A Serine Protease Zymogen Functions As a Pattern-Recognition Receptor for Lipopolysaccharides

Total Page:16

File Type:pdf, Size:1020Kb

A Serine Protease Zymogen Functions As a Pattern-Recognition Receptor for Lipopolysaccharides A serine protease zymogen functions as a pattern-recognition receptor for lipopolysaccharides Shigeru Ariki, Kumiko Koori, Tsukasa Osaki, Kiyohito Motoyama, Kei-ichiro Inamori, and Shun-ichiro Kawabata* Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan Edited by John H. Law, University of Arizona, Tucson, AZ, and approved November 20, 2003 (received for review October 24, 2003) Bacterial lipopolysaccharide (LPS)-induced exocytosis of granular the Imd pathway (13). Overexpression of peptidoglycan- hemocytes is a key component of the horseshoe crab’s innate recognition protein-LE, a receptor for the diaminopimelic-acid- immunity to infectious microorganisms; stimulation by LPS induces type peptidoglycan, leads to the activation of prophenoloxidase the secretion of various defense molecules from the granular cascade in Drosophila larvae (14). hemocytes. Using a previously uncharacterized assay for exocyto- The presence of circulating hemocytes is essential to inverte- sis, we clearly show that hemocytes respond only to LPS and not brates’ innate immunity, such as self-͞non-self recognition, to other pathogen-associated molecular patterns, such as ␤-1,3- phagocytosis, encapsulation, and melanization (15). In horse- glucans and peptidoglycans. Furthermore, we show that a granular shoe crabs, granular hemocytes comprise 99% of all hemocytes protein called factor C, an LPS-recognizing serine protease zymo- and are involved in the storage and release of defense molecules, gen that initiates the hemolymph coagulation cascade, also exists including serine protease zymogens, a clottable protein coagu- on the hemocyte surface as a biosensor for LPS. Our data demon- logen, protease inhibitors, antimicrobial peptides, and lectins strate that the proteolytic activity of factor C is both necessary and (16–18). In response to stimulation by LPS, the defense mole- sufficient to trigger exocytosis through a heterotrimeric GTP- cules stored in granules are immediately secreted by exocytosis binding protein-mediating signaling pathway. Exocytosis of he- (16, 19). This response is important for the host defense’s ability mocytes was not induced by thrombin, but it was induced by to engulf and kill invading microbes. The granular components hexapeptides corresponding to the tethered ligands of protease- include two PAMP-sensitive zymogens, factor C (20) and factor activated G protein-coupled receptors (PARs). This finding sug- G (21, 22). These serine protease zymogens are autocatalytically gested the presence of a PAR-like receptor on the hemocyte activated by LPS and ␤-1,3-glucans, respectively. The activated surface. We conclude that the serine protease zymogen on factor C activates factor B, which in turn converts the proclotting the hemocyte surface functions as a pattern-recognition protein enzyme into the clotting enzyme, which converts coagulogen to for LPS. an insoluble coagulin gel. On the other hand, the activated factor G activates the proclotting enzyme directly. he innate immune system is a sensitive non-self-recognizing In horseshoe crabs, however, no specific LPS-recognizing Tcascade triggered by microbial cell wall constituents called protein has been identified as a pattern-recognition protein pathogen-associated molecular patterns (PAMP), such as lipo- involved in signal transduction to trigger exocytosis. Microscopic BIOCHEMISTRY polysaccharides (LPS) of Gram-negative bacteria, ␤-1,3-glucans observation and microfluorometric analysis of intracellular 2ϩ 2ϩ of fungi, and peptidoglycans of Gram-positive bacteria (1–4). Mg and Ca