The Kinematics of the Intracluster Light in the Core of the Hydra I Cluster

Total Page:16

File Type:pdf, Size:1020Kb

The Kinematics of the Intracluster Light in the Core of the Hydra I Cluster Ludwig-Maximilians-Universitat¨ Sigillum Universitatis Ludovici Maximiliani The Kinematics of the Intracluster Light in the Core of the Hydra I Cluster Dissertation der Fakultat¨ fur¨ Physik Dissertation of the Faculty of Physics der Ludwig-Maximilians-Universitat¨ Munchen¨ at the Ludwig Maximilian University of Munich fur¨ den Grad des for the degree of Doctor rerum naturalium vorgelegt von Giulia Ventimiglia presented by aus Catania, Italien from Munchen,¨ 22. Dezember 2010 Sigillum Universitatis Ludovici Maximiliani 1. Gutachter: PD Dr. Ortwin E. Gerhard referee: 2. Gutachter: Prof. Dr. Hans Bohringer¨ referee: Tag der mundlichen¨ Prufung:¨ 18. Februar 2011 Date of the oral exam: To my father Contents Contents iii List of Figures vii List of Tables ix Zusammenfassung xi Abstract xiii 1 Introduction 1 1.1 ClustersofGalaxies..... ..... ...... ..... ...... ... ..... 1 1.1.1 Substructures in clusters of galaxies . ......... 2 1.1.2 Clusters of galaxies: X-ray observations . .......... 3 1.1.3 Clusters of galaxies: optical observations . ........... 5 1.1.4 Mechanisms causing galaxy evolution in clusters . ........... 9 1.2 TheIntraclusterLight. ...... 11 1.2.1 Formation mechanisms and numerical simulations . .......... 12 1.2.2 Amountandmorphology. 13 1.2.3 Metallicity: individual stars as diffuse light tracers . 16 1.2.4 TheICLandtheBCGs............................. 17 1.2.5 Kinematics ................................... 19 1.3 TheThesis....................................... 24 2 The dynamically hot stellar halo around NGC 3311 29 2.1 Introduction.................................... 30 2.2 Observations and archive data . ....... 30 iii 2.3 Datareduction................................... 32 2.4 The kinematics of the NGC 3311 stellar halo . ......... 35 2.5 Conclusions..................................... 37 2.6 Acknowledgements ................................ 37 3 Intracluster Planetary Nebulas in the Hydra I Cluster 39 3.1 Introduction.................................... 39 3.2 Observations .................................... 40 3.2.1 The Multi-Slit Imaging Spectroscopy technique . ........... 40 3.2.2 Observationalsetup . 41 3.3 Datareduction................................... 41 3.4 Selection Criteria for the PN population: the wavelength-magnitude plane . 43 3.5 Conclusions..................................... 45 3.6 Acknowledgements ................................ 45 4 A Ly α survey of background galaxies at z 3.12 47 ∼ 4.1 Introduction.................................... 47 4.2 The Multi-Slit Imaging Spectroscopy technique . ............. 48 4.3 Observationalsetup..... ...... ..... ...... ...... .. ..... 48 4.4 Datareduction................................... 49 4.5 Lyα candidates and their physical characteristics . .......... 49 4.6 Acknowledgements ................................ 51 5 The unmixed kinematics of intracluster stars in the core of the Hydra I cluster 53 5.1 Introduction.................................... 54 5.2 The Hydra I cluster of galaxies (Abell 1060) . ........... 56 5.3 Probing the ICL kinematics using Planetary Nebulas . ............. 57 5.3.1 Planetary Nebulas as kinematical probes and distance indicators . 57 5.3.2 The Multi-Slit Imaging Spectroscopy technique . ........... 58 5.4 Observations .................................... 58 5.5 Data reduction and analysis . ....... 59 5.5.1 Identification of Emission-Line Objects . ......... 59 5.5.2 Photometry ................................... 60 5.6 ThePNsampleinHydraI ............................. 61 5.7 Kinematic substructures and α parameter for the observed PN sample in Hydra I . 