Apical Secretion of Lysosomal Enzymes in Rabbit Pancreas Occurs Via a Secretagogue Regulated Pathway and Is Increased After Pancreatic Duct Obstruction

Total Page:16

File Type:pdf, Size:1020Kb

Apical Secretion of Lysosomal Enzymes in Rabbit Pancreas Occurs Via a Secretagogue Regulated Pathway and Is Increased After Pancreatic Duct Obstruction Apical secretion of lysosomal enzymes in rabbit pancreas occurs via a secretagogue regulated pathway and is increased after pancreatic duct obstruction. T Hirano, … , M Saluja, M L Steer J Clin Invest. 1991;87(3):865-869. https://doi.org/10.1172/JCI115091. Research Article Lysosomal hydrolases such as cathepsin B are apically secreted from rabbit pancreatic acinar cells via a regulated as opposed to a constitutive pathway. Intravenous infusion of the cholecystokinin analogue caerulein results in highly correlated apical secretion of digestive and lysosomal enzymes, suggesting that they are discharged from the same presecretory compartment (zymogen granules). Lysosomal enzymes appear to enter that compartment as a result of missorting. After 7 h of duct obstruction is relieved, caerulein-stimulated apical secretion of cathepsin B and amylase is increased, but the ratio of cathepsin B to amylase secretion is not different than that following caerulein stimulation of animals never obstructed. These findings indicate that duct obstruction causes an increased amount of both lysosomal and digestive enzymes to accumulate within the secretagogue releasable compartment but that duct obstruction does not increase the degree of lysosomal enzyme missorting into that compartment. Pancreatic duct obstruction causes lysosomal hydrolases to become colocalized with digestive enzymes in organelles that, in size and distribution, resemble zymogen granules but that are not subject to secretion in response to secretagogue stimulation. These organelles may be of importance in the development of pancreatitis. Find the latest version: https://jci.me/115091/pdf Apical Secretion of Lysosomal Enzymes in Rabbit Pancreas Occurs Via a Secretagogue Regulated Pathway and Is Increased after Pancreatic Duct Obstruction T. Hirano, A. Saluja, P. Ramarao, M. M. Lerch, M. Saluja and M. L. Steer Department ofSurgery and Harvard Digestive Diseases Center Beth Israel Hospital and Harvard Medical School, Boston, Massachusetts 02215 Abstract can be stimulated by the digestive enzyme secretagogue chole- cystokinin (CCK).' We have reported the results ofa large num- Lysosomal hydrolases such as cathepsin B are apically se- ber of studies that suggest that lysosomal hydrolases may play creted from rabbit pancreatic acinar cells via a regulated as an important role in the pathogenesis ofacute pancreatitis. In a opposed to a constitutive pathway. Intravenous infusion of the recent communication, we noted that obstruction of the rabbit cholecystokinin analogue caerulein results in highly correlated pancreatic duct for 7 h causes subcellular redistribution of lyso- apical secretion of digestive and lysosomal enzymes, suggesting somal hydrolases and the appearance of lysosomal hydrolases that they are discharged from the same presecretory compart- in organelles that, by their size and distribution, resemble zy- ment (zymogen granules). Lysosomal enzymes appear to enter mogen granules (3). These observations led us to suspect that that compartment as a result of missorting. After 7 h of duct pancreatic duct obstruction might have an important effect on obstruction is relieved, caerulein-stimulated apical secretion of lysosomal enzyme secretion. cathepsin B and amylase is increased, but the ratio of cathepsin Surprisingly, little is known of the mechanisms responsible B to amylase secretion is not different than that following cae- for lysosomal enzyme secretion. Most of the studies evaluating rulein stimulation of animals never obstructed. These findings this phenomenon have been performed using nonpolarized cell indicate that duct obstruction causes an increased amount of types, and the results of those studies have indicated that, both lysosomal and digestive enzymes to accumulate within the under most conditions, lysosomal enzymes are secreted in a secretagogue releasable compartment but that duct obstruction constitutive manner (4, 5). In this paper, we report the results does not increase the degree of lysosomal enzyme missorting of studies that have characterized lysosomal enzyme secretion into that compartment. Pancreatic duct obstruction causes lyso- from the exocrine pancreas. Pancreatic acinar cells are believed somal hydrolases to become colocalized with digestive enzymes to secrete digestive enzymes exclusively at the apical surface of in organelles that, in size and distribution, resemble zymogen the cell, and in these cells, digestive enzyme secretion occurs granules but that are not subject to secretion in response to primarily via a well-characterized regulated pathway. We re- secretagogue stimulation. These organelles may be of impor- port that a small fraction ofthe pancreatic content oflysosomal tance in the development of pancreatitis. (J. Clin. Invest. 