A global meta-analysis of the ecological royalsocietypublishing.org/journal/rspb impacts of alien species on native

Ana L. Nunes1,2, Jennifer M. Fill1, Sarah J. Davies1, Marike Louw1, Research Alexander D. Rebelo1, Corey J. Thorp1, Giovanni Vimercati1 and John Measey1

Cite this article: Nunes AL, Fill JM, Davies SJ, 1Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Louw M, Rebelo AD, Thorp CJ, Vimercati G, South Africa Measey J. 2019 A global meta-analysis of the 2South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa ecological impacts of alien species on native ALN, 0000-0002-5489-819X; JMF, 0000-0002-2301-6676; SJD, 0000-0003-2407-914X; amphibians. Proc. R. Soc. B 286: 20182528. ML, 0000-0003-3585-7592; ADR, 0000-0002-4353-3638; CJT, 0000-0003-1580-0775; GV, 0000-0002-2419-8088; JM, 0000-0001-9939-7615 http://dx.doi.org/10.1098/rspb.2018.2528

The exponential increase in species introductions during the Anthropocene has brought about a major loss of biodiversity. Amphibians have suffered large declines, with more than 16% considered to be threatened by invasive Received: 8 November 2018 species. We conducted a global meta-analysis of the impacts of alien species Accepted: 1 February 2019 on native amphibians to determine which aspects of ecology are most affected by plant, invertebrate, fish, amphibian, reptile, or mammal introductions. Measures of fitness were most strongly affected; amphibian performance was consistently lower in the presence of alien species. While Subject Category: exposure to alien species caused a significant decrease in amphibian behav- ioural activity when compared with a no species control, this response was Ecology stronger towards a control of native impacting species. This indicates a high degree of prey naivete´ towards alien species and highlights the importance Subject Areas: of using different types of controls in empirical studies. Alien invertebrates ecology, behaviour, environmental science had the greatest overall impact on amphibians. This study sets a new agenda for research on biological invasions, highlighting the lack of studies Keywords: investigating the impacts of alien species on amphibian terrestrial life-history amphibian decline, alien species, literature stages. It also emphasizes the strong ecological impacts that alien species have review, invertebrates, prey naivete´, fitness on amphibian fitness and suggests that future introductions or global spread of alien invertebrates could strongly exacerbate current amphibian declines.

Author for correspondence: Ana L. Nunes 1. Introduction e-mail: [email protected] It is widely accepted that amphibians are threatened and in decline, to a greater degree than reptiles, birds, or mammals [1–3]. Many reasons have been highlighted as contributing factors, such as habitat loss and alteration, over- exploitation, alien species introductions, emerging infectious diseases, climate change, and chemical contamination [3–6]. Although each of these factors independently poses serious risks to amphibian populations, complex synergistic interactions among them likely exacerbate declines [3–6]. Alien species introductions and establishment have been highlighted as one of the major factors contributing to worldwide amphibian declines and extinc- tions [7–9]. They can have detrimental effects on native amphibians directly through predation, competition, hybridization, and transmission of parasites and diseases, or indirectly through habitat alteration [5,7,10,11]. Numerous studies have documented how these processes have led to reduced native amphibian survival, decreased abundances, and eventual population decline, displacement, or local extinction [11]. Electronic supplementary material is available According to the International Union for Conservation of Nature (IUCN), online at https://dx.doi.org/10.6084/m9. out of 6682 amphibian species listed on their Red List, currently over 16% are considered to be threatened by invasive alien species, and 11% have been cate- figshare.c.4395302. gorized as threatened, i.e. considered Vulnerable, Endangered, or Critically

& 2019 The Author(s) Published by the Royal Society. All rights reserved. Endangered [9,12]. When compared with other vertebrate evolutionarily exposed to fish predators [3]. Alien aquatic 2 groups, such as mammals, birds, reptiles, and fish, amphi- invertebrates, especially freshwater species, are also royalsocietypublishing.org/journal/rspb bians appear to be one of the most affected groups, with considered damaging to amphibians’ fitness and survival 41% of their species being threatened, although many species [22]. Furthermore, although some taxonomic groups of from these vertebrate groups still need to be assessed [12]. A alien species clearly show a large impact on amphibians, it 2010 assessment showed that conservation actions have been is still uncertain if others have equivalent impacts or have relatively successful at mitigating the threat posed by inva- simply been less well studied. It is, therefore, of fundamental sive alien species for birds and mammals, but this does not relevance to investigate the impacts of different taxonomic seem to be the case for amphibians [2]. Given that the rate groups of alien species on native amphibians and to identify at which alien species are introduced into new environments the general patterns resulting from those is critical for has reached unprecedented levels and continues to increase directing future research and conservation actions. worldwide [13], it is important to understand their impacts Several meta-analyses have investigated the impacts of on native amphibians. Even so, to our knowledge, only specific groups of alien species (e.g. plants, crayfish [22,23])

