PA 16509, USA we concluded that SHBG is likely released into the brain. E-mail: [email protected] This suggests the existence of receptors for this released SHBG. We also presented indirect evidence of such SHBG Key words: sex hormone binding globulin, brain, phage display, receptors in the hypothalamus (26). After binding to membrane- zonadhesin, synaptosomal associated protein 25 associated receptors, it is possible that SHBG, its associated steroid, and the SHBG receptor are all internalized into brain cells. Caldwell et al (15) demonstrated uptake of SHBG in vivo Gnanasekar 16/04 14/8/2009 12:23 ÌÌ Page 422 422 GNANASEKAR et al: SHBG-INTERACTING PROTEINS Figure 2. Size distribution of phage clones obtained from first round of biopanning. Phage bound to SHBG from the first cycle of biopanning were eluted and amplified on BLT5403. The amplified phages were plated with BLT5403 on LB agar plates for plaque formation. Ten plaques were randomly selected for PCR amplification. Amplified PCR products (5 μl) were loaded on 1% agarose gel containing Etbr and electrophoresed for 30 min. The resolved gel was observed on a UV transilluminator and the image was captured using Kodak digital software. Lane 1, control PCR that lacks a Figure 1. Schematic strategy to identify targets of SHBG. template; lanes 2-11 random phage clones. in the choroids plexus, paraventricular and supraoptic nuclei, and in specific periventricular cells. Despite observations that of the boiled samples were used as DNA templates for PCR suggest the presence of both central and peripheral SHBG amplification. membrane receptors, the identity of brain SHBG receptors has not been elucidated. Another study utilized a yeast two-hybrid PCR and DNA sequencing. DNAs of the selected phage clones system to identify candidate proteins for SHBG binding in were amplified by PCR according to the manufacturer's prostate (27). In this study, phage display of a human brain (Novagen) instructions on a Perkin Elmer Thermocycler cDNA library is used to identify SHBG-interacting proteins. using the T7Select up 5'-GGAGCTGTCGTATTCCAGTC-3' and T7Select down 5'-GGCTGATACCACCCTTCAAG-3' as Materials and methods forward and reverse primers respectively. PCR conditions were 30 cycles of denaturation at 94˚C for 30 sec, 55˚C annealing Materials. The normal human brain T7Select™ phage library, for 30 sec, and 72˚C extension for 30 sec. A final extension at host strain BLT5403, as well as primers were obtained from 72˚C was for 5 min. The reaction products were resolved on Novagen, USA. Qiaquick PCR purification kits were from agarose gel to confirm the presence of amplification products. Qiagen (Valencia, CA). Jumpstart TAQ polymerase was from The PCR products were then purified using the Qiaquick Sigma (St. Louis, MO). PCR purification kit (Qiagen, Valencia, CA) and the inserts were sequenced on both strands at DNA Services Facility Biopanning. The strategy to identify the SHBG interacting (Research Resources Center, University of Illinois at Chicago, proteins is presented in Fig. 1. Briefly, biopanning was IL) to confirm the authenticity of the genes. The determined performed as follows. SHBG was diluted in deionized water to DNA sequences were then analyzed by BLAST analyses. 10 μg/ml; 100 μl aliquots were coated in the wells of a 96-well microtiter plate (Costar, Corning, NY) and incubated at room Results temperature (RT) for 3 h. The SHBG-coated wells were then washed with Tris-buffered saline (TBS), blocked by adding Over twenty phage clones bound to SHBG. Of these, initially 200 μl 3% BSA to each well and incubated at RT for 1 h. we isolated ten phage plaques from the fourth round of bio- Excess blocking reagent was removed by washing with panning and processed them for sequencing. Agarose gel deionized water. The T7Select phage of the human normal resolution of the PCR products showed that they were all the brain cDNA library (Novagen, USA) was added to wells and same size (data not shown), so we sequenced two clones out of incubated at RT for 1 h. Unbound phages were washed off the ten. Sequence analysis demonstrated that SHBG-interacting with TBS containing Tween while bound phages were then phage clones encoded for FAU gene products [ubiquitin-like eluted by incubating each well with 200 μl of 1% SDS in protein (FUBI) and ribosomal protein S30] (28). TBS. The eluted phages were then used to infect E. coli Because of the low molecular weight of these two candidate BLT5403 which amplifies the phages for the next biopanning proteins, we decided to screen more plaques from the first cycle. Three more biopanning rounds were done to increase biopanning. Through this process we isolated twenty-four the phage binding affinity to the SHBG. Finally, the phages more phage clones. All these clones were then processed for obtained after this fourth amplification were plaque titered sequencing. Fig. 2 shows the size distribution of the phage with a series of dilutions (10-2 to 10-14) on LB agar plates clones that were obtained after PCR amplification. The size containing 1% agarose and incubated for 2-4 h at 37˚C. Single of these clones varied between 570 and 1,265 bases. Each of plaques of phages were randomly selected with a pipette tip, the sequences was then subjected to a BLAST search to resuspended in 100 μl of 0.1X TE buffer, boiled for 10 min determine their identity. Table I shows the list of candidate and placed on ice for 5 min.