1991. hydrolases is released from the apical surface of pancreatic cells 87:865-869.) Key words: pancreatitis * cathepsin B - digestive under resting conditions and that intravenous infusion of the enzymes * intracellular trafficking - cell polarity cholecystokinin analogue caerulein increases the rate of lyso- somal enzyme secretion from the apical cell surface. This in- Introduction creased rate of lysosomal enzyme secretion closely parallels the enhanced rate of digestive enzyme secretion stimulated by Lysosomal hydrolases are synthesized on the endoplasmic retic- caerulein infusion. These observations indicate that the apical ulum, and along with other newly synthesized proteins includ- secretion of lysosomal hydrolases from the exocrine pancreas ing structural proteins and digestive zymogens, are transported occurs primarily via the regulated rather than via the constitu- to the Golgi complex. During transit through the Golgi com- tive pathway. Relief of pancreatic duct obstruction was found plex, lysosomal hydrolases are glycosylated, 6-mannose phos- to increase the magnitude of secretagogue-stimulated lyso- phorylated, and bound by 6-mannose phosphate-specific re- somal as well as digestive enzyme secretion. Since the lyso- ceptors (1). As a result, the bound lysosomal hydrolases are somal hydrolase cathepsin B can activate trypsinogen (6, 7) and diverted towards the lysosomal compartment and away from trypsin can activate the remaining digestive zymogens, these the pathway(s) by which proteins such as digestive zymogens observations may help to further elucidate events that underlie are exported from the cell. the development of pancreatitis. Rinderknecht and colleagues (2) have reported that lyso- somal enzymes can be detected in human pancreatic juice and Methods that the secretion of some, but not all, lysosomal hydrolases All experiments were performed using New Zealand rabbits of either sex, weighing 2.2-3.0 kg, purchased from Pine Acre Rabbitary (West Address correspondence to Dr. Michael L. Steer, Beth Israel Hospital, Brattleboro, VT). They were housed in light/dark cycle-regulated, air- MA Department of Surgery, 330 Brookline Ave., Boston, 02215. and 16 h 1990 in 17 conditioned (23±3°C) quarters fasted for before each experi- Receivedfor publication 25 June and revisedform Sep- ment. Caerulein and secretin were purchased from Sigma Chemical tember 1990. Co. (St. Louis, MO). CBZ-arginyl-arginine /3-naphthylamide was from Bachem Biosciences (Philadelphia, PA) and ,B-naphthylamide from J. Clin. Invest. Sigma Chemical Co. Leucine-2-naphthylamide, 4-methylumbelliferyl ©3 The American Society for Clinical Investigation, Inc. 0021-9738/91/03/0865/05 $2.00 Volume 87, March 1991, 865-869 1. Abbreviation used in this paper: CCK, cholecystolcinin. Pancreatic Secretion ofLysosomal Enzymes 865 sulfate, 4-methylumbelliferyl N-acetyl 3-D-galactosaminide, and 4- close correlation (P < 0.01) between the output of amylase and methylumbelliferyl N-acetyl f3-D-glucosaminide were purchased from ofcathepsin B that occurred in the presence ofeach ofthe doses Sigma Chemical Co. All other reagents were of the highest purity com- of caerulein tested (0.2-2.0 ,ug/kg/h, Fig. 2). The relationship mercially available. between amylase and cathepsin B output in response to each of Animal preparation. Rabbits were anesthetized with intravenously the doses was similar, i.e., when analyzed individually, the re- administered pentobarbitol (35 mg/kg initially, supplemented by peri- line was not odic doses of 10 mg/kg as needed) and a cannula (PE 50) was intro- gression obtained for each dose significantly differ- duced into the inferior vena cava via the femoral vein. After upper ent from that obtained by combining the results for the remain- abdominal midline laparotomy, the pylorus was ligated and a drainage ing secretagogue doses. Caerulein was also noted to stimulate gastrostomy cannula (PE 70) was placed. The pancreatic duct was can- the secretion