three studies have reviewed information on the impacts of on ecosystems in general, but few have focused on the B Soc. R. Proc. alien species on native amphibians [7,10,11]. impacts of different alien species groups on a specific group One of the reasons for amphibians being so susceptible to of native species. The aim of this study was to quantitatively alien species impacts is that freshwater ecosystems are particu- determine the ecological impacts of different taxonomic larly vulnerable to invasions [14,15]. Most amphibians have groups of alien species on native amphibians. Specifically, complex life histories, with facultative freshwater primary con- we endeavoured to answer the following questions: 286 sumer and terrestrial predatory stages. This vulnerability is 20182528 : also related to the intensive human use of water resources for 1) Which native amphibians’ ecological response variables recreation, food, commerce, and transportation, the natural lin- are most affected by alien species introductions? kages among streams and lakes, and the high dispersal ability of 2) Do the extent and direction of alien species impacts differ aquatic organisms [15]. Furthermore, freshwater species, includ- when compared to a native impacting species or a no ing amphibians, seem to be particularly vulnerable to alien species (blank) control? aquatic predators because freshwater habitats have quite hetero- 3) Do the effects of alien species on native amphibians differ geneous predation regimes, often with few or no predators, between amphibian development stages (freshwater which results in increased prey evolutionary naivete´.Thisisin larval stage or terrestrial adult stage)? comparison to the relatively homogenous regimes found in 4) Does taxonomic identity of the alien species affect the terrestrial and marine ecosystems [7,14]. Given that most amphi- mechanism and magnitude of their ecological effects? bians are exposed to both aquatic and terrestrial habitats at different stages of their life cycles, their vulnerability to alien taxa might change as they progress through these life stages. 2. Methods In the presence of predators and competitors, amphibians (a) Literature search often develop defensive strategies, usually through plastic phe- Relevant published articles containing quantitative evidence of notypic alterations in their behaviour, morphology, life history, ecological impacts of alien species on native amphibians were or physiology [16]. Defensive behavioural strategies include searched for by performing a systematic literature search on ISI shifts to safer microhabitats, spatial avoidance behaviours, or Web of Knowledge on 30 March 2016, an additional search on reductions in activity level, while plastic morphological Google Scholar, and a further inspection of the literature cited defences include increased tail depth, an enhancement of tail in initially selected articles (see electronic supplementary colouration, and the development of smaller heads/bodies material, Appendix S1 for details). The combined searches and shorter limbs (e.g. [17,18]). Either as a direct response to resulted in a set of 380 articles (260 from ISI Web of Knowledge, risk, or as a result of induced behavioural or morphological 16 from Google Scholar, and 104 from the literature cited alterations, amphibians can also modify their life-history, by sections) selected for initial inclusion in the meta-analysis. reducing growth and development rates [16,19]. Several studies have shown that these defensive responses can also (b) Selection criteria and data extraction be triggered when native amphibians are exposed to alien We subsequently inspected the potential of each study to contrib- ´ species [7,10,11]. However, due to prey naivete caused by ute quantitative data to our analysis. Each article to be used in the lack of a coevolutionary history with alien predators or the meta-analysis was required to include quantitative data competitors, responses might be weak, ineffective, or even from the same ecological variable in both invaded and unin- non-existent (no recognition leading to a weak or no response) vaded environments. Criteria for extracting data from a study [14,20]. A lack of, weak or maladaptive response can be extre- and including it in the meta-analysis were: (1) the impacting mely detrimental to native amphibians, often causing species had to be alien at the study location, (2) the native amphi- decreased abundances and reduced fitness and survival in bian species had to be native to the study location, (3) values the presence of invasive alien species (e.g. [21]), which might of mean, sample size, and standard error/standard deviation/ ultimately result in local extinctions. confidence intervals had to be reported for both invaded and uninvaded treatments for at least one response variable of interest, According to Bucciarelli et al. [11], the taxonomic groups and (4) the study design had to include replicated treatments. of alien species that seem to more strongly negatively affect Different types of quantitative evidence of ecological impacts native amphibians are fishes, plants, and amphibians. of alien species on native amphibians were extracted from articles Indeed, alien fishes, which generally become dominant and categorized into nine different general response variable cat- species when introduced to novel aquatic systems, have egories (table 1). The variables ‘diversity’ and ‘abundance’ were had devastating consequences for amphibian species, pooled into the same category, given the low number of cases especially for those amphibians that have not been and the expectation that their responses to impact would be in Table 1. General and specific response variables extracted from studies, (2) Characteristics of the native amphibian species. The 3 describing ecological impacts of alien species on native amphibians. (following [26]), IUCN Red List status, and amphibian devel- opment stage (eggs, larvae, metamorphs, and adults) of royalsocietypublishing.org/journal/rspb native amphibians were recorded. general response (3) Type of study. Studies were categorized as either observa- variable category specific response variable tional, if they consisted of field surveys, or as experimental, if they reported field or in situ, mesocosm, or laboratory diversity/abundance richness experiments. Observational and experimental studies might number of individuals differ in their methodology and in the variance of the density response variables, although it has been shown that differ- ences in data variation between these two types of studies catch per unit effort are usually minor and unlikely to affect the outcomes of fitness/performance survival the meta-analysis [27,28]. mortality (2)a (4) Type of control. Native amphibian responses to alien species were compared to either no species (blank control) or an rc .Sc B Soc. R. Proc. sexual activity impacting native species (e.g. native predatory fish species). reproductive/hatching success Relevant data for calculating effect sizes were extracted from each growth/mass growth rate study either directly from the results text or tables (16% of the mass (dry weight) cases), from graphs using the software DataThief (http:// 286 size datathief.org/) (76% of the cases), or by contacting and request- ing data from corresponding authors (8% of the cases). 20182528 : volume One study can provide multiple observation pairs for the biomass meta-analysis if independent experiments are conducted using development developmental stage [24,25] different species, or if a single experiment measures the effect of an alien species on multiple amphibian species or on different time to hatching response variables. As such, when a study reported data for time to metamorphosis different impacting alien species, different native amphibian species, different control types (no species versus native impact- behaviour (activity) activity level ing species), or different response variables (e.g. growth, feeding activity behaviour), each of these was considered a different case, as exposure to impacting species has been done in many other meta-analysis studies (e.g. [23,28]). In cases where pseudoreplication could be a concern, behaviour (avoidance) avoidance behaviour we took specific actions to ensure independence (see electronic refuge use supplementary material, Appendix S2 for details). repulsion Our final dataset included information from 110 studies (electronic supplementary material, table S2), from which 1062 morphology (body) body measurements (length, cases evaluating the impact of alien species on native amphibians width, depth) were extracted (electronic supplementary material, table S1). limb measurements (femur, tibiofibula, foot) (c) Effect size calculation morphology (tail) pigmentation Effect sizes for the ecological responses of native amphibians to tail muscle and fin measurements alien species were calculated in relation to each type of control: a blank, no species control, or a control with a native impacting (length, depth) species. Hedges’ d [29], a metric commonly used to measure aThe sign of this trait’s effect size was reversed because of the opposite effect sizes in ecological meta-analyses (e.g. [28,30]) due to a meaning of this variable to the others and so that responses in the same low Type I error rate and high within-study precision [31], was used here. general category were all in the same direction. Hedges’ d calculates effect size as the standardized mean difference between treatment and control groups, including a the same general direction (lower diversity/abundance; table 1). weighting factor to correct for small sample sizes [29]. Hedges’ The variables ‘behaviour’ and ‘morphology’ were each subdi- d was calculated as: vided into two subcategories, due to the opposite nature of the expected effect sizes of these subcategories (table 1). Data on ðX X Þ d ¼ I C J, native amphibians’ physiological responses (stress and fear S index, electronic supplementary material, table S1) were omitted where X corresponds to the mean of the invaded treat- due to the low number of studies with such data. I ment group, X the mean of the control group (blank or The following data were also extracted from each article: C native species), S corresponds to the pooled standard deviation, and J the weighting factor, which is calculated based on (1) Taxonomic group of the alien species. Alien species were the sample sizes of the treatment and control groups. S was categorized as plants, invertebrates, fishes, amphibians, rep- calculated as tiles, or mammals. We did not include studies involving sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi alien pathogens, as it is often difficult to ascertain their 2 2 (NI 1)(SI ) þ (NC 1)(SC) native/alien status in a specific location and due to the S ¼ , NI þ NC 2 low number of studies found with appropriate data.