Recommended publications
  • Trafficking Routes to the Plant Vacuole: Connecting Alternative and Classical Pathways
    This is a repository copy of Trafficking routes to the plant vacuole: connecting alternative and classical pathways. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/124374/ Version: Accepted Version Article: Di Sansebastiano, GP, Barozzi, F, Piro, G et al. (2 more authors) (2018) Trafficking routes to the plant vacuole: connecting alternative and classical pathways. Journal of Experimental Botany, 69 (1). pp. 79-90. ISSN 0022-0957 https://doi.org/10.1093/jxb/erx376 © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. This is an author produced version of a paper published in Journal of Experimental Botany. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Trafficking routes to the Plant Vacuole: 2 connecting alternative and classical pathways. 3 4 Gian Pietro Di Sansebastiano1*, Fabrizio Barozzi1, Gabriella Piro1, Jurgen Denecke2 and 5 Carine de Marcos Lousa2,3 * 6 1.! DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), 7 University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy; 8 [email protected] and [email protected].
    [Show full text]
  • Sorting Nexins in Protein Homeostasis Sara E. Hanley1,And Katrina F
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 November 2020 doi:10.20944/preprints202011.0241.v1 Sorting nexins in protein homeostasis Sara E. Hanley1,and Katrina F. Cooper2* 1Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA 1 [email protected] 2 [email protected] * [email protected] Tel: +1 (856)-566-2887 1Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA Abstract: Sorting nexins (SNXs) are a highly conserved membrane-associated protein family that plays a role in regulating protein homeostasis. This family of proteins is unified by their characteristic phox (PX) phosphoinositides binding domain. Along with binding to membranes, this family of SNXs also comprises a diverse array of protein-protein interaction motifs that are required for cellular sorting and protein trafficking. SNXs play a role in maintaining the integrity of the proteome which is essential for regulating multiple fundamental processes such as cell cycle progression, transcription, metabolism, and stress response. To tightly regulate these processes proteins must be expressed and degraded in the correct location and at the correct time. The cell employs several proteolysis mechanisms to ensure that proteins are selectively degraded at the appropriate spatiotemporal conditions. SNXs play a role in ubiquitin-mediated protein homeostasis at multiple levels including cargo localization, recycling, degradation, and function. In this review, we will discuss the role of SNXs in three different protein homeostasis systems: endocytosis lysosomal, the ubiquitin-proteasomal, and the autophagy-lysosomal system. The highly conserved nature of this protein family by beginning with the early research on SNXs and protein trafficking in yeast and lead into their important roles in mammalian systems.