of a number of other lysosomal hydrolases into nulated (PE 10) extraduodenally. After placement and exteriorization the pancreatic duct (Table I). In each instance, secretin alone ofthe various cannulas, the abdominal wound was closed. Core temper- caused only mild degrees of lysosomal enzyme secretion, while ature was maintained using a heating pad and overhead lamp. To stim- addition of caerulein (0.5 ,Ag/kg/h) caused a roughly threefold ulate and maintain pancreatic fluid secretion, secretin was infused stimulation of secretion for each ofthe four lysosomal enzymes through the venous catheter at a rate calculated to deliver 2.0 U/kg/h. studied. When indicated, pancreatic ductal obstruction was produced, after an Fractional output ofamylase and cathepsin B. Preliminary
Recommended publications
  • Diapause in the Mosquito Culex Pipiens Evokes a Metabolic Switch from Blood Feeding to Sugar Gluttony
    Diapause in the mosquito Culex pipiens evokes a metabolic switch from blood feeding to sugar gluttony Rebecca M. Robich* and David L. Denlinger† Department of Entomology, Ohio State University, 318 West 12th Avenue, Columbus, OH 43210 Contributed by David L. Denlinger, September 12, 2005 A key characteristic of overwintering dormancy (diapause) in the Although the physiological and ecological aspects of blood and mosquito Culex pipiens is the switch in females from blood feeding sugar feeding in diapausing C. pipiens have been well described, the to sugar gluttony. We present evidence demonstrating that genes molecular events that contribute to this metabolic decision have not encoding enzymes needed to digest a blood meal (trypsin and a been explored. In this study, we used suppressive subtractive chymotrypsin-like protease) are down-regulated in diapause-des- hybridization (SSH) to isolate three clones linked to this metabolic tined females, and that concurrently, a gene associated with the decision: fatty acid synthase, trypsin, and chymotrypsin-like serine accumulation of lipid reserves (fatty acid synthase) is highly up- protease. We then used these clones to probe the metabolic path- regulated. As the females then enter diapause, fatty acid synthase ways associated with the mosquito’s metabolic decision to enter and is only sporadically expressed, and expression of trypsin and terminate diapause. Because both short day length and low tem- chymotrypsin-like remains undetectable. Late in diapause (2–3 perature program diapause in C. pipiens, we also distinguished months at 18°C), the genes encoding the digestive enzymes begin between temperature and photoperiodic effects. We concluded to be expressed as the female prepares to take a blood meal upon that the short-day programming of diapause results in the down- the termination of diapause.
    [Show full text]
  • Wsn 40 (2016) 147-162 Eissn 2392-2192
    Available online at www.worldscientificnews.com WSN 40 (2016) 147-162 EISSN 2392-2192 Utilization of mulberry leaves treated with seed powder cowpea, Vigna unguiculata (L) for feeding the fifth instar larvae of silkworm, Bombyx mori (L) (Race: PM x CSR2) Vitthalrao B. Khyade1,*, Atharv Atul Gosavi2 1Department of Zoology, Shardabai Pawar Mahila Mahavidyalaya, Shardanagar Tal. Baramati; Dist. Pune - 413115, India 2Agriculture Development Trust Agri Polytechnic, Sharadanagar, Malegaon Colony, Tal: Baramati, Dist: Pune. PIN: 413115 Maharashtra, India *E-mail address: [email protected] ABSTRACT The present attempt was to screen the changes in the cocoon parameters; silk filament parameters and activities of biochemical reactions catalyzed by the midgut enzymes fifth instsr larvae of silkworm fed with mulberry leaves treated with aqueous solution of seed powder of Cowpeas (Vigna unguiculata). The cowpea seed powder was dissolved in distilled water and diluted to 2.5%, 5%, 7.5%, and 10% concentrations. Fresh mulberry leaves were dipped in each concentration of aqueous solution of cowpea seed powder for half an hour. 1000 ml solution was used for 100 grams of mulberry leaves. Treated mulberry leaves were drained off completely and then used for feeding. The mulberry leaves were fed five times per day at the rate of 100 grams per 100 larvae for each time. Untreated group of larvae were feed with untreated mulberry leaves. Water treated group of larvae were feed with water treated mulberry leaves. The experimental groups of larvae were feed with feed separately with 2.5 percent cowpea treated; 5.00 percent cowpea treated; 7.5 percent cowpea treated and 10.00 percent cowpea treated mulberry leaves.