Studies or treatments that reported combined effects of where NI and NC correspond to the sample sizes of the invaded multiple alien species simultaneously were not treatment and control groups, respectively and, similarly, SI considered. and SC correspond to the standard deviations for the invaded treatment and control groups. J, the weighting factor, was alien < control group alien > control group 4 abundance/diversity calculated as * (36,15) royalsocietypublishing.org/journal/rspb fitness/performance 3 *** (155,42) J ¼ 1 : (108,16) 4(NI þ NC 2) 1 growth/mass (79,27) (156,11)

The variance of Hedges’ d was calculated as development (45,19) ** (44,8) 2 NI þ NC d behaviour (activity) vd ¼ þ : ** (130,39) NI NC 2(NI þ NC) ** (73,19)

behaviour (avoidance) (60,17) Large values of Hedges’ d are generated by large differences (56,9) morphology (body) and low variability between the invaded and uninvaded (con- (45,6) trol) treatments. A negative value of Hedges’ d indicates that (27,3) morphology (tail) the value of the examined response variable is lower in the (26,5) rc .Sc B Soc. R. Proc. invaded than in the uninvaded treatment, whereas a positive *** (10,3) no species control group native species control group Hedges’ d value indicates an increase in the response variable –3–2 –1 0 1 2 in the invaded in relation to the uninvaded treatment. It is impor- mean effect size tant to note that, in our analysis, negative numerical values of Figure 1. Effect sizes of response variables describing ecological impacts of Hedges’ d do not always reflect ecologically negative effects of alien species on native amphibians, considering different control types (no 286 alien species on native amphibians. For example, for the general response variable ‘behaviour’, activity level has been shown to species or native species). Error bars represent 95% confidence intervals 20182528 : often decrease when amphibians are exposed to predator species (CI) and effects are considered significant when CIs do not overlap zero. (e.g. [17]), hence a negative effect size is expected; however, Sample size and number of publications are shown in parentheses. *p , avoidance behaviour or refuge use are expected to be higher in 0.05, **p 0.01, ***p 0.001. response to predators (e.g. [32]), in which case we would expect a resulting positive effect size. For this same reason, the general variable ‘morphology’ was subdivided into two different (e) Heterogeneity, publication bias, and sensitivity subcategories (body and tail). Similarly, for the response variable ‘fitness/performance’, the sign of the effect size calculated for analysis studies documenting the proportion/number of consumed or To examine the amount of residual heterogeneity of effect killed native amphibians (mortality) was reversed (table 1), in sizes, i.e. whether variance among effect sizes was significantly order to ensure that all the specific response variables within a larger than would be expected from sampling error alone [34], general category were predicted to have an effect size with the Q statistics were calculated for each of the meta-regression same sign, i.e. a response in the same direction. models. Because funnel plots have been shown to be unreliable indi- cators of publication bias (the tendency of journals to publish studies with significant results [35]), Egger’s regression test (d) Data analysis was used here [36]. This test examines whether the y-intercept All statistical analyses were performed using the ‘metafor’ pack- in a linear regression between normalized effect size (effect age (v. 1.9–9 [33]) in the R software environment (v. 3.5.1; R Core size/SE) and precision (1/SE) is different from zero [36]. Team 2018). Data were analysed using multi-level random effects When this y-intercept differs significantly from zero, the models (rma.mv function). Random effects models are useful relationship between effect size and the precision of studies is because they assume that heterogeneity in effect sizes occurs considered asymmetrical and therefore biased [37]. To test for not only due to sampling error, but also due to random sources this, the variance of effect sizes was included as a moderator of variation, as is the case in ecological datasets. in our models in the initial analysis. Alpha ¼ 0.10 was used Meta-regression random effects models were run separately for this test [36]. Furthermore, publication bias was also for each response variable category and type of control (native tested by calculating Rosenberg’s fail-safe number [38], which impacting species or no species). They were further run separ- indicates the number of studies that would need to be added ately by (1) native amphibian development stage (eggs/larvae to the meta-analysis to change its results from significant to and metamorphs/adults) and (2) alien species taxonomic non-significant. If the fail-safe number is larger than 5N þ 10, group (plants, invertebrates, fishes, amphibians, reptiles, and in which N represents the total number of cases in the dataset, mammals). To further control for potential pseudoreplication the analysis is considered robust. among effect sizes, type of study (observational or experimental), Sensitivity of all meta-regression models was examined by nested within publication ID, was included as a random effect fitting models with and without influential outliers. Hat in every model [33], and models were only run for datasets values and standardized residuals were examined for each having at least three or more effect sizes. Nevertheless, to encou- model, and effect sizes with hat values greater than two rage caution in interpreting results from a small number of times the average hat value (i.e. influential) and with standar- effect sizes or publications, we explicitly present both sample dized residual values exceeding 3.0 (outliers), were removed, size and number of unique publications used for each model following [39]. (figures 1, 2, and S4). Bias-corrected 95% bootstrap confidence intervals (CI) of effect sizes were calculated for each individual response variable category, in order to test if effect size estimates were significantly 3. Results different from zero. An effect size is considered statistically significant if its CI do not overlap with zero [34]. Large CIs The majority of studies used in our analysis were experimen- indicate a large amount of unexplained variance, while small tal (88.2%, N ¼ 97 articles); only 13.6% of the articles included CIs usually indicate small variance, hence, similar effect sizes field surveys (N ¼ 15 articles). Most studies were performed across different studies. in North America (58%) and all continents were represented, (a)(alien < control group alien > control groupb) alien < control group alien > control group 5 royalsocietypublishing.org/journal/rspb fitness/performance (32,6) abundance/diversity ** (3,2) (21,3) (15,5) (9,4) (55,7) (7,3)