    [Show full text]
  • Direct Lysosome-Based Autophagy of Lipid Droplets in Hepatocytes
    Direct lysosome-based autophagy of lipid droplets in hepatocytes Ryan J. Schulzea,b,1, Eugene W. Kruegera,b,1, Shaun G. Wellera,b, Katherine M. Johnsona,b, Carol A. Caseyc, Micah B. Schotta,b, and Mark A. McNivena,b,2 aDepartment of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905; bDivision of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905; and cDepartment of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198 Edited by Tobias C. Walther, Harvard School of Public Health, Boston, MA, and accepted by Editorial Board Member Joseph L. Goldstein October 13, 2020 (received for review June 4, 2020) Hepatocytes metabolize energy-rich cytoplasmic lipid droplets (LDs) process that appears to play an especially important role in the in the lysosome-directed process of autophagy. An organelle- degradation of hepatocellular LDs (15). A selective form of LD- selective form of this process (macrolipophagy) results in the engulf- centric autophagy known as lipophagy is thought to involve the ment of LDs within double-membrane delimited structures (auto- recognition of as-of-yet unidentified LD-specific receptors to phagosomes) before lysosomal fusion. Whether this is an promote the localized assembly and extension of a sequestering exclusive autophagic mechanism used by hepatocytes to catabolize phagophore around the perimeter of the LD (16, 17). How this LDs is unclear. It is also unknown whether lysosomes alone might be phagophore is targeted to (and extended around) the LD surface to sufficient to mediate LD turnover in the absence of an autophago- facilitate lipophagy remains unclear. Once fully enclosed, the somal intermediate.
    [Show full text]
  • Human LDLR / LDL Receptor Protein (His Tag)
    Human LDLR / LDL Receptor Protein (His Tag) Catalog Number: 10231-H08H General Information SDS-PAGE: Gene Name Synonym: FH; FHC; LDL R; LDL Receptor; LDLCQ2 Protein Construction: A DNA sequence encoding the extracellular domain of human LDLR (NP_000518.1) precursor (Met 1-Arg 788) was expressed with a C-terminal polyhistidine tag. Source: Human Expression Host: HEK293 Cells QC Testing Purity: > 85 % as determined by SDS-PAGE Bio Activity: Protein Description Measure by its ability to bind with human PCSK9 in a functional ELISA. LDL Receptor, also known as LDLR, is a mosaic protein which belongs to 1. Immobilized human PCSK9 at 10 μg/ml (100 μl/well) can bind the Low density lipoprotein receptor gene family. The low density lipoprotein biotinylated recombinant human LDLR. The EC of biotinylated human 50 receptor (LDLR) gene family consists of cell surface proteins involved in LDLR is 0.61 μg/ml. receptor-mediated endocytosis of specific ligands. LDL Receptor consists of 2. Immobilized mouse PCSK9 at 10 μg/ml (100 μl/well) can bind 84 amino acids (after removal of signal peptide) and mediates the biotinylated recombinant human LDLR. The EC50 of biotinylated human endocytosis of cholesterol-rich LDL. Low density lipoprotein (LDL) is LDLR is 0.12 μg/ml. normally bound at the cell membrane and taken into the cell ending up in Endotoxin: lysosomes where the protein is degraded and the cholesterol is made available for repression of microsomal enzyme 3-hydroxy-3-methylglutaryl < 1.0 EU per μg of the protein as determined by the LAL method coenzyme A (HMG CoA) reductase, the rate-limiting step in cholesterol synthesis.