    [Show full text]
  • Digestive Enzymes: the Key to Optimum Health
    Education Article Digestive Enzymes: The Key to Optimum Health Digestion is essential for good health. Unlocking nutrients from foods is a complex process. In order to break down food we rely on optimal levels and function of a special set of proteins called digestive enzymes. These proteins are found in the saliva and also in the small intestines. Without the combined actions of our digestive enzymes we would simply be unable to absorb many nutrients that we need to maintain good health. This is why reduced levels of digestive enzymes can be linked to a wide-range of symptoms within the gut and beyond. Digestive enzymes, along with stomach acid, play a crucial role in the initial stages of digestion, i.e. the breaking down of the food that we eat. The main classes of human digestive enzymes include proteases, lipases and carbohydrases, which respectively break down the macronutrients protein, fats and carbohydrates. If we do not efficiently digest these foods then vital nutrients such as essential fats, vitamins, minerals and phytonutrients cannot be absorbed. What is more, undigested or partially digested food passes through into the large intestines and is fermented by the resident colonic bacteria, causing unpleasant symptoms such as bloating and flatulence and contributing to a toxic bowel. Naturopaths believe toxicity within the bowel is the root of all disease. We do not make digestive enzymes for every type of food that we eat, such as gluten and phytic acid found in some grains and cereals and lactose, a sugar found in milk. This means our bodies may find it difficult to digest these types of foods.
    [Show full text]
  • Partial Characterization of Hepatopancreatic and Extracellular
    Aquaculture International Archimer June 2011, Volume 19, Number 3, Pages 445-457 http://archimer.ifremer.fr http://dx.doi.org/10.1007/s10499-010-9360-5 © Springer Science+Business Media B.V. 2010 The original publication is available at http://www.springerlink.com is available on the publisher Web site Web publisher the on available is Partial characterization of hepatopancreatic and extracellular digestive proteinases of wild and cultivated Octopus maya R. Martínez1, R. Sántos2, A. Álvarez3, G. Cuzón4, L. Arena5, M. Mascaró5, C. Pascual5 and C. Rosas5, * 1 División de Posgrado, FMVZ, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico 2 authenticated version authenticated Departamento de Nutrición, FMVZ, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico - 3 Unidad de Ciencias Biológicas, UJAT, Villahermosa, Tabasco, Mexico 4 Ifremer, Tahiti, French Polynesia 5 Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatan, Mexico *: Corresponding author : C. Rosas, email address : [email protected] Abstract: Abstract Proteinases from hepatopancreas (HP) and gastric juice (GJ) from wild and cultured red octopus (Octopus maya) were characterized. Hepatopancreas assays revealed optimal activity at pH 4, 9–10 and 10 for wild and pH 3, 8, and 9, for cultured octopuses, for total proteinases, trypsin and chymotrypsin, respectively. In the gastric juice, maximum activity was recorded at pH 6, 8, and 7 for total proteinases, trypsin, and chymotrypsin, respectively for both wild and cultured octopus. A reduction on enzyme activity of 70 and 20% was observed in HP and GJ extracts, respectively when protease inhibitor Pepstatin A was used.
    [Show full text]
  • Characterization and Functionalization of Suckerin-12 Protein
    CHARACTERIZATION AND FUNCTIONALIZATION OF SUCKERIN-12 PROTEIN HYDROGELS Dissertation Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in Engineering By Chelsea Buck, M.S. UNIVERSITY OF DAYTON Dayton, Ohio December 2018 CHARACTERIZATION AND FUNCTIONALIZATION OF SUCKERIN-12 PROTEIN HYDROGELS Name: Buck, Chelsea Carolyn APPROVED BY: Kristen K. Comfort, Ph. D. Donald A. Klosterman, Ph. D. Advisory Committee Chairman Committee Member Associate Professor Associate Professor Chemical and Materials Engineering Chemical and Materials Engineering Margaret F. Pinnell, Ph. D. Patrick B. Dennis, Ph. D. Committee Member Committee Member Associate Dean Research Scientist Mechanical and Aerospace Engineering Air Force Research Laboratory Robert J. Wilkens, Ph.D., P.E. Eddy M. Rojas, Ph.D., M.A., P.E. Associate Dean for Research and Innovation Dean Professor School of Engineering School of Engineering ii © Copyright by Chelsea Carolyn Buck All rights reserved 2018 iii ABSTRACT CHARACTERIZATION AND FUNCTIONALIZATION OF SUCKERIN-12 PROTEIN HYDROGELS Name: Buck, Chelsea Carolyn University of Dayton Advisor: Dr. Kristen K. Comfort Previous research of suckerin proteins identified in the sucker ring teeth of cephalopods have impressive mechanical properties and behave as thermoplastic materials. In this research, one isoform of suckerin protein, suckerin-12 was explored as a mechanically robust material. The protein was isolated and recombinantly expressed in E. coli. Gram-scale quantities of pure protein were expressed and purified to create enzymatically crosslinked hydrogels. Exposure to select salt anion conditions caused the hydrogels to contract significantly, at rates highly dependent upon the anion present in the buffer, which followed a trend modeled by the Hofmeister Series of anions.