fitness/performance *** (53,15) *** (43,19) growth/mass (3,2) *** (43,9) (16,6) (23,3) (130,6) growth/mass *** (29,11) * (15,10) (27,6) (8,4) development *** (11,2) development (16,7) (32,5) (9,8) *** (11,2) (9,5) (34,10) behaviour (activity) * behaviour (activity) (16,8) (19,7) *** (35,19) * * (66,12) *** (16,1)

(9,2) B Soc. R. Proc.

behaviour (avoidance) (9,3) (7,3) ** (22,9) behaviour (avoidance) *** (24,3) (38,3) (3,1) *** (10,2) morphology (body) (14,2) (22,4) (8,1) ** (9,1) morphology (body) ** (19,3) 286 morphology (tail) (5,2) (6,3) (3,1) (15,1) morphology (tail) * 20182528 : *** (7,3) amphibians fishes –6–4 –2 0 246 invertebrates –3–2 –1 0 1 2 plants mean effect size mean effect size reptiles Figure 2. Effect sizes of response variables describing ecological impacts of various taxonomic groups of alien species (amphibians, fishes, invertebrates, plants, reptiles) on native amphibians, considering (a) no species or (b) a native species as a control. Error bars represent 95% confidence intervals (CI) and effects are considered significant when CIs do not overlap zero. Sample size and number of publications are shown in parentheses. Sample size was too small for the taxonomic group ‘Mammals’ to be included. *p , 0.05, **p 0.01, ***p 0.001. except Africa (electronic supplementary material, figure S1). levels were significantly lower (figure 1). When compared Most studies were performed in temperate climates (88.7%), to native impacting species, alien species only significantly while the tropics were poorly represented (11.3%, with affected amphibian behaviour (activity) and development 5.1% coming from the Australian tropics). The dataset (table 2 and figure 1). Amphibian activity was significantly included a total of 53 alien species, largely represented by higher in the presence of alien species than of native impact- fishes, followed by plants, invertebrates, amphibians, reptiles, ing species. On the other hand, amphibian development time and finally mammals (electronic supplementary material, was significantly shorter in the presence of alien than of table S3). The alien species most used in studies were Oncor- native species (figure 1). ynchus mykiss (rainbow trout) for fishes, Phragmites australis (common reed) for plants, and clarkii (red (ii) Development stages swamp crayfish) for invertebrates (electronic supplementary The magnitude and direction of alien species effects on eggs material, figure S2). Among the 107 native amphibian species and larvae were extremely similar to those observed for the investigated (electronic supplementary material, table S4), dataset with all development stages together (figure 1 and elec- most of them were from three families: , Ranidae, tronic supplementary material, table S5 and figure S4). and Bufonidae, with North American Anaxyrus americanus However, there was a significant reduction in larval tail (American toad, N ¼ 114 cases), Pseudacris regilla (Pacific measurements in the presence of alien compared with native tree , N ¼ 46 cases), and European Bufo bufo (common impacting species (electronic supplementary material, figure toad, N ¼ 33 cases) being the most commonly studied species S4), indicating that tails of amphibian larvae are longer and/ (electronic supplementary material, figure S3). No studies or deeper when exposed to native than to alien species. were found reporting the effects of alien species on caecilian Alien species significantly affected behavioural avoidance amphibians (Gymnophiona). Out of 1062 cases, and body morphology of amphibian metamorphs and adults fitness/performance was the general response variable most (electronic supplementary material, table S5 and figure S4). frequently represented (N ¼ 263 cases), followed by Adult amphibians showed greater avoidance of alien species growth/mass (N ¼ 235 cases), and behaviour (activity) and developed longer limbs or bulkier bodies, regardless of (N ¼ 203 cases). control type. Even though the latter results are derived from one single study (electronic supplementary material, (a) Effects of alien species figure S4), it is important to note that this study refers to (i) Ecological response variables the effect of two different taxa of alien species on a native amphibian species [40]. Amphibian diversity/abundance, fitness/performance, and behaviour (activity) were significantly affected by alien species, compared to a blank control (no species) (table 2). (iii) Taxonomic identity of alien species In the presence of alien species, amphibian diversity and Different taxonomic groups of alien species differed in their abundance were reduced, and their fitness and activity effects on native amphibians, relative to blank controls. Table 2. Meta-regression models of the impacts of alien species on native amphibians, considering different control types (no species or impacting native species). Significant differences (p , 0.05) are highlighted in italics.

control type response variable mean effect 95% CI p heterogeneity statistics random variables (s)