    [Show full text]
  • Ubiquitin-Dependent Sorting in Endocytosis
    Downloaded from http://cshperspectives.cshlp.org/ on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Ubiquitin-Dependent Sorting in Endocytosis Robert C. Piper1, Ivan Dikic2, and Gergely L. Lukacs3 1Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242 2Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Goethe University School of Medicine, D-60590 Frankfurt, Germany 3Department of Physiology, McGill University, Montre´al, Que´bec H3G 1Y6, Canada Correspondence: [email protected] When ubiquitin (Ub) is attached to membrane proteins on the plasma membrane, it directs them through a series of sorting steps that culminate in their delivery to the lumen of the lysosome where they undergo complete proteolysis. Ubiquitin is recognized by a series of complexes that operate at a number of vesicle transport steps. Ubiquitin serves as a sorting signal for internalization at the plasma membrane and is the major signal for incorporation into intraluminal vesicles of multivesicular late endosomes. The sorting machineries that catalyze these steps can bind Ub via a variety of Ub-binding domains. At the same time, many of these complexes are themselves ubiquitinated, thus providing a plethora of potential mechanisms to regulate their activity. Here we provide an overview of how membrane proteins are selected for ubiquitination and deubiquitination within the endocytic pathway and how that ubiquitin signal is interpreted by endocytic sorting machineries. HOW PROTEINS ARE SELECTED FOR distinctions concerning different types of ligas- UBIQUITINATION es, their specificity for forming particular poly- Ub chains, and even the kinds of residues in biquitin (Ub) is covalently attached to sub- substrate proteins that can be ubiquitin modi- Ustrate proteins by the concerted action of fied, have been blurred with the discovery of E2-conjugating enzymes and E3 ligases (Var- mixed poly-Ub chains, new enzymatic mecha- shavsky 2012).
    [Show full text]
  • Retromer-Mediated Endosomal Protein Sorting: the Role of Unstructured Domains ⇑ Aamir S
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 589 (2015) 2620–2626 journal homepage: www.FEBSLetters.org Review Retromer-mediated endosomal protein sorting: The role of unstructured domains ⇑ Aamir S. Mukadam, Matthew N.J. Seaman Cambridge Institute for Medical Research, Dept. of Clinical Biochemistry, University of Cambridge, Wellcome Trust/MRC Building, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom article info abstract Article history: The retromer complex is a key element of the endosomal protein sorting machinery that is con- Received 6 May 2015 served through evolution and has been shown to play a role in diseases such as Alzheimer’s disease Revised 21 May 2015 and Parkinson’s disease. Through sorting various membrane proteins (cargo), the function of retro- Accepted 26 May 2015 mer complex has been linked to physiological processes such as lysosome biogenesis, autophagy, Available online 10 June 2015 down regulation of signalling receptors and cell spreading. The cargo-selective trimer of retromer Edited by Wilhelm Just recognises membrane proteins and sorts them into two distinct pathways; endosome-to-Golgi retrieval and endosome-to-cell surface recycling and additionally the cargo-selective trimer func- tions as a hub to recruit accessory proteins to endosomes where they may regulate and/or facilitate Keywords: Retromer retromer-mediated endosomal proteins sorting. Unstructured domains present in cargo proteins or Endosome accessory factors play key roles in both these aspects of retromer function and will be discussed in Sorting this review. FAM21 Ó 2015 Federation of European Biochemical Societies.
    [Show full text]
  • Molecular Mechanism for the Subversion of the Retromer Coat By
    Molecular mechanism for the subversion of the PNAS PLUS retromer coat by the Legionella effector RidL Miguel Romano-Morenoa, Adriana L. Rojasa, Chad D. Williamsonb, David C. Gershlickb, María Lucasa, Michail N. Isupovc, Juan S. Bonifacinob, Matthias P. Machnerd,1, and Aitor Hierroa,e,1 aStructural Biology Unit, Centro de Investigación Cooperativa en Biociencias, 48160 Derio, Spain; bCell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; cThe Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter EX4 4SB, United Kingdom; dDivision of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and eIKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain Edited by Ralph R. Isberg, Howard Hughes Medical Institute and Tufts University School of Medicine, Boston, MA, and approved November 13, 2017 (received for review August 30, 2017) Microbial pathogens employ sophisticated virulence strategies to VAMP7 together with several Rab GTPases that function along cause infections in humans. The intracellular pathogen Legionella distinct trafficking pathways (18), and the Tre-2/Bub2/Cdc16 pneumophila encodes RidL to hijack the host scaffold protein domain family member 5 (TBC1D5), a GTPase-activating pro- VPS29, a component of retromer and retriever complexes critical for tein (GAP) that causes Rab7 inactivation and redistribution to endosomal cargo recycling. Here, we determined the crystal structure the cytosol (14). of L. pneumophila RidL in complex with the human VPS29–VPS35 Recent biochemical and structural characterization of single retromer subcomplex. A hairpin loop protruding from RidL inserts subunits and subcomplexes from retromer have provided insights into a conserved pocket on VPS29 that is also used by cellular ligands, into its modular architecture and mechanisms of action.