64 5.7.1 Predicting the luminosity function and LOSVD with MSIS.......... 64 5.7.2 Reality of observed kinematic substructures . ........... 67 5.7.3 Low α-parameter in the core of Hydra I . 68 5.8 The substructures in the Hydra I cluster core . ............ 71 5.8.1 Spatial distributions of the PN velocity components . ............. 71 5.8.2 Spatial and velocity distribution of Hydra I galaxies .............. 73 5.8.3 Galaxy evolution and presence of substructures in the core of Hydra I . 74 5.9 SummaryandConclusions . 77 5.10 Acknowledgements ..... ..... ...... ..... ...... .... 78 6 Disrupted galaxies in the Hydra I cluster 79 6.1 Introduction.................................... 80 6.2 Optical and Near Infrared imaging of the Hydra I core . ............. 82 6.2.1 V band photometry - Observations and data reduction . ........... 82 6.2.2 Ks band photometry - 2MASS archive data . ..... 83 6.3 Surface photometry for NGC 3311 and NGC 3309 in V and Ks bands ........ 83 6.3.1 Isophotefitting ................................ 83 6.3.2 Analysis of the V, Ks surface profiles . ...... 85 6.3.3 Two-dimensional model for the light distribution in NGC 3311 and NGC 3309 85 6.3.4 Morphology of the light excess in the NE quadrant of NGC 3311 . 89 6.4 Long slit spectroscopy of the NGC 3311 halo . ......... 90 6.5 Correlation among substructures in the diffuse light, PNs and galaxies distributions . 92 6.5.1 Light excess and PNs substructure . ...... 92 6.5.2 Differences in the α parameter ......................... 93 6.5.3 Light excess and substructures in the galaxy distribution ........... 94 6.6 Summaryandconclusions . 96 6.7 Acknowledgements ................................ 97 7 HCC 26: the characteristics of one of the dwarf galaxies in the core of Hydra I 99 7.1 Introduction.................................... 99 7.2 The dwarf galaxies in the core of the Hydra I cluster: photometric characteristics . 100 7.2.1 Observational set up, data reduction and 2D modeling . ........... 100 7.2.2 Results ..................................... 100 7.3 HCC26 ......................................... 101 7.3.1 Kinematics ................................... 101 7.3.2 Ageandmetallicity. ...... ..... ...... ...... ..... 102 7.4 HCC 26: comparison with dwarf galaxy samples in nearby clusters . 103 7.4.1 Lick indices and stellar population parameters . ............ 103 7.4.2 Structural parameters and fundamental plane . .......... 105 7.5 Summaryandconclusions . 107 8 Summary and conclusions 111 Acknowledgments 121 Bibliography 123 List of Figures 1.1 Mihos2005photometry. 15 1.2 ICL in the Centaurus cluster . ...... 16 1.3 Examples of Planetary Nebulas spectra . .......... 20 1.4 MSIS mask for the Hydra I cluster . ...... 24 2.1 Gemini and FORS2 long-slit spectra positions . ............ 31 2.2 Examples of spectra of NGC 3311 along its major axis . ........... 32 2.3 Major axis line-of-sight velocity and velocity dispersion profiles for NGC 3311 . 34 2.4 Properties of the stellar halo of NGC 3311 . .......... 36 3.1 AtypicalMSISPNspectrum . 42 3.2 Velocity-Magnitude plane for the PNs in the Hydra I core . .............. 43 4.1 The Lyα sample..................................... 50 5.1 The physical characteristics of the PN sample . ............ 62 5.2 Cumulative PN luminosity function . ........ 67 5.3 Simulated PN population for NGC 3311 . ....... 68 5.4 Observed and predicted cumulative PN numbers . ........... 71 5.5 PN spatial distribution in the Hydra I cluster . ............. 72 5.6 Velocity distribution of the galaxies in the Hydra I cluster............... 75 5.7 Spatial distribution of the galaxies in the Hydra I cluster................ 76 6.1 Unsharp masked V band image of NGC 3311 . ..... 82 6.2 Isophotes, P.A., ellipticity and average SB profiles in V and Ks bands of NGC 3311 . 84 6.3 Isophote shape parameter profiles in V and Ks band images ofNGC3311 . 