no species diversity/abundance 20.64 21.22, 20.06 0.03 Q ¼ 110.31, d.f. ¼ 35, p , 0.0001 ID ¼ 0.55, ID(Type) ¼ 0.55 fitness/performance 21.72 22.44, 21.00 ,0.001 Q ¼ 1237.27, d.f. ¼ 154, p , 0.0001 ID ¼ 2.51, ID(Type) ¼ 2.51 growth/mass 20.32 20.90, 0.26 0.28 Q ¼ 457.81, d.f. ¼ 78, p , 0.0001 ID ¼ 1.03, ID(Type) ¼ 1.03 development 20.14 20.55, 0.27 0.50 Q ¼ 239.59, d.f. ¼ 44, p , 0.0001 ID ¼ 0.28, ID(Type) ¼ 0.28 behaviour (activity) 20.53 20.85, 20.21 0.001 Q ¼ 544.30, d.f. ¼ 129, p , 0.0001 ID ¼ 0.44, ID(Type) ¼ 0.44 behaviour (avoidance) 0.19 20.11, 0.50 0.22 Q ¼ 221.38, d.f. ¼ 59, p , 0.0001 ID ¼ 0.16, ID(Type) ¼ 0.16 morphology (body) 0.05 20.33, 0.42 0.81 Q ¼ 128.06, d.f. ¼ 44, p , 0.0001 ID ¼ 0, ID(Type) ¼ 0.19 morphology (tail) 20.34 21.32, 0.63 0.49 Q ¼ 129.71, d.f. ¼ 25, p , 0.0001 ID ¼ 1.13, ID(Type) ¼ 0 native species fitness/performance 20.54 21.21, 0.12 0.11 Q ¼ 830.79, d.f. ¼ 107, p , 0.0001 ID ¼ 0.83, ID(Type) ¼ 0.83 growth/mass 0.22 20.45, 0.90 0.51 Q ¼ 972.05, d.f. ¼ 155, p , 0.0001 ID ¼ 0.59, ID(Type) ¼ 0.59 development 20.58 21.01, 20.15 0.01 Q ¼ 212.08, d.f. ¼ 43, p , 0.0001 ID ¼ 0.13, ID(Type) ¼ 0.13 behaviour (activity) 0.41 0.16, 0.66 0.001 Q ¼ 214.55, d.f. ¼ 72, p , 0.0001 ID ¼ 0.11, ID(Type) ¼ 0.11 behaviour (avoidance) 0.04 20.30, 0.38 0.81 Q ¼ 213.93, d.f. ¼ 55, p , 0.0001 ID ¼ 0.10, ID(Type) ¼ 0.10 morphology (body) 20.46 22.04, 1.11 0.56 Q ¼ 205.51, d.f. ¼ 26, p , 0.0001 ID ¼ 0.93, ID(Type) ¼ 0.93

morphology (tail) 21.40 22.13, 20.66 0.0002 Q ¼ 28.27, d.f. ¼ 9, p ¼ 0.001 ID ¼ 0.14, ID(Type) ¼ 0.14

royalsocietypublishing.org/journal/rspb rc .Sc B Soc. R. Proc. 20182528 : 286 6 Mean effect sizes showed that alien plants appeared to sig- any other variable (all tests p . 0.1), indicating that there 7 nificantly induce higher amphibian fitness (electronic was only mild publication bias in this study, unlikely to influ- royalsocietypublishing.org/journal/rspb supplementary material, table S6, figure 2a). Conversely, in ence our general results. Rosenberg’s fail-safe number, which the presence of alien invertebrates, native amphibians had was estimated to be 21 368 reinforces this result, given that it significantly decreased fitness, shorter development times is much larger than 5N þ 10 ¼ 5320. (only two studies, both performed on the impacts of an inva- Regarding sensitivity analysis, no influential outliers were sive crayfish, Procambarus clarkii, on the community of native found. amphibians in Portugal [19,41]), and reduced activity and avoidance behaviour. Alien invertebrates also induced longer bodies in native amphibians, although this was 4. Discussion based on a single study looking at impacts of Gambusia hol- Our study is the first meta-analysis to explore global trends brooki (among other predators) on larvae of Pelodytes of ecological impacts of a wide range of taxonomic groups punctatus in Spain [40] (electronic supplementary material, of alien species (plants, invertebrates, fishes, amphibians,