    [Show full text]
  • Delivering of Proteins to the Plant Vacuole—An Update
    Int. J. Mol. Sci. 2014, 15, 7611-7623; doi:10.3390/ijms15057611 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Delivering of Proteins to the Plant Vacuole—An Update Cláudia Pereira 1,†, Susana Pereira 2,†,* and José Pissarra 2 1 Institute for Molecular and Cell Biology (IBMC), University of Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; E-Mail: [email protected] 2 Department of Biology, Faculty of Sciences, University of Porto and Centre for Biodiversity, Functional and Integrative Genomics, Rua do Campo Alegre, s/n, FC4, 4169-007 Porto, Portugal; E-Mail: [email protected] † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +351-220-402-000; Fax: +351-220-402-709. Received: 28 February 2014; in revised form: 21 April 2014 / Accepted: 22 April 2014 / Published: 5 May 2014 Abstract: Trafficking of soluble cargo to the vacuole is far from being a closed issue as it can occur by different routes and involve different intermediates. The textbook view of proteins being sorted at the post-Golgi level to the lytic vacuole via the pre-vacuole or to the protein storage vacuole mediated by dense vesicles is now challenged as novel routes are being disclosed and vacuoles with intermediate characteristics described. The identification of Vacuolar Sorting Determinants is a key signature to understand protein trafficking to the vacuole. Despite the long established vacuolar signals, some others have been described in the last few years, with different properties that can be specific for some cells or some types of vacuoles.
    [Show full text]
  • Nudel, an Unusual Mosaic Protease Involved in Defining the Embryonic Dorsal-Ventral Axis of Drosophila Melanogaster Charles Chansik Hong Yale University
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 5-1998 Nudel, an unusual mosaic protease involved in defining the embryonic dorsal-ventral axis of Drosophila Melanogaster Charles Chansik Hong Yale University. Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Part of the Medicine and Health Sciences Commons Recommended Citation Hong, Charles Chansik, "Nudel, an unusual mosaic protease involved in defining the embryonic dorsal-ventral axis of Drosophila Melanogaster" (1998). Yale Medicine Thesis Digital Library. 2217. http://elischolar.library.yale.edu/ymtdl/2217 This Open Access Dissertation is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. Nudel, an Unusual Mosaic Protease Involved in Defining the Embryonic Dorsal-Ventral Axis ofDrosophila Melanogaster A Dissertation Presented to the Faculty of the Graduate School o f Yale University in Candidacy for the Degree of Doctor of Philosophy by Charles Chansik Hong Dissertation Director: Carl Hashimoto, Ph.D. May, 1998 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. © 1998 by Charles Chansik Hong All rights reserved. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT Nudel, an Unusual Mosaic Protease Involved in Defining the Embryonic Dorsal-Ventral Axis ofDrosophila Melanogaster Charles Chansik Hong Yale University 1998 Dorsal-ventral polarity of Drosophilathe embryo is determined by positional information that originates outside of the embryo.