84 6.4 V and Ks band average surface brightness profiles of NGC 3311 ........... 86 6.5 Major and minor axis V band folded profiles of NGC 3311 . .......... 87 vii 6.6 Ks band 2D model of NGC 3311 and NGC 3309 . 88 6.7 V band 2D model of NGC 3311 and NGC 3309 . 88 6.8 V and Ks band profiles along major and minor axis of NGC 3311 ........... 89 6.9 Lightexcessspectrum. ..... 91 6.10 Fourier cross-correlation function computed from the light excess spectrum . 92 6.11 PNs on top of the residual V band image of the Hydra I core . ............ 95 6.12 Dwarf galaxies on top of the residual V band image of the Hydra I core . 95 7.1 SpectrumofHCC26 ................................. 102 7.2 LickindicesofHCC26.............................. 104 7.3 Magnitude vs age and magnitude vs metallicity relations forHCC26. 105 7.4 Kormendy relation for HCC 26 . 106 7.5 Position on fundamental plane of HCC 26 . ........ 108 List of Tables 2.1 Measured velocities and velocity dispersions of NGC 3311.............. 38 6.1 V and Ks band photometric parameters for NGC 3311 and NGC 3309 ........ 88 6.2 Positions, V band magnitudes and velocities for the dwarfs in the core of Hydra I . 94 7.1 Photometric characteristics of the DWs in the core of the Hydra I cluster . 100 ix Zusammenfassung Dem aktuellen kosmologischen Modell nach wachsen Galaxienhaufen – die gr¨oßten virialisierten Systeme des Universums – durch die Akkretion kleinerer Objekte aus der umgebenden, wabenartigen kosmischen Massenverteilung. Die entsprechenden Galaxien kommen dabei in Wechselwirkung sowohl mit anderen Galaxien als auch mit dem heißen R¨ontgengas (ICM) und dem Gravitationsfeld des Galaxienhaufens, und ver¨andern in der Folge ihre Struktur. Einige der dabei auftretenden Prozesse sind ’tidal stripping’ (Massenverlust durch Gezeitenkr¨afte), die Verschmelzung mit anderen Galaxien und ’ram pressure stripping’ (Gasverlust durch den Staudruck des R¨ontgengases im Haufen). Diese Prozesse spielen nicht nur f¨ur die weitere Entwicklung der Galaxien eine Rolle, sondern sind auch verantwortlich f¨ur
Recommended publications
  • Formation of an Ultra-Diffuse Galaxy in the Stellar Filaments of NGC 3314A
    A&A 652, L11 (2021) Astronomy https://doi.org/10.1051/0004-6361/202141086 & c ESO 2021 Astrophysics LETTER TO THE EDITOR Formation of an ultra-diffuse galaxy in the stellar filaments of NGC 3314A: Caught in the act? Enrichetta Iodice1 , Antonio La Marca1, Michael Hilker2, Michele Cantiello3, Giuseppe D’Ago4, Marco Gullieuszik5, Marina Rejkuba2, Magda Arnaboldi2, Marilena Spavone1, Chiara Spiniello6, Duncan A. Forbes7, Laura Greggio5, Roberto Rampazzo5, Steffen Mieske8, Maurizio Paolillo9, and Pietro Schipani1 1 INAF-Astronomical Observatory of Capodimonte, Salita Moiariello 16, 80131 Naples, Italy e-mail: [email protected] 2 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei Muenchen, Germany 3 INAF-Astronomical Observatory of Abruzzo, Via Maggini, 64100 Teramo, Italy 4 Instituto de Astrofísica, Facultad de Fisica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile 5 INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 6 Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK 7 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia 8 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile 9 University of Naples “Federico II”, C.U. Monte Sant’Angelo, Via Cinthia, 80126 Naples, Italy Received 14 April 2021 / Accepted 9 July 2021 ABSTRACT The VEGAS imaging survey of the Hydra I cluster has revealed an extended network of stellar filaments to the south-west of the spiral galaxy NGC 3314A. Within these filaments, at a projected distance of ∼40 kpc from the galaxy, we discover an ultra-diffuse galaxy −2 (UDG) with a central surface brightness of µ0;g ∼ 26 mag arcsec and effective radius Re ∼ 3:8 kpc.