table S6, figure 2a). The presence of exotic fish species reptiles, and mammals) on native amphibians. We found B Soc. R. Proc. caused a large reduction in amphibians’ fitness, as well as that alien species have significant effects on native amphi- significantly lower growth, behavioural activity, and greater bians, usually related to a reduction in fitness/performance avoidance behaviour (electronic supplementary material, components, and that invertebrates had impacts on the table S6, figure 2a). In the presence of alien amphibians, most aspects of native amphibian ecology. This significant native amphibian abundance and diversity, fitness, and decrease in fitness may be an indirect consequence of a 286 growth were significantly lower. For abundance and diver- weaker behavioural defensive response shown by native 20182528 : sity, this was based on two studies, one on the impact of amphibians towards alien than native impacting species, Xenopus laevis on the native amphibian community in Sicily probably in turn a consequence of a lack of, or short, coevo- [42] and another on the effects of a Lithobates catesbeianus lutionary history, resulting in increased prey naivete´ and invasion on native frog communities in China [43]. There reducing the development of adaptive prey responses. was no evidence of significant effects of alien reptiles on Amphibian fitness and performance were significantly native amphibians, when compared with blank controls (elec- reduced in the presence of alien species compared with a tronic supplementary material, table S6, figure 2a). blank control, suggesting a strong negative effect of alien Regarding the impacts of different taxonomic groups of species on components such as survival, and reproductive alien species relative to those of native impacting species, or hatching success, of native amphibians. Other response results are somewhat limited by small sample sizes for variables that significantly and consistently decreased in the some response variables and should be interpreted with cau- presence of alien species relative to a blank control were tion (electronic supplementary material, table S6, figure 2b). diversity and/or abundance measures, namely richness, However, native amphibians exhibited faster development number of individuals, and density. Similarly, a previous (the same two studies mentioned above performed in Portu- meta-analysis on the overall effects of invasive species on gal [19,41]), higher activity, higher avoidance behaviours aquatic ecosystems found that aquatic invaders consistently (only [32,41]), and shorter tails in the presence of alien invert- decreased the abundance and diversity of aquatic commu- ebrates than of native impacting species. A higher amphibian nities [28]. Our study demonstrates that this trend of activity was also observed in the presence of alien fishes and reduced diversity found by Gallardo et al. [28] considering reptiles (only one study in the case of reptiles, concerning the fish, invertebrates, plankton, and macrophytes, also appears impact of an invasive turtle species, Trachemys scripta elegans, to hold for native amphibians in aquatic ecosystems. How- on a native anuran community in Spain [21]), indicating that ever, it is important to note that such strong responses were activity was generally lower in the presence of native com- not observed when the effects of alien species were compared pared with alien impacting species. Amphibians also to those in the presence of a native species control, indicating developed significantly bulkier bodies and shorter tails when that native impacting species also exert strong effects on exposedtoalienfishescomparedtonativeimpactingspecies, native amphibians. although this was based on the single study looking at impacts The studies used in our analysis suggest different mechan- of Gambusia holbrooki mentioned earlier [40] (figure 2b). isms responsible for the alterations in ecological response variables caused by the presence of alien species. The most (b) Heterogeneity, publication bias, and sensitivity commonly suggested mechanism was predation, followed by habitat alteration, competition, and toxicity. This is not surpris- analysis ing, given that predation is a major selective force influencing A significant amount of heterogeneity was detected in many of the dynamics, structure, and evolutionary processes of prey the meta-regression models (table 1; electronic supplementary communities [44] and that previous studies have highlighted material, tables S5 and S6), suggesting that there was a con- predation [7,10] and competition [11] as important impact siderable amount of variance not accounted for by the models. mechanisms of alien species on native amphibians. Publication bias using Egger’s test, which was tested for Predators affect dynamics of prey populations directly via the initial random effects models (considered in table 1), consumption and indirectly by imposing non-lethal effects was found for some response variables in the ‘no species upon them [20,45]. In fact, non-lethal predatory effects, control’ dataset: fitness/performance ( p , 0.0001), develop- such as alterations in behaviour, morphology, or life-history, ment ( p ¼ 0.0012), avoidance behaviour ( p , 0.0001), and have been suggested to exert similar or stronger effects than tail morphology ( p ¼ 0.0015). For the ‘native species control’ direct consumption on the dynamics of prey populations, dataset, publication bias was only found for body mor- and this seems to be particularly evident in aquatic ecosys- phology ( p ¼ 0.0012). Egger’s test was not significant for tems [45,46]. In this study, the presence of alien species caused a significant reduction in behavioural activity level, species on native amphibians (and other taxonomic 8 which is one of the most commonly reported behavioural groups), with respect to the choice of control types. The royalsocietypublishing.org/journal/rspb defensive strategies in amphibians, known to decrease prey type of control used will affect interpretation of the results. detectability and increase survival odds (e.g. [47,48]). How- For example, out of the 40 studies that we scored for behav- ever, this was only observed when compared with a blank ioural activity, only 18 used a native and a blank control; the control; activity levels of native amphibians exposed to others only used a blank control (except study [3] that used alien species were higher than when exposed to a native only a native control). Our results demonstrate the impor- impacting species. This indicates that, although native amphi- tance of using both types of control in experimental bians decrease activity levels when exposed to alien species, investigations on the effects of alien species on native amphi- they do it to a lesser extent than when exposed to native bians to assist with more accurate interpretation of the impacting species. This probably reflects a lack of, or a ecological implications of biological invasions. short, coevolutionary history between alien and native The effects of alien species on freshwater larval stages of species, which results in a high degree of prey naivete´ and native amphibians were much stronger than those towards

weaker defence responses. When alien species invade new terrestrial adult amphibians, and largely reflected the general B Soc. R. Proc. areas, native species might not be able to detect or identify trends found for amphibians overall. The effects of alien these novel species as a dangerous threat, resulting in a species on terrestrial life-history stages were generally weak lack of, or the development of weak or inappropriate, defence or variable, likely reflecting the very small number of studies responses [14,20]. This naivete´ effect has long been known published examining the impacts of alien species on native and is expressed through prey behaviour, morphology, or amphibian adults or metamorphs. This is probably because 286 life-history traits [20]. Prey naivete´ is likely to increase prey of the increased difficulty of capturing and keeping adult 20182528 : mortality and severely impact invaded populations (e.g. amphibians in the laboratory, especially in long-term exper- [21]). Results of this study indicate that prey naivete´ and a iments. Alternatively, mortality rates are generally much consequent weak behavioural response could be one of the higher in larvae than adult anurans, perhaps causing effects causes of the strong decrease in fitness and performance, as of alien species to be much less pronounced in the latter well as in diversity and abundance, of native amphibians [52]. Regardless, these weaker impacts are not surprising, exposed to alien species. taking into account that biological invasions have been Another possible example of prey naivete´ in our study is shown to have greater impacts in freshwater than terrestrial related to changes in tail morphology of amphibian larvae. ecosystems [14,15]. Native amphibians developed shorter tails in the presence of We found that the magnitude and direction of alien alien than native impacting species (although not against a species effects on native amphibians differed among alien blank control). In the presence of native predators, morpho- taxa. A decrease in native amphibian fitness appeared to be logical defences typically consist of developing deeper, a consistent outcome caused by alien amphibians, fishes, longer, and more pigmented tails, which lure predator strikes and invertebrates. However, alien amphibians were the away from the vulnerable body and enable larvae to generate only group to cause a significant decrease in native amphi- faster swimming bursts and improve manoeuvrability, all of bian abundance/diversity, while invertebrates were the which are adaptive responses that increase survival under pre- only taxon causing a decrease in development time and trig- dation (e.g. [49,50]). As such, a reduction in effect size of tail gering the development of larger body sizes. Alien reptiles measurements of native amphibians towards alien predators, and plants seemed to have a weaker impact on native amphi- when compared to native impacting species, probably indi- bians but, once again, this may reflect the low number of cates a very strong response towards the latter and a lack of studies examining the quantitative effects of these alien taxo- response towards the former, or even the development of a nomic groups on amphibians and highlights the pressing maladaptive morphological response towards alien species. need for more research in this area. Interestingly, our results On the contrary, results of this meta-analysis showed that suggest a tendency for alien plants to induce positive effects native amphibians developed more quickly in the presence of on amphibian fitness/performance, i.e. increased fitness. This alien species than of native impacting species. A reduction in may be related to specific alien plants providing better breed- development time can be a direct response to predation risk, ing habitats and oviposition sites, as well as effective refuges allowing prey to leave risky predacious environments earlier, from predators to native amphibians (e.g. [53]). This positive thereby reducing mortality risk [16,18,51]. This might indicate association shows that some introduced plants may be ben- that alterations in development as responsesto impacting species eficial for some amphibian species and is a result that require low energetic expenditure and non-specific predator rec- certainly deserves further investigation. ognition. However, it more likely means that the very marked The question of which alien taxonomic group has the reduction in amphibian activity level generally observed in the strongest impacts on native amphibians is important for the presence of native impacting species, is having a negative management of threatened amphibian taxa. Here we show impact on amphibian development time. Indeed, behaviourally that, out of all the taxa examined, alien invertebrates had defended prey often allocate fewer resources into growth and the most consistently significant negative effects on native development, resulting in delayed development [51]. amphibians, inferred by causing the largest reduction in Our results highlight the importance of examining differ- amphibian fitness and inducing significant changes in the ent types of controls in meta-analysis studies. The previous highest number of ecological traits. This is surprising as, examples show how the extent and direction of the impact while most reviews have considered effects of invertebrates, of alien species can differ between tests using a blank control alien fish are usually described as having the strongest and a native impacting species control. These results also impacts on amphibians [7,10,11]. Importantly, although have particular importance for researchers designing exper- studies analysed here only included eight invertebrate species imental studies aiming to evaluate the impacts of alien (electronic supplementary material, table S3), this taxon represented the highest number of individual cases examined Understanding the impacts that alien species that estab- 9 in our dataset (318 cases out of 1062). Interestingly, most of lish in a new environment can have on native populations royalsocietypublishing.org/journal/rspb these derived from studies on two crayfish species, the red is a complex endeavour. Our study highlights the strong swamp crayfish, Procambarus clarkii, and the signal crayfish, and diverse impacts that different alien taxonomic groups Pacifastacus leniusculus, with the former having higher rep- have on native amphibians. Understanding the complexity resentation. Procambarus clarkii is a crayfish species native to of these impacts is fundamental for outlining priority man- Mexico and the USA that, due to its commercial value and agement and conservation actions needed to preserve its success as an invader, is now present in all continents native amphibian biodiversity. Given the pivotal roles of except Australia and Antarctica, making it the most cosmo- amphibians in the functioning of ecosystems, and the alarm- politan crayfish species in the world [54]. This species has ing number of threatened species in this group, we hope this proven to be an extremely successful invader, often exerting global synthesis will help highlight the strong impacts that wide environmental impacts and affecting the structure and alien species can have on native amphibians and warrant functioning of invaded aquatic ecosystems [55]. Other than critical attention to this issue.