    [Show full text]
  • Pancreatic Amylase
    1. Functional Anatomy • The pancreas which lies parallel to and beneath the stomach is composed of: 1. The endocrine islets of Langerhans which secrete: Hormone Type of cell % of secretion Insulin Beta cells 60% crucial for normal regulation of glucose, Glucagon Alpha cells ~25% lipid & protein metabolism Somatostatin delta cells ~10% 1. Acinar gland tissues which produce pancreatic juice (the main source of digestive enzymes). • The pancreatic digestive enzymes are secreted by pancreatic acini. • Large volumes of sodium Bicarbonate solution are secreted by the small ductules and larger ducts leading from the acini. • Pancreatic juice is secreted in Response to the presence of Chyme in the upper portions of the small intestine. 2. Major Components of Pancreatic Secretion and Their Physiologic Roles & 5. Activation of Pancreatic Enzymes • The major functions of pancreatic secretion: 1. To neutralize the acids in the duodenal chyme to optimum range (pH= 7.0-8.0) for activity of pancreatic enzymes. 2. To prevent damage to duodenal mucosa by acid & pepsin. 3. To produce enzymes involved in the digestion of dietary carbohydrate, fat, and protein. Pancreatic Enzymes: The pancreas secrests enzymes that act on all major types of food stuffs. 1. Pancreatic Proteolytic Enzymes (Trypsin, Chymotrypsin, Carboxypolypeptidase, Elastase) • Trypsin & Chymotrypsin split whole and partially digested proteins into peptides of various sizes but do not cause release of individual amino acids. • Carboxypolypeptidase splits some peptides into individual amino acids, thus completing digestion of some proteins to amino acids. • When first synthesized in the pancreatic cells, digestive enzymes are in the inactive forms; these enzymes become activated only after they are secreted into the intestinal tract.
    [Show full text]
  • Chem331 Tansey Chpt4
    3/10/20 Adhesion Covalent Cats - Proteases Roles Secretion P. gingivalis protease signal peptidases Immune Development Response T-cell protease matriptase 4 classes of proteases: Serine, Thiol (Cys), Acid Blood pressure Digestion regulation (Aspartyl), & Metal (Zn) trypsin renin Function Protease ex. Serine Cysteine trypsin, subtilisin, a-lytic Complement protease protease Nutrition Cell fusion protease Fixation hemaglutinase Invasion matrixmetalloproteases CI protease Evasion IgA protease Reproduction Tumor ADAM (a disintegrain and Invasion Adhesion collagenase and metalloproteinase) Fertilization signal peptidase, viral Processing acronase proteases, proteasome Signaling caspases, granzymes Fibrinolysis Pain Sensing tissue plasminogen kallikrein Acid Metallo- actvator protease protease Animal Virus Hormone Replication Processing HIV protease Kex 2 Substrate Specificity Serine Proteases Binding pocket is responsible for affinity Ser, His and Asp in active site Ser Proteases Multiple Mechanism Chymotrypsin Mechanism •Serine not generally an active amino acid for acid/base catalysis Nucleophilic attack •Catalytic triad of serine, histadine and aspartate responsible for the reactivity of serine in this active site •Covalent catalysis, Acid/base Catalysis, transition state bindingand Proximity mechanisms are used •Two phase reaction when an ester is used – burst phase - E +S initial reactions – steady state phase - EP -> E + P (deacylation) – The first step is the covalent catalysis - where the substrate actually is bound to the enzyme itself
    [Show full text]
  • Tumor-Associated and Microbial Proteases Compromise Host Igg Effector Functions by a Single Cleavage Proximal to the Hinge