    [Show full text]
  • Lateinischer Name: Deutscher Name: Hya Hydra Wasserschlange
    Lateinischer Name: Deutscher Name: Hya Hydra Wasserschlange Atlas Karte (2000.0) Kulmination um Cambridge 10, 16, Mitternacht: Star Atlas 17 12, 13, Sky Atlas Benachbarte Sternbilder: 20, 21 Ant Cnc Cen Crv Crt Leo Lib 9. Februar Lup Mon Pup Pyx Sex Vir Deklinationsbereic h: -35° ... 7° Fläche am Himmel: 1303° 2 Mythologie und Geschichte: Bei der nördlichen Wasserschlange überlagern sich zwei verschiedene Bilder aus der griechischen Mythologie. Das erste Bild zeugt von der eher harmlosen Wasserschlange aus der Geschichte des Raben : Der Rabe wurde von Apollon ausgesandt, um mit einem goldenen Becher frisches Quellwasser zu holen. Stattdessen tat sich dieser an Feigen gütlich und trug bei seiner Rückkehr die Wasserschlange in seinen Fängen, als angebliche Begründung für seine Verspätung. Um jedermann an diese Untat zu erinnern, wurden der Rabe samt Becher und Wasserschlange am Himmel zur Schau gestellt. Von einem ganz anderen Schlag war die Wasserschlange, mit der Herakles zu tun hatte: In einem Sumpf in der Nähe von Lerna, einem See und einer Stadt an der Küste von Argo, hauste ein unsagbar gefährliches und grässliches Untier. Diese Schlange soll mehrere Köpfe gehabt haben. Fünf sollen es gewesen sein, aber manche sprechen auch von sechs, neun, ja fünfzig oder hundert Köpfen, aber in jedem Falle war der Kopf in der Mitte unverwundbar. Fürchterlich war es, da diesen grässlichen Mäulern - ob die Schlange nun schlief oder wachte - ein fauliger Atem, ein Hauch entwich, dessen Gift tödlich war. Kaum schlug ein todesmutiger Mann dem Untier einen Kopf ab, wuchsen auf der Stelle zwei neue Häupter hervor, die noch furchterregender waren. Eurystheus, der König von Argos, beauftragte Herakles in seiner zweiten Aufgabe diese lernäische Wasserschlange zu töten.
    [Show full text]
  • Guide Du Ciel Profond
    Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 .