being an effective predator of amphibian larvae, P. clarkii B Soc. R. Proc. can impact amphibians by inducing alterations in larval be- Data accessibility. The dataset supporting this article has been uploaded haviour, morphology, and life-history, by inflicting serious as part of the electronic supplementary material. Additional data injury to amphibian prey, by decreasing habitat complexity available in the Dryad Digital Repository: https://doi.org/10. 5061/dryad.b6f4n81 [58]. (refuges and spawning sites), by deteriorating water quality, Authors’ contributions.

A.L.N. conceived and coordinated the study. All 286 and by causing the displacement of amphibian populations authors participated in the design of the study and extracted data from their natural breeding habitats [19,32,56,57]. It is notable from numerous studies. J.M.F. carried out the statistical analyses. 20182528 : that very few studies comparing the relative effects of differ- A.L.N. and J.M. drafted the manuscript. All authors revised the ent taxonomic groups on the environment have been made manuscript and approved for publication. on alien invertebrates and this study suggests that these, Competing interests. The authors declare that they have no competing and in particular crayfish, may have a very high impact on interests. Funding. the environment and would be of particular interest All authors thank the DST-NRF Centre of Excellence for Inva- sion Biology for financial support. This study was also funded by the to assess. Nevertheless, a global meta-analysis on alien South African National Department of Environment Affairs through crayfish impacts suggests consistent and negative effects the South African National Biodiversity Institute. among introduced crayfish species [22], reinforcing the Acknowledgements. We are greatly indebted to Erin Jooste for helping us results found here. with data gathering and processing.