    Tumor-associated and microbial proteases compromise host IgG effector functions by a single cleavage proximal to the hinge Randall J. Brezski1, Omid Vafa, Diane Petrone, Susan H. Tam, Gordon Powers, Mary H. Ryan, Jennifer L. Luongo, Allison Oberholtzer, David M. Knight, and Robert E. Jordan1 Biologics Research, Centocor R&D Inc., Radnor, PA 19087 Edited by Barry S. Coller, The Rockefeller University, New York, NY, and approved August 31, 2009 (received for review April 15, 2009) The successful elimination of pathogenic cells and microorganisms responsible for binding the MHC-class I related receptor, the by the humoral immune system relies on effective interactions neonatal Fc receptor (FcRn) that mediates the serum half-life of between host immunoglobulins and Fc␥ receptors on effector cells, circulating IgGs (14–16), are located in the area between the CH2 in addition to the complement system. Essential Ig motifs that and CH3 regions of the Fc (17–19). direct those interactions reside within the conserved IgG lower Several groups previously documented that certain proteases hinge/CH2 interface. We noted that a group of tumor-related and associated with inflammation, tumor invasion, metastasis, and microbial proteases cleaved human IgG1s in that region, and the bacterial infections have the ability to cleave IgGs (20, 21). Several ‘‘nick’’ of just one of the heavy chains profoundly inhibited IgG1 proteases preferentially cleave IgGs in the lower hinge, including effector functions. We focused on IgG1 monoclonal antibodies the matrix metalloproteinases (MMPs) stromelysin-1 (MMP-3), (mAbs) since IgG1 is the most abundant human subclass and metalloelastase (MMP-12) (both cleave between P232 and E233), demonstrates robust Fc-mediated effector functions.
    [Show full text]
  • The Basic Helix-Loop-Helix Transcription Factor E47 Reprograms Human Pancreatic Cancer Cells to a Quiescent Acinar State with Reduced Tumorigenic Potential
    ORIGINAL ARTICLE The Basic Helix-Loop-Helix Transcription Factor E47 Reprograms Human Pancreatic Cancer Cells to a Quiescent Acinar State With Reduced Tumorigenic Potential SangWun Kim, MD,*†‡ Reyhaneh Lahmy, PhD,*‡ Chelsea Riha, BS,*‡ Challeng Yang, BS,*‡ Brad L. Jakubison, BS,§ Jaco van Niekerk, BS,*‡ Claudio Staub, BS,*‡ Yifan Wu, BS,*‡ Keith Gates, PhD,|| Duc Si Dong, PhD,|| Stephen F.Konieczny, PhD,§ and Pamela Itkin-Ansari, PhD*‡ (Pancreas 2015;44: 718–727) Objectives: Pancreatic ductal adenocarcinoma (PDA) initiates from quiescent acinar cells that attain a Kras mutation, lose signaling from basic helix-loop-helix (bHLH) transcription factors, undergo acinar-ductal meta- ancreatic ductal adenocarcinoma (PDA) arises from the exocrine pancreas, which is composed of 2 major cell plasia, and rapidly acquire increased growth potential. We queried whether P — PDA cells can be reprogrammed to revert to their original quiescent acinar populations acinar cells that produce digestive enzymes and cell state by shifting key transcription programs. duct cells that are tasked with transporting acinar enzymes to Methods: Human PDA cell lines were engineered to express an inducible the duodenum. Despite the ductal morphology of PDA, lineage tracing studies have revealed that the tumors arise from the acinar form of the bHLH protein E47. Gene expression, growth, and functional 1–9 studies were investigated using microarray, quantitative polymerase chain re- compartment. In response to oncogenic Kras, quiescent acinar action, immunoblots, immunohistochemistry,
    [Show full text]
  • Pancreatic Exocrine Insufficiency and Enteral Feeding: a Practical Guide with Case Studies
    NUTRITION ISSUES IN GASTROENTEROLOGY, SERIES #181 NUTRITION ISSUES IN GASTROENTEROLOGY, SERIES #181 Carol Rees Parrish, M.S., R.D., Series Editor Pancreatic Exocrine Insufficiency and Enteral Feeding: A Practical Guide with Case Studies Mary E. Phillips Amy Berry Lucy S. Gettle Patients with pancreatic disease can develop severe malnutrition. Many factors contribute to the malnutrition seen in this patient population, one of the most problematic being pancreatic exocrine insufficiency (PEI) with resultant malabsorption. Pancreatic enzyme replacement therapies (PERT) are predominantly designed for oral administration, but this can be challenging in patients requiring enteral nutrition (EN). This review explores the use of PERT in complex patients who are on EN. Case studies will be utilized to demonstrate different methods available in order to provide practical guidance on administration, both in the United States (U.S.) and the United Kingdom (U.K.). INTRODUCTION atients with pancreatic disease, pancreatic medium-chain triglycerides, thereby decreasing resection, and cystic fibrosis often develop the dependence of pancreatic lipase for absorption. Psignificant malnutrition as a result of the However, some patients will continue to malasborb, numerous gastrointestinal (GI) complications even with semi-elemental products, worsening the preventing adequate oral intake. Malabsorption, malnutrition present. as well as side effects of medications such Traditional signs and symptoms of as antibiotics and opiates, adds an additional malabsorption