    [Show full text]
  • Detection of Co Emission in Hydra I Cluster Galaxies
    DETECTION OF CO EMISSION IN HYDRA I CLUSTER GALAXIES W.K. Huehtmeier Max- Planek-Ins t it ut fur Radioastr onomie Auf dem Huge1 69 5300 Bonn 1 , W. Germany Abstract A survey of bright Hydra cluster spiral galaxies for the CO(1-0) transition at 115 GHa was performed with the 15m Swedish-ESO submillimeter telescope (SEST). Five out of 15 galaxies observed have been detected in the CO(1-0) line. The largest spiral galaxy in the cluster , NGC 3312, got more CO than any spiral of the Virgo cluster. This Sa-type galaxy is optically largely distorted and disrupted on one side. It is a good candidate for ram pressure stripping while passing through the cluster's central region. A comparison with global CO properties of Virgo cluster spirals shows a relatively good agreement with the detected Hydra cluster galaxies. 0 bservations Observations were performed with the 15m Swedish-ESO submillimeter telescope (SEST) at La Silla in January 1989 under favorable meteorological conditions. At a frequency of 115 GHz the half power beamwidth (HPBW) of this telescope is 43 arcsec. The cooled Schottky heterodyne receiver had a typical receiver temperature of 350 K; the system temperature was typically 650 to 900 K depending on elevation and humidity. An accousto-optic spectrometer (Zensen 1984) with a bandwidth of 500 MHz yielded a channel width of 0.69 MHz or about 1.8 km/s. In order to improve the signal-to-noise ratio of the integrated profiles usually 5 to 10 frequency channels were averaged resulting in a resolution of 9 to 18 km/s.
    [Show full text]
  • Molecular Gas Content of Galaxies in the Hydra-Centaurus Supercluster
    MOLECULAR GAS CONTENT OF GALAXIES IN THE HYDRA-CENTAURUS SUPERCLUSTER W.K. Huchtmeier ™ ** <$ '"" & ^ O Max-Planck-Institut fiir Radioastronomie Auf dem Hugel 69 , 5300 Bonn 1 , W. Germany • Abstract A survey of bright spiral galaxies in the Hydra-Centaurus supercluster for the CO(l-O) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). A total of 30 galaxies have been detected in the CO(l-O) transition out of 47 observed, which is a detection rate over 60%. Global physical parameters of these galaxies derived from optical, CO, HI, and IR measurements compare very well with properties of galaxies in the Virgo cluster. The Hydra I cluster (Abell 1060) is one of the nearest clusters and very similar to the Virgo cluster in many global parameters like type, population, size, and shape. Both clusters have comparable velocity dispersions (i.e. total mass) and are spiral rich. Hydra is well isolated in velocity space and appears more circular (Kwast 1966), and might be dynamically more relaxed, although the center may contain significant substructures (Fitchett and Meritt 1988) or projected foreground groups. Both clusters contain low luminosity central X-ray sources. We assume a distance of 68.4 Mpc for Hydra I in order to allow direct comparison with some (nearly) complete galaxy samples. The Centaurus cluster provides a valuable contrast to Virgo and Coma. It is intermediate in distance and in galaxy population type with a relatively well defined SO-dominated core and an extensive S-rich halo. Its richness class in the Abell scale is 1 or 2 which is richer than Virgo and poorer than Coma.
    [Show full text]
  • A Search for Ram-Pressure Stripping in the Hydra I Cluster B.A. Brown
    A search for ram-pressure stripping in the Hydra I cluster B.A. Brown (NASA GSFC) Abstract Ram-pressure stripping is a method by which hot interstellar gas can be removed from a galaxy moving through a group or cluster of galaxies. Indirect evidence of ram-pressure stripping includes lowered X- ray brightness in a galaxy due to less X-ray emitting gas remaining in the galaxy. Here we present the initial results of our program to determine whether cluster elliptical galaxies have lower hot gas masses than their counterparts in less rich environments. This test requires the use of the high-resolution imaging of the Chundru Observatory and we present our analysis of the galaxies in the nearby cluster Hydra I. Introduction A thorough understanding of the processes that drive x-ray emission in elliptical and SO galaxies has been long sought after. Characteristics intrinsic of individual galaxies have been examined, as well as environmental influences. Of particular interest, is whether ram-pressure stripping (an environmental influence) is an observable process in early-type galaxies found in groups and clusters. Ram-pressure stripping is one possible mechanism by which hot interstellar gas is removed from a galaxy. In this process, a galaxy moving though a galaxy cluster experiences a pressure upon its interstellar medium (ISM) by the intracluster medium (ICM). Ram-pressure can be expressed by P, = p,v2, where pe is the density of the intracluster medium, and v is the galaxy’s velocity (Gunn & Gott, 1972). This pressure could be sufficient enough to remove a significant amount of the ISM from the galaxy.