on LPS-induced exocytosis suggest that the These PAMP are recognized via a set of pattern-recognition exocytosis is mediated by a heterotrimeric GTP-binding protein receptors and proteins that are germ-line-encoded receptors of (G protein) that stimulates the inositol-1,4,5-triphosphate- signaling pathway leading to the increase of intracellular Mg2ϩ the innate immune system. Recent studies have revealed that 2ϩ insects and mammals conserve a signaling pathway of the innate and Ca (23). The exocytosis is not induced by a phorbol ester immune system through cell-surface receptors called Tolls and that mimics diacylglycerol to activate protein kinase C. Likewise, through Toll-like receptors (TLRs) (5, 6). In mammals, TLRs on exocytosis is not affected by ethanol or chelerythrine, both of specialized antigen-presenting cells function as signal transduc- which inhibit phospholipase D, or by herbimycin, a tyrosine ers by way of NF-␬B, leading to the production of proinflam- kinase inhibitor (23). In the present study, we have established matory cytokines and the expression of costimulatory molecules a quantitative assay for LPS-induced exocytosis. Furthermore, on the cell surface. These cytokines and costimulatory molecules we report that the LPS-sensitive protease zymogen factor C also are necessary to activate naive T cells; it may be that TLRs are exists on the hemocyte surface, and that the proteolytic activity assembled at the cell membrane as signaling receptor complexes triggers a G protein-mediating exocytosis for innate immune (4, 7, 8). responses. We have made an identification and characterization Although Drosophila Toll controls the host defense to fungal of a pattern-recognition protein that leads to LPS-induced and Gram-positive bacterial infection, it does not function as a exocytosis. pattern-recognition receptor (9). Initially, Drosophila Toll was Materials and Methods identified as a transmembrane protein that controls dorsoventral Materials. ␣ patterning in the Drosophila embryo (10). In the embryo, a Factor C and human -thrombin were purified as proteolytic cascade that includes three proteases (Gastrulation described (20, 24). LPS (Salmonella minnesota R595) and lipid Defective, Snake, and Easter) cleaves a cytokine-like protein, A(Escherichia coli K12) were from List Biological Laboratories (Campbell, CA). Laminarin, thapsigargin, pertussis toxin, Spaetzle, as a ligand for Drosophila Toll. These three proteases, ␣ however, are dispensable in the induction of the Drosophila A23187, L- -phosphatidylcholine, 1,2-diacyl-sn-glycero-3- Toll-mediated immune response (5). During infection, the cleaved form of Spaetzle is produced through another proteo- This paper was submitted directly (Track II) to the PNAS office. lytic cascade, one that includes Persephone, a newly identified Abbreviations: LPS, lipopolysaccharide; PAR, protease-activated G protein-coupled recep- serine protease (11, 12). However, no pattern-recognition pro- tor; PAMP, pathogen-associated molecular patterns; TLR, Toll-like receptor; PPACK, D-Phe- teins initiating the proteolytic cascade have been identified. The Pro-Arg-chloromethylketone; TL-2, tachylectin-2. Drosophila immune system also detects bacteria through pepti- *To whom correspondence should be addressed. E-mail: [email protected] doglycan-recognition proteins, and Gram-negative diamin- u.ac.jp. opimelic-acid-type peptidoglycan is the most potent inducer of © 2004 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0306904101 PNAS ͉ January 27, 2004 ͉ vol. 101 ͉ no. 4 ͉ 953–958 Downloaded by guest on October 2, 2021 phospho-L-serine, L-␣-phosphatidylinositol, 1,2-diacyl-sn- glycero-3-phosphoethanolamine, sphingomyelin, and choles- terol were from Sigma. Peptidoglycan (Staphylococcus aureus) was from Fluka. Curdlan was