    [Show full text]
  • Spectrazyme Patient Brochure
    Gastrointestinal Health Take Our The SpectraZyme Difference Digestive Health Quiz SpectraZyme enzyme formulas, recommended by your healthcare practitioner, provide you exceptional quality Food is meant Do you feel you may have trouble digesting and personalized options that feature a wide array of digestive enzymes: to be enjoyed your meals? Enzyme What It Helps Break Down Do meals cause discomfort that negatively for Digestion impact the quality of your living? Amylase Carbohydrates (starches and other polysaccharides) Does the thought of after-meal digestion Protease Protein (large amino acid chains) cause you concern? Peptidase & Pepsin Peptides (smaller amino acid chains) Lipase Fats (triglycerides and other lipids) Do you have a known or suspected Lactase Lactose (milk sugar) sensitivity to lactose or gluten? Cellulase, Pectinase, Cellulose, pectin, xylan & Xylanase & hemicellulose (plant fibers and Do you have occasional indigestion or a Hemicellulase carbohydrates) feeling of fullness that lasts 2-4 hours Maltase Maltose (malt sugar) after eating? Invertase Sucrose (table sugar) Do you experience occasional bloating? Ask about SpectraZyme formulas today! Have you noticed a difference in your Learn more at SpectraZyme.com digestion as you age? Have you noticed undigested food in Unsurpassed Quality Setting quality standards for the industry for over the stool? 30 years, Metagenics tests each SpectraZyme product batch for enzyme activity—a better indicator of potency If you answered “yes” to any of these questions, than weight. ask your healthcare provider about nutritional strategies for digestive health, including digestive SpectraZyme®—high quality enzyme formulas enzymes and simple dietary and lifestyle changes. Triple GMP Certified Manufacturing for enhanced digestive health support* MET2070 072716 © 2016 Metagenics, Inc.
    [Show full text]
  • Systemic Enzyme Support: the Importance of Good Digestion
    Recent health and nutrition information from Douglas Laboratories August 2008 Systemic Enzyme Support: The Importance of Good Digestion An Overview by Rodger H. Murphree II, D.C., C.N.S. 1 2 by Wald M, M.D. , Honzíková M, M.D. , Lysíková M, It’s often been said “you are what you eat.” However a M.D., Ph.D.2, Masinovský Z, Ph.D.2 1Department of Surgery, more accurate statement might be you are what you eat, 2nd Medical Faculty, Charles University, Prague, Czech digest, absorb, and assimilate. Food, carbohydrates, fats, and Republic 2Department of Enzyme Therapy, Society of General proteins are the body’s building blocks. We need them for Medicine, J.E. Purkyne Czech Medical Association, Prague, our very survival. Carbohydrates are the body’s main source Czech Republic of fuel. Protein is needed for making the essential hormones and enzymes, preserving lean muscle mass, and for tissue Introduction repair. Dietary fat provides energy, maintains cell membranes, and helps absorb vitamins A, D, E, K, and carotenoids. The A large number of conditions are primarily inflammatory in digestion, absorption, and assimilation of the macronutrients, nature and may be significantly complicated by the presence of ensures we get adequate amounts of essential micronutrients- secondary forms of inflammation. Regardless of whether the cause enzymes, vitamins, minerals, amino acids, and fatty acids of the problem is due to bacterial, viral or auto-immune influences, which affect every cell in the body. The health of the digestive the result may be an ongoing situation with significant clinical and system not only determines how well we absorb these essential laboratory manifestations of the inflammatory process.
    [Show full text]