    [Show full text]
  • The Dark Halo of the Hydra I Galaxy Cluster: Core, Cusp, Cosmological? ? Dynamics of NGC 3311 and Its Globular Cluster System
    Astronomy & Astrophysics manuscript no. N3311˙noletter˙V13˙astroph c ESO 2018 October 29, 2018 The dark halo of the Hydra I galaxy cluster: core, cusp, cosmological? ? Dynamics of NGC 3311 and its globular cluster system T. Richtler1, R. Salinas1;2, I. Misgeld3, M. Hilker4, G. K.T. Hau2, A.J. Romanowsky5, Y. Schuberth6, and M. Spolaor7 1 Departamento de Astronom´ıa, Universidad de Concepcion,´ Concepcion,´ Chile; [tom,rsalinas]@astro-udec.cl 2 European Southern Observatory, Alonso de Cordova´ 3107, Santiago, Chile 3 Sternwarte der Universitat¨ Munchen,¨ Scheinerstr.1, D-81679, Munchen,¨ Germany; [email protected] 4 European Southern Observatory, Karl-Schwarzschild-Str.2, Garching, Germany; [email protected] 5 UCO/Lick Observatory, University of California, Santa Cruz, CA 95064, USA; [email protected] 6 Argelander Institut fur¨ Astronomie, Auf dem Hugel¨ 71, 53121 Bonn, Germany; [email protected] 7 Australian Astronomical Observatory, PO Box 296, Epping, NSW 1710, Australia; [email protected] Received / Accepted ABSTRACT Context. Some galaxy clusters exhibit shallow or even cored dark matter density profiles in their central regions rather than the pre- dicted steep or cuspy profiles, conflicting with the standard understanding of dark matter. NGC 3311 is the central cD galaxy of the Hydra I cluster (Abell 1060). Aims. We use globular clusters around NGC 3311, combined with kinematical data of the galaxy itself, to investigate the dark matter distribution in the central region of Hydra I . Methods. Radial velocities of 118 bright globular clusters, based on VLT/VIMOS mask spectroscopy, are used to calculate velocity dispersions which are well defined out to 100 kpc.
    [Show full text]
  • TSP 2004 Telescope Observing Program
    THE TEXAS STAR PARTY 2004 TELESCOPE OBSERVING CLUB BY JOHN WAGONER TEXAS ASTRONOMICAL SOCIETY OF DALLAS RULES AND REGULATIONS Welcome to the Texas Star Party's Telescope Observing Club. The purpose of this club is not to test your observing skills by throwing the toughest objects at you that are hard to see under any conditions, but to give you an opportunity to observe 25 showcase objects under the ideal conditions of these pristine West Texas skies, thus displaying them to their best advantage. This year we have planned a program called “Starlight, Starbright”. The rules are simple. Just observe the 25 objects listed. That's it. Any size telescope can be used. All observations must be made at the Texas Star Party to qualify. All objects are within range of small (6”) to medium sized (10”) telescopes, and are available for observation between 10:00PM and 3:00AM any time during the TSP. Each person completing this list will receive an official Texas Star Party Telescope Observing Club lapel pin. These pins are not sold at the TSP and can only be acquired by completing the program, so wear them proudly. To receive your pin, turn in your observations to John Wagoner - TSP Observing Chairman any time during the Texas Star Party. I will be at the outside door leading into the TSP Meeting Hall each day between 1:00 PM and 2:30 PM. If you finish the list the last night of TSP, or I am not available to give you your pin, just mail your observations to me at 1409 Sequoia Dr., Plano, Tx.