from Wako Pure Chemical (Osaka). U-73122 and U-73343 were from Calbiochem. Masto- paran, D-Phe-Pro-Arg-chloromethylketone (PPACK), and Ala- Ala-Phe-chloromethylketone were from Bachem. Bovine pan- creatic ␣-chymotrypsin treated with N-tosyl-L-lysyl chloromethylketone and trypsin treated with N-tosyl-L- phenylalanyl chloromethylketone were from Worthington. Hexapeptides SFLLRN, SLIGRL, and GYPGKF were synthe- sized at Genenet (Oita, Japan). The COOH-terminal amino acids of these peptides were amidated. Assay of Exocytosis. Hemolymph (1 ml) was collected into 50 ml of pyrogen-free 10 mM Hepes-NaOH, pH 7.0, containing 0.5 M NaCl. The diluted hemolymph (200 ␮l each) was applied to Fig. 1. Effects of PAMP on exocytosis. Hemocytes collected into a sterilized pyrogen-free 24-well plates filled with 800 ␮l of the same buffer, plate were treated with various concentrations of PAMP at 23°Cfor1h.The and then incubated at 23°C for 10 min for the attachment of amount of TL-2 secreted in the supernatant was determined by ELISA. Ⅺ, LPS; ⅜ ‚ ᭛ hemocytes. PAMP, proteases, and activators were added in assay , curdlan; , laminarin; , peptidoglycan. buffer (10 mM Hepes-NaOH, pH 7.0, containing 0.5 M NaCl, 50 mM MgCl2, and 10 mM CaCl2). For inhibition studies, hemo- The resulting immunocomplex bound to protein A-Sepharose cytes were pretreated with inhibitors at 23°C for 20 min for was collected by centrifugation and washed with the same buffer. U-73122 or 1 h for pertussis toxin. Hemocytes were then The pellet was subjected to SDS͞PAGE (27) and transferred to stimulated with activators or LPS. After incubation at 23°C for nitrocellulose membranes overnight at 20 V by using an elec- 1 h, each exocytosed fluid was collected by centrifugation troblot apparatus (Bio-Rad). After blocking, the antigens were at 2,000 ϫ g for 5 min and quantitated by ELISA by using visualized by streptavidin-biotinylated horseradish-peroxidase anti-coagulogen or anti-tachylectin-2 (TL-2) antibody. complex (Amersham Pharmacia). ELISA. The amount of coagulogen in the exocytosed fluid was Preparation of Activated Factor C
Recommended publications
  • Human LDLR / LDL Receptor Protein (His Tag)
    Human LDLR / LDL Receptor Protein (His Tag) Catalog Number: 10231-H08H General Information SDS-PAGE: Gene Name Synonym: FH; FHC; LDL R; LDL Receptor; LDLCQ2 Protein Construction: A DNA sequence encoding the extracellular domain of human LDLR (NP_000518.1) precursor (Met 1-Arg 788) was expressed with a C-terminal polyhistidine tag. Source: Human Expression Host: HEK293 Cells QC Testing Purity: > 85 % as determined by SDS-PAGE Bio Activity: Protein Description Measure by its ability to bind with human PCSK9 in a functional ELISA. LDL Receptor, also known as LDLR, is a mosaic protein which belongs to 1. Immobilized human PCSK9 at 10 μg/ml (100 μl/well) can bind the Low density lipoprotein receptor gene family. The low density lipoprotein biotinylated recombinant human LDLR. The EC of biotinylated human 50 receptor (LDLR) gene family consists of cell surface proteins involved in LDLR is 0.61 μg/ml. receptor-mediated endocytosis of specific ligands. LDL Receptor consists of 2. Immobilized mouse PCSK9 at 10 μg/ml (100 μl/well) can bind 84 amino acids (after removal of signal peptide) and mediates the biotinylated recombinant human LDLR. The EC50 of biotinylated human endocytosis of cholesterol-rich LDL. Low density lipoprotein (LDL) is LDLR is 0.12 μg/ml. normally bound at the cell membrane and taken into the cell ending up in Endotoxin: lysosomes where the protein is degraded and the cholesterol is made available for repression of microsomal enzyme 3-hydroxy-3-methylglutaryl < 1.0 EU per μg of the protein as determined by the LAL method coenzyme A (HMG CoA) reductase, the rate-limiting step in cholesterol synthesis.