References

1. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues and the transition to conservation. Divers. Distrib. 9, 15. Gherardi F. 2007 Biological invaders in inland ASL, Fishman DL, Waller RW. 2004 Status and 99–110. (doi:10.1046/j.1472-4642.2003.00013.x) waters: profiles, distribution, and threats, p. 734. trends of amphibian declines and extinctions 8. Bellard C, Cassey P, Blackburn TM. 2016 Alien Dordrecht, The Netherlands: Springer. worldwide. Science 306, 1783–1786. (doi:10.1126/ species as a driver of recent extinctions. Biol. Lett. 16. Benard MF. 2004 Predator-induced phenotypic science.1103538) 12, 20150623. (doi:10.1098/rsbl.2015.0623) plasticity in organisms with complex life cycles. 2. Hoffman M et al. 2010 The impact of conservation 9. Bellard C, Genovesi P, Jeschke JM. 2016 Global Annu. Rev. Ecol. Evol. Syst. 35, 651–673. (doi:10. on the status of the world’s vertebrates. Science patterns in threats to vertebrates by biological 1146/annurev.ecolsys.35.021004.112426) 330, 1503–1509. (doi:10.1126/science.1194442) invasions. Proc. R. Soc. B 283, 20152454. (doi:10. 17. Relyea RA. 2001 Morphological and behavioral 3. Whittaker K, Koo MS, Wake DB, Vredenburg VT. 1098/rspb.2015.2454) plasticity of larval anurans in response to 2013 Global declines of amphibians. 10. Pilliod DS, Griffiths RA, Kuzmin SL. 2012 Ecological different predators. Ecology 82, 523–540. In Encyclopedia of biodiversity, 2nd edn, vol. 3 impacts of non-native species. In Conservation and (doi:10.1890/0012-9658(2001)082[0523:MABPOL]2. (ed. SA Levin), pp. 691–699. Waltham, MA: decline of amphibians: ecological aspects, effect of 0.CO;2) Academic Press. humans, and management (eds H Heatwole, 18. Nicieza AG, A´lvarez DA, Atienza EMS. 2006 Delayed 4. Alford RA, Richards SJ. 1999 Global amphibian JW Wilkinson), vol. 10, pp. 3343–3382. Chipping effects of larval predation risk and food quality on declines: a problem in applied ecology. Annu. Rev. Norton, NSW: Surrey Beatty & Sons. anuran juvenile performance. J. Evol. Biol. 19, Ecol. Evol. Syst. 30, 133–165. (doi:10.1146/ 11. Bucciarelli GM, Blaustein AR, Garcia TS, Kats LB. 1092–1103. (doi:10.1111/j.1420-9101.2006.01100.x) annurev.ecolsys.30.1.133) 2014 Invasion complexities: the diverse impacts of 19. Nunes AL, Orizaola G, Laurila A, Rebelo R. 2014 5. Collins JP, Storfer A. 2003 Global amphibian nonnative species on amphibians. Copeia 2014, Morphological and life-history responses of anurans declines: sorting the hypotheses. Divers. 611–632. (doi:10.1643/OT-14-014) to predation by an invasive crayfish: an integrative Distrib. 9, 89–98. (doi:10.1046/j.1472-4642. 12. IUCN. 2018 The IUCN Red List of Threatened approach. Ecol. Evol. 4, 1491–1503. (doi:10.1002/ 2003.00012.x) Species. Version 2018–1. http://www.iucnredlist. ece3.979) 6. Blaustein AR, Han BA, Relyea RA, Johnson PTJ, Buck org (Retrieved on 05 July 2018). 20. Sih A, Bolnick DI, Luttbeg B, Orrock JL, Peacor SD, JC, Gervasi SS, Kats LB. 2011 The complexity of 13. Seebens H et al. 2017 No saturation in the Pintor LM, Preisser E, Rehage JS, Vonesh JR. 2010 amphibian population declines: understanding the accumulation of alien species worldwide. Nat. Predator-prey naivete´, antipredator behavior, and role of cofactors in driving amphibian losses. Ann. Commun. 8, 14435. (doi:10.1038/ncomms14435) the ecology of predator invasions. Oikos 119, NY Acad. Sci. 1223, 108–119. (doi:10.1111/j.1749- 14. Cox JG, Lima SL. 2006 Naivete´ and an aquatic- 610–621. (doi:10.1111/j.1600-0706.2009.18039.x) 6632.2010.05909.x) terrestrial dichotomy in the effects of introduced 21. Polo-Cavia N, Gonzalo A, Lopez P, Martin J. 2010 7. Kats LB, Ferrer RP. 2003 Alien predators and predators. Trends Ecol. Evol. 21, 674–680. (doi:10. Predator recognition of native but not invasive amphibian declines: review of two decades of science 1016/j.tree.2006.07.011) turtle predators by naive anuran tadpoles. Anim. Behav. 80, 461–466. (doi:10.1016/j.anbehav.2010. 35. Lau J, Ioannidis JPA, Terrin N, Schmid CH, Olkin I. 47. Van Buskirk J. 2002 A comparative test of the 10 06.004) 2006 The case of the misleading funnel plot. Br. adaptive plasticity hypothesis: relationships royalsocietypublishing.org/journal/rspb 22. Twardochleb LA, Olden JD, Larson ER. 2013 A global Med. J. 333, 597–600. (doi:10.1136/bmj.333. between habitat and phenotype in anuran larvae. meta-analysis of the ecological impacts of nonnative 7568.597) Am. Nat. 160, 87–102. (doi:10.1086/340599) crayfish. Freshw Sci. 32, 1367–1382. (doi:10.1899/ 36. Egger M, Smith GD, Schneider M, Minder C. 1997 48. Laurila A, Lindgren B, Laugen AT. 2008 Antipredator 12-203.1) Bias in meta-analysis detected by a simple, defenses along a latitudinal gradient in Rana 23. Vila` M et al. 2011 Ecological impacts of invasive graphical test. Br. Med J. 315, 629–634. (doi:10. temporaria. Ecology 89, 1399–1413. (doi:10.1890/ alien plants: a meta-analysis of their effects on 1136/bmj.315.7109.629) 07-1521.1) species, communities and ecosystems. Ecol. Lett. 14, 37. Sterne JAC, Egger M. 2005 Regression methods to 49. Van Buskirk J, Anderwald P, Lu¨pold S, Reinhardt L, 702–708. (doi:10.1111/j.1461-0248.2011.01628.x) detect publication and other bias in meta-analysis. Schuler H. 2003 The lure effect, tadpole tail shape, 24. Gosner KL. 1960 A simplified table for staging In Publication bias in meta-analysis: prevention, and the target of dragonfly strikes. J. Herpetol. 37, anuran embryos and larvae with notes on assessment and adjustments (eds HR Rothstein, AJ 420–424. (doi:10.1670/0022-1511(2003)037[0420: identification. Herpetologica 16, 183–190. Sutton, M Borenstein). Chichester, UK: John Wiley & TLETTS]2.0.CO;2) 25. Donavan LA. 1980 Morphological features of the Sons, Ltd. 50. Dayton GH, Saenz D, Baum KA, Langerhans RB, DeWitt rc .Sc B Soc. R. Proc. stages in the development of Ambystoma 38. Rosenberg MS. 2005 The file-drawer problem TJ. 2005 Body shape, burst speed and escape behavior talpoideum (Holbrook) from the fertilized egg to the revisited: a general weighted method for calculating of larval anurans. Oikos 111, 582–591. (doi:10.1111/j. adult. PhD Dissertation, University of Southern fail-safe numbers in meta-analysis. Evolution 59, 1600-0706.2005.14340.x) Mississippi, Hattiesburg, MS, USA. 464–468. (doi:10.1111/j.0014-3820.2005. 51. Higginson AD, Ruxton GD. 2010 Adaptive changes

26. Frost DR. 2018 Amphibian species of the world: an tb01004.x) in size and age at metamorphosis can qualitatively 286

online reference. Version 6.0. New York, NY: 39. Habeck CW, Schultz AK. 2015 Community-level vary with predator type and available defenses. 20182528 : American Museum of Natural History. (http:// impacts of white-tailed deer on understorey plants Ecology 91, 2756–2768. (doi:10.1890/08-2269.1) research.amnh.org/herpetology/amphibia/