    [Show full text]
  • Xlii Reunião Anual Da Sociedade Astronômica Brasileira
    XLII REUNIÃO ANUAL DA SOCIEDADE ASTRONÔMICA BRASILEIRA SÃO PAULO, 9 A 12 DE JULHO DE 2018 PROGRAMA OFICIAL Pal !"#a! $% A&'(")#(% F #$a$'% H $#(*& Ca#'%!% 'a U$(CS&l DIA 09 DE JULHO, SEGUNDA-FEIRA 09+00 , 12+00 Registro dos participantes e co oca!"o dos painéis 1-+00 , 1-+1. A$ert%ra da XLII Reunião An%a / l% P# !(' $" 'a SAB, Dr0 R ($al'% Ra1%! ' Ca#2al3%, / l% R ("%# 'a U$(CS&l, Dr0 L&4! H $#(*& A1a#al 'hair) *a ter J+ Macie (IAG.US/0 1-+1. , 15+1. 'onferência Con3idada - 4i3ian *(ite (AS/.USA) A!"#%$%16 7%# 2 #6 !"a8 + Ta9"(9! 7%# $8a8 1 $" "3#%&83%&" "3 /(/ l($ 15+1. , 15+-. 5e 6 Beatriz 4+ 9orres (UFSJ0 P#%: "% ' ;" $!<% =I$9l&!<% 'a! 1&l3 # ! $a! C(>$9(a! T 9$%l%8(a?+ a@A ! 2%l"a'a! /a#a a E'&9a@<% BB!(9a 15+-. , 15+.. Stephane 4+ *erner -IAG.US/0 A!"#%"&C #!+ &1a $%2a 7%#1a ' 7aD # '(2&l8a@<% 9( $"4E9a 15+.. , 1.+1. Edgar Inda ecio Smaniotto (Gr%p+Reg+Astron.,ar; ia0 O /a/ l '% G#&/% R 8(%$al ' A!"#%$%1(a ' Ma#4l(a FGRAMA) $a '(2&l8a@<% 'a a!"#%$%1(a 1 Ma#4l(a # 8(<% 1.+1. , 1H+20 Sess"o de Painéis e Ca1# 'hair) L%ci:ara Martins (NA9.UniCS% 0 1H+20 , 1H+50 U isses Barres de A meida -'7/F.,'9I'0 I C3 # $J%2 T l !9%/ A##a6 a$' "3 7&"&# %7 H(83,E$ #86 As"#%/36!(9! 1H+50 , 1K+00 Adriana 4a io ('RAAM.U/,0 S" lla# a9"(2("6 C6 !/%" "#a$!(" 1%' l($8 1K+00 , 1K+20 Diego Lorenzo-O i3eira (IAG.US/0 Pa!" a$' 7&"&# %7 "3 1a8$ "(9 S&$+ S%la# "L($! a! a " !"C ' 7%# !%la# '6$a1% 1%' l! 1K+20 , 1K+50 Fa$ian Menezes ('RAAM.U/,0 I !&C" #a3 #"D S&$+ *&a"%#(al a$' /%la# #a'(( 7#%1 SST a$' ALMA 1K+50 , 18+00 Amanda C+ R%$io (IAG.US/0 Ba6 !(a$ ($7 #
    [Show full text]
  • Meeting Program
    A A S MEETING PROGRAM 211TH MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY WITH THE HIGH ENERGY ASTROPHYSICS DIVISION (HEAD) AND THE HISTORICAL ASTRONOMY DIVISION (HAD) 7-11 JANUARY 2008 AUSTIN, TX All scientific session will be held at the: Austin Convention Center COUNCIL .......................... 2 500 East Cesar Chavez St. Austin, TX 78701 EXHIBITS ........................... 4 FURTHER IN GRATITUDE INFORMATION ............... 6 AAS Paper Sorters SCHEDULE ....................... 7 Rachel Akeson, David Bartlett, Elizabeth Barton, SUNDAY ........................17 Joan Centrella, Jun Cui, Susana Deustua, Tapasi Ghosh, Jennifer Grier, Joe Hahn, Hugh Harris, MONDAY .......................21 Chryssa Kouveliotou, John Martin, Kevin Marvel, Kristen Menou, Brian Patten, Robert Quimby, Chris Springob, Joe Tenn, Dirk Terrell, Dave TUESDAY .......................25 Thompson, Liese van Zee, and Amy Winebarger WEDNESDAY ................77 We would like to thank the THURSDAY ................. 