    [Show full text]
  • Chem331 Tansey Chpt4
    3/10/20 Adhesion Covalent Cats - Proteases Roles Secretion P. gingivalis protease signal peptidases Immune Development Response T-cell protease matriptase 4 classes of proteases: Serine, Thiol (Cys), Acid Blood pressure Digestion regulation (Aspartyl), & Metal (Zn) trypsin renin Function Protease ex. Serine Cysteine trypsin, subtilisin, a-lytic Complement protease protease Nutrition Cell fusion protease Fixation hemaglutinase Invasion matrixmetalloproteases CI protease Evasion IgA protease Reproduction Tumor ADAM (a disintegrain and Invasion Adhesion collagenase and metalloproteinase) Fertilization signal peptidase, viral Processing acronase proteases, proteasome Signaling caspases, granzymes Fibrinolysis Pain Sensing tissue plasminogen kallikrein Acid Metallo- actvator protease protease Animal Virus Hormone Replication Processing HIV protease Kex 2 Substrate Specificity Serine Proteases Binding pocket is responsible for affinity Ser, His and Asp in active site Ser Proteases Multiple Mechanism Chymotrypsin Mechanism •Serine not generally an active amino acid for acid/base catalysis Nucleophilic attack •Catalytic triad of serine, histadine and aspartate responsible for the reactivity of serine in this active site •Covalent catalysis, Acid/base Catalysis, transition state bindingand Proximity mechanisms are used •Two phase reaction when an ester is used – burst phase - E +S initial reactions – steady state phase - EP -> E + P (deacylation) – The first step is the covalent catalysis - where the substrate actually is bound to the enzyme itself
    [Show full text]
  • Nudel, an Unusual Mosaic Protease Involved in Defining the Embryonic Dorsal-Ventral Axis of Drosophila Melanogaster Charles Chansik Hong Yale University
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 5-1998 Nudel, an unusual mosaic protease involved in defining the embryonic dorsal-ventral axis of Drosophila Melanogaster Charles Chansik Hong Yale University. Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Part of the Medicine and Health Sciences Commons Recommended Citation Hong, Charles Chansik, "Nudel, an unusual mosaic protease involved in defining the embryonic dorsal-ventral axis of Drosophila Melanogaster" (1998). Yale Medicine Thesis Digital Library. 2217. http://elischolar.library.yale.edu/ymtdl/2217 This Open Access Dissertation is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. Nudel, an Unusual Mosaic Protease Involved in Defining the Embryonic Dorsal-Ventral Axis ofDrosophila Melanogaster A Dissertation Presented to the Faculty of the Graduate School o f Yale University in Candidacy for the Degree of Doctor of Philosophy by Charles Chansik Hong Dissertation Director: Carl Hashimoto, Ph.D. May, 1998 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. © 1998 by Charles Chansik Hong All rights reserved. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT Nudel, an Unusual Mosaic Protease Involved in Defining the Embryonic Dorsal-Ventral Axis ofDrosophila Melanogaster Charles Chansik Hong Yale University 1998 Dorsal-ventral polarity of Drosophilathe embryo is determined by positional information that originates outside of the embryo.
    [Show full text]
  • Sharon Carr Mphil Thesis
    ADENOVIRUS AND ITS INTERACTION WITH HOST CELL PROTEINS Sharon Carr A Thesis Submitted for the Degree of MPhil at the University of St. Andrews 2007 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/219 This item is protected by original copyright Adenovirus and its interaction with host cell proteins Sharon Carr School of Biomedical Sciences University of St Andrews A thesis submitted for the degree of Master of Philosophy September 2006 1 I, …………………., hereby certify that this thesis, which is approximately 75,000 words in length, has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. date…………… signature of candidate………………………… I was admitted as a research student in September 2002 and as a candidate for the degree of Doctor of Philosophy in September 2002; the higher study for which this is a record was carried out in the University of St Andrews between 2002 and 2005, and at the University of Dundee between 2005 and 2006. date…………… signature of candidate………………………… I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriated for the degree of Master of Philosophy in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree. date…………… signature of supervisors………………………… ………………………… 2 In submitting this thesis to the University of St Andrews I understand that I am giving permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby.
    [Show full text]
  • Elevated Calcium and Activation of Trypsinogen in Rat Pancreatic Acini Gut: First Published As 10.1136/Gut.41.3.339 on 1 September 1997
    Gut 1997; 41: 339–343 339 Elevated calcium and activation of trypsinogen in rat pancreatic acini Gut: first published as 10.1136/gut.41.3.339 on 1 September 1997. Downloaded from T W Frick, C Fernández-del-Castillo, D Bimmler, A L Warshaw Abstract injection of calcium.5 Other experimental pro- Background—Acute pancreatitis associ- tocols used low dose continuous infusions of ated with hypercalcaemia has been de- calcium leading to a twofold increase in serum scribed in humans and experimental ionised calcium. Morphological changes of animals. It has been demonstrated that early acute pancreatitis were seen in several calcium dose dependently accelerates animal species.67 It was shown that hypercal- trypsinogen activation, and it is generally caemia induced a secretory block and accumu- believed that ectopic activation of diges- lation of digestive zymogens within the pancre- tive enzymes is an early event in the atic acinar cell.8 Zymogen activation, in pathophysiology of acute pancreatitis. particular trypsinogen, in homogenates of pan- Aims and methods—Trypsinogen activa- creatic tissue after calcium injection, suggested tion peptide (TAP) was measured in that the combination of zymogen accumulation isolated rat pancreatic acini exposed to and increased calcium leads to increased intra- elevated extracellular calcium in order to pancreatic trypsinogen activation as a very investigate the association between cal- early step in the pathogenesis of acute hyper- cium and trypsinogen activation in living calcaemia induced pancreatitis.58 cells. TAP was determined in the culture Despite this evidence it remained unclear medium either before (extracellular com- whether the ectopic zymogen activation oc- partment) or after (intracellular com- curred as an initial step in the pathogenesis of partment) cell homogenisation.