    [Show full text]
  • A Trafficome-Wide Rnai Screen Reveals Deployment of Early and Late Secretory Host Proteins and the Entire Late Endo-/Lysosomal V
    bioRxiv preprint doi: https://doi.org/10.1101/848549; this version posted November 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A trafficome-wide RNAi screen reveals deployment of early and late 2 secretory host proteins and the entire late endo-/lysosomal vesicle fusion 3 machinery by intracellular Salmonella 4 5 Alexander Kehl1,4, Vera Göser1, Tatjana Reuter1, Viktoria Liss1, Maximilian Franke1, 6 Christopher John1, Christian P. Richter2, Jörg Deiwick1 and Michael Hensel1, 7 8 1Division of Microbiology, University of Osnabrück, Osnabrück, Germany; 2Division of Biophysics, University 9 of Osnabrück, Osnabrück, Germany, 3CellNanOs – Center for Cellular Nanoanalytics, Fachbereich 10 Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany; 4current address: Institute for Hygiene, 11 University of Münster, Münster, Germany 12 13 Running title: Host factors for SIF formation 14 Keywords: siRNA knockdown, live cell imaging, Salmonella-containing vacuole, Salmonella- 15 induced filaments 16 17 Address for correspondence: 18 Alexander Kehl 19 Institute for Hygiene 20 University of Münster 21 Robert-Koch-Str. 4148149 Münster, Germany 22 Tel.: +49(0)251/83-55233 23 E-mail: [email protected] 24 25 or bioRxiv preprint doi: https://doi.org/10.1101/848549; this version posted November 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • Sharon Carr Mphil Thesis
    ADENOVIRUS AND ITS INTERACTION WITH HOST CELL PROTEINS Sharon Carr A Thesis Submitted for the Degree of MPhil at the University of St. Andrews 2007 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/219 This item is protected by original copyright Adenovirus and its interaction with host cell proteins Sharon Carr School of Biomedical Sciences University of St Andrews A thesis submitted for the degree of Master of Philosophy September 2006 1 I, …………………., hereby certify that this thesis, which is approximately 75,000 words in length, has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. date…………… signature of candidate………………………… I was admitted as a research student in September 2002 and as a candidate for the degree of Doctor of Philosophy in September 2002; the higher study for which this is a record was carried out in the University of St Andrews between 2002 and 2005, and at the University of Dundee between 2005 and 2006. date…………… signature of candidate………………………… I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriated for the degree of Master of Philosophy in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree. date…………… signature of supervisors………………………… ………………………… 2 In submitting this thesis to the University of St Andrews I understand that I am giving permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby.
    [Show full text]
  • Vacuolar Protein Sorting 26C Encodes an Evolutionarily Conserved Large Retromer Subunit in Eukaryotes That Is Important for Root Hair Growth in Arabidopsis Thaliana
    The Plant Journal (2018) 94, 595–611 doi: 10.1111/tpj.13880 Vacuolar Protein Sorting 26C encodes an evolutionarily conserved large retromer subunit in eukaryotes that is important for root hair growth in Arabidopsis thaliana Suryatapa Ghosh Jha1 , Emily R. Larson1,† , Jordan Humble1, David S. Domozych2, David S. Barrington1 and Mary L. Tierney1,* 1Department of Plant Biology, University of Vermont, Burlington, Vermont 05405, USA, and 2Skidmore College, Saratoga Springs, New York, NY 12866, USA Received 22 August 2017; revised 9 February 2018; accepted 14 February 2018; published online 1 March 2018. *For correspondence (e-mail [email protected]). †Present address:Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK. SUMMARY The large retromer complex participates in diverse endosomal trafficking pathways and is essential for plant developmental programs, including cell polarity, programmed cell death and shoot gravitropism in Ara- bidopsis. Here we demonstrate that an evolutionarily conserved VPS26 protein (VPS26C; At1G48550) func- tions in a complex with VPS35A and VPS29 necessary for root hair growth in Arabidopsis. Bimolecular fluorescence complementation showed that VPS26C forms a complex with VPS35A in the presence of VPS29, and this is supported by genetic studies showing that vps29 and vps35a mutants exhibit altered root hair growth. Genetic analysis also demonstrated an interaction between a VPS26C trafficking pathway and one involving the SNARE VTI13. Phylogenetic analysis indicates that VPS26C, with the notable exception of grasses, has been maintained in the genomes of most major plant clades since its evolution at the base of eukaryotes. To test the model that VPS26C orthologs in animal and plant species share a conserved func- tion, we generated transgenic lines expressing GFP fused with the VPS26C human ortholog (HsDSCR3)ina vps26c background.
    [Show full text]