143 following sponsors: FRIDAY ......................... 203 Elsevier Northrop Grumman SATURDAY .................. 241 Lockheed Martin The TABASGO Foundation AUTHOR INDEX ........ 242 AAS COUNCIL J. Craig Wheeler Univ. of Texas President (6/2006-6/2008) John P. Huchra Harvard-Smithsonian, President-Elect CfA (6/2007-6/2008) Paul Vanden Bout NRAO Vice-President (6/2005-6/2008) Robert W. O’Connell Univ. of Virginia Vice-President (6/2006-6/2009) Lee W. Hartman Univ. of Michigan Vice-President (6/2007-6/2010) John Graham CIW Secretary (6/2004-6/2010) OFFICERS Hervey (Peter) STScI Treasurer Stockman (6/2005-6/2008) Timothy F. Slater Univ. of Arizona Education Officer (6/2006-6/2009) Mike A’Hearn Univ. of Maryland Pub. Board Chair (6/2005-6/2008) Kevin Marvel AAS Executive Officer (6/2006-Present) Gary J. Ferland Univ. of Kentucky (6/2007-6/2008) Suzanne Hawley Univ.
    [Show full text]
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]
  • The Hubble Catalog of Variables (HCV)? A
    Astronomy & Astrophysics manuscript no. hcv c ESO 2019 September 25, 2019 The Hubble Catalog of Variables (HCV)? A. Z. Bonanos1, M. Yang1, K. V. Sokolovsky1; 2; 3, P. Gavras4; 1, D. Hatzidimitriou1; 5, I. Bellas-Velidis1, G. Kakaletris6, D. J. Lennon7; 8, A. Nota9, R. L. White9, B. C. Whitmore9, K. A. Anastasiou5, M. Arévalo4, C. Arviset8, D. Baines10, T. Budavari11, V. Charmandaris12; 13; 1, C. Chatzichristodoulou5, E. Dimas5, J. Durán4, I. Georgantopoulos1, A. Karampelas14; 1, N. Laskaris15; 6, S. Lianou1, A. Livanis5, S. Lubow9, G. Manouras5, M. I. Moretti16; 1, E. Paraskeva1; 5, E. Pouliasis1; 5, A. Rest9; 11, J. Salgado10, P. Sonnentrucker9, Z. T. Spetsieri1; 5, P. Taylor9, and K. Tsinganos5; 1 1 IAASARS, National Observatory of Athens, Penteli 15236, Greece e-mail: [email protected] 2 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 3 Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, 119992 Moscow, Russia 4 RHEA Group for ESA-ESAC, Villanueva de la Cañada, 28692 Madrid, Spain 5 Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos 15784, Greece 6 Athena Research and Innovation Center, Marousi 15125, Greece 7 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain 8 ESA, European Space Astronomy Centre, Villanueva de la Canada, 28692 Madrid, Spain 9 Space Telescope Science Institute, Baltimore, MD 21218, USA 10 Quasar Science Resources for ESA-ESAC, Villanueva de la Cañada, 28692 Madrid, Spain 11 The Johns Hopkins University, Baltimore, MD 21218, USA 12 Institute of Astrophysics, FORTH, Heraklion 71110, Greece 13 Department of Physics, Univ.
    [Show full text]