    [Show full text]
  • Influenza H1 Mosaic Hemagglutinin Vaccine Induces Broad Immunity and Protection in Mice
    Article Influenza H1 Mosaic Hemagglutinin Vaccine Induces Broad Immunity and Protection in Mice Brigette N. Corder 1, Brianna L. Bullard 1 , Jennifer L. DeBeauchamp 2, Natalia A. Ilyushina 3 , Richard J. Webby 2 and Eric A. Weaver 1,* 1 School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA; [email protected] (B.N.C.); [email protected] (B.L.B.) 2 Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; [email protected] (J.L.D.); [email protected] (R.J.W.) 3 Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; [email protected] * Correspondence: [email protected] Received: 8 November 2019; Accepted: 20 November 2019; Published: 23 November 2019 Abstract: Annually, influenza A virus (IAV) infects ~5–10% of adults and 20–30% of children worldwide. The primary resource to protect against infection is by vaccination. However, vaccination only induces strain-specific and transient immunity. Vaccine strategies that induce cross-protective immunity against the broad diversity of IAV are needed. Here we developed and tested a novel mosaic H1 HA immunogen. The mosaic immunogen was optimized in silico to include the most potential B and T cell epitopes (PBTE) across a diverse population of human H1 IAV. Phylogenetic analysis showed that the mosaic HA localizes towards the non-pandemic 2009 strains which encompasses the broadest diversity in the H1 IAV population. We compared the mosaic H1 immunogen to wild-type HA immunogens and the commercial inactivated influenza vaccine, Fluzone.
    [Show full text]
  • DIGESTIVE SYSTEM -3 Emma Jakoi
    Introductory Human Physiology ©copyright Emma Jakoi DIGESTIVE SYSTEM -3 Emma Jakoi. Ph.D. LEARNING OBJECTIVES 1. Explain the mechanisms of digestion and absorption of nutrients and identify where these occur within the gastrointestinal tube. 2. Explain the mechanisms of absorption of water and identify where this occurs within the gastrointestinal tube. 3. Explain the underlying mechanism for diarrhea and its causes. SMALL INTESTINE & NUTRIENT ABSORPTION Muscle contractions cause a ripple like movement that carries the food down the small intestine –like a conveyor belt. This transit is normally slow occurring over several hours. As complex food moves within the lumen of the small intestine, it is digested into small molecules. Subsequently these small molecules such as amino acids and sugars are absorbed into the body. These functions are coordinated by hormones. The small intestine is divided into three regions: duodenum, jejunum and ileum. The first, duodenum, is 10 inches long; the other two total 10 feet. The initial segment, the duodenum, receives the acidic chyme. Here the epithelium contains mucous glands and goblet cells which secrete mucus to neutralize the pH of the chyme. The duodenal epithelium cells also secrete hormones (Fig 1), cholecystokinin (CCK) and secretin, which signal the arrival of food to the pancreas, gall bladder, and stomach, respectively (Fig 1). Secretions from the pancreas and gall bladder are delivered directly to the lumen of the duodenum. Chyme G cells of stomach Duodenum CHO fats & peptides acid GLP-1 CCK Secretin Pancreas Pancreas Gall bladder Pancreas Islet Insulin enzymes bile salts HCO3- (Blood, feedforward) Figure 1. Digestive products signal the release of 2 hormones CCK and secretin from the duodenum and glucagon like peptide 1 (GLP-1) from the ileum.
    [Show full text]
  • The Initiating Mechanism of Premature Trypsin Activation in Pancreatitis Kai Yang
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2004 The Initiating Mechanism of Premature Trypsin Activation in Pancreatitis Kai Yang Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES THE INITIATING MECHANISM OF PREMATURE TRYPSIN ACTIVATION IN PANCREATITIS By KAI YANG A Thesis submitted to the Department of Biological Science in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Summer Semester, 2004 The members of the Committee approve the Thesis of Kai Yang defended on 21 April, 2004. Wei-Chun Chin Professor Co - Directing Thesis George Bates Professor Co - Directing Thesis Thomas Keller Committee Member Laura Keller Committee Member Approved: Timothy S.Moerland, Chair, Department of Biological Science The Office of Graduate Studies has verified and approved the above named committee members. ii ACKNOWLEDGEMENTS I would like to express my thanks and appreciation to my advisor, Dr. Wei- Chun Chin for his continuous encouragement and kind help in my research and study. When I was in trouble, he gave me a chance to continue my study. I am also very grateful to Dr. George Bates, my co-major professor for his help. Without their support, I never would have finished my master degree in the department of biological science. I also wish to thank Dr. Thomas Keller and Dr. Laura Keller for their contribution as my committee members. I also would like to express my love and gratitude to my family for their support, patient, kindness, inspiration and love.
    [Show full text]
  • Determination of Three Amino Acids Causing Alteration of Proteolytic Title Activities of Staphylococcal Glutamyl Endopeptidases
    NAOSITE: Nagasaki University's Academic Output SITE Determination of three amino acids causing alteration of proteolytic Title activities of staphylococcal glutamyl endopeptidases. Nemoto, Takayuki K; Ono, Toshio; Shimoyama, Yu; Kimura, Shigenobu; Author(s) Ohara-Nemoto, Yuko Citation Biological chemistry, 390(3), pp.277-285; 2009 Issue Date 2009-03 URL http://hdl.handle.net/10069/23192 Right Walter de Gruyter. This document is downloaded at: 2020-09-17T22:23:39Z http://naosite.lb.nagasaki-u.ac.jp Determination of three amino acids that caused the alteration of proteolytic activities of staphylococcal glutamyl endopeptidases Takayuki K. Nemoto1, *, Toshio Ono1, Yu Shimoyama2, Shigenobu Kimura2 and Yuko Ohara-Nemoto1 1 Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588 Japan 2 Department of Oral Microbiology, Iwate Medical University School of Dentistry, Morioka, 020-8505 Japan *Corresponding author T. K. Nemoto, Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan Fax: +81 95 819 7640, Tel: +81 95 819 7642, E-mail: [email protected] Running title: Amino acid substitutions of V8 protease 1 Abstract Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus warneri secrete glutamyl endopeptidases, designated GluV8, GluSE and GluSW, respectively. The order of their protease activities was GluSE<GluSW<<GluV8. The present study investigated the mechanism that causes these differences. Expression of chimeric proteins between GluV8 and GluSE revealed that the difference was primarily attributed to amino acids at residues 170-195, which defined the intrinsic protease activity, and additionally to residues 119-169, which affected the proteolysis sensitivity.
    [Show full text]
  • Apical Secretion of Lysosomal Enzymes in Rabbit Pancreas Occurs Via a Secretagogue Regulated Pathway and Is Increased After Pancreatic Duct Obstruction
    Apical secretion of lysosomal enzymes in rabbit pancreas occurs via a secretagogue regulated pathway and is increased after pancreatic duct obstruction. T Hirano, … , M Saluja, M L Steer J Clin Invest. 1991;87(3):865-869. https://doi.org/10.1172/JCI115091. Research Article Lysosomal hydrolases such as cathepsin B are apically secreted from rabbit pancreatic acinar cells via a regulated as opposed to a constitutive pathway. Intravenous infusion of the cholecystokinin analogue caerulein results in highly correlated apical secretion of digestive and lysosomal enzymes, suggesting that they are discharged from the same presecretory compartment (zymogen granules). Lysosomal enzymes appear to enter that compartment as a result of missorting. After 7 h of duct obstruction is relieved, caerulein-stimulated apical secretion of cathepsin B and amylase is increased, but the ratio of cathepsin B to amylase secretion is not different than that following caerulein stimulation of animals never obstructed. These findings indicate that duct obstruction causes an increased amount of both lysosomal and digestive enzymes to accumulate within the secretagogue releasable compartment but that duct obstruction does not increase the degree of lysosomal enzyme missorting into that compartment. Pancreatic duct obstruction causes lysosomal hydrolases to become colocalized with digestive enzymes in organelles that, in size and distribution, resemble zymogen granules but that are not subject to secretion in response to secretagogue stimulation. These organelles may be of importance in the development of pancreatitis. Find the latest version: https://jci.me/115091/pdf Apical Secretion of Lysosomal Enzymes in Rabbit Pancreas Occurs Via a Secretagogue Regulated Pathway and Is Increased after Pancreatic Duct Obstruction T.
    [Show full text]
  • Crystal Structure of the Zymogen Form of the Group a Streptococcus Virulence Factor Speb: an Integrin-Binding Cysteine Protease
    Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: An integrin-binding cysteine protease Todd F. Kagawa*, Jakki C. Cooney†, Heather M. Baker*, Sean McSweeney‡, Mengyao Liu§¶, Siddeswar Gubba§, James M. Musser§¶, and Edward N. Baker*ʈ** *School of Biological Sciences and ʈDepartment of Chemistry, University of Auckland, Private Bag 92–019, Auckland, New Zealand; †Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand; ‡European Molecular Biology Laboratory Grenoble Outstation, 6 Av. J. Horowitz, Grenoble 38042, France; §Institute of Human Bacterial Pathogenesis, Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; and ¶Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840 Communicated by Richard M. Krause, National Institutes of Health, Bethesda, MD, December 16, 1999 (received for review October 25, 1999) Pathogenic bacteria secrete protein toxins that weaken or disable The enzyme has fibrinolytic activity and causes myocardial their host, and thereby act as virulence factors. We have deter- necrosis when injected into rabbits (11). It also has been shown mined the crystal structure of streptococcal pyrogenic exotoxin B to trigger apoptosis (12), although the exact role of this process (SpeB), a cysteine protease that is a major virulence factor of the in pathogenesis is not known. Importantly, most strains of S. human pathogen Streptococcus pyogenes and participates in in- pyogenes that are associated with severe invasive disease express vasive disease episodes, including necrotizing fasciitis. The struc- a variant of SpeB that binds to integrins, which may be linked to ture, determined for the 40-kDa precursor form of SpeB at 1.6-Å their pathogenesis (13).
    [Show full text]
  • Molecular Mechanism of Pancreatitis Dipendra Parajuli 01/05/02006
    Molecular Mechanism of Pancreatitis Dipendra Parajuli 01/05/2006 University of Louisville Pancreatic Function in Health I. Inorganic Constituents - Aqueous, isotonic to plasma - Formed in duct cells - Consists of electrolytes and water Cations= Na+ , K+ Anions = Cl-, HCO3- - Electrolytes are secreted; H20 enters passively along the osmotic gradient - Proportion of Cl and HCO3 is dependent on the flow rate High Secretory rate HCO3 > Cl UniversityLow Secretory of rate Louisville HCO3 < Cl - Fluid is initially hypertonic but water movement into lumen dilutes it - Purposes of the water and ion secretions are to deliver digestive enzymes to the intestinal lumen and to help neutralize gastric acid emptied into duodenum - Impaired secretion of ions and water causes impaired flow of proteins causing thick secretions to plug the ducts University of Louisville Fluid secretion: Mechanism and Regulation - Export of H+ by Na+/H+ antiporter or H+-K+- ATPase -CO2 diffuses into cell - Carbonic anhydrase catalyzes HCO3 formation - - HCO3 transported out in exchange for Cl Cl- builds up in cell, exits by electrogenic channel =CFTR University of Louisville Fluid secretion: Mechanism and Regulation University of Louisville In Cystic Fibrosis - Defective CFTR (Cl- channel) - HCO3, Na+, water secretion impaired - Mucus buildup - maldigestion due to duct obstruction, loss of enzyme delivery to duodenum University of Louisville II. Organic Constituents Digestive Enzymes Proteolytic Enzymes Amyolytic Enzyme Lipolytic Enzymes Nucleases Trypsin Inhibitor Some of the enzymes are present in more than one form (e.g. trypsinogen =cationic, anionic and mesotrypsinogen ) University of Louisville Enzyme Secretion: Mechanism and Regulation Basic Secretory Unit = acinar cells. University of Louisville University of Louisville Acinar cells - Polarized Panuclear region - Rich in RER Apical region - Rich in Golgi apparatus and Zymogen granules University of Louisville Rough endoplasmic reticulum (RER).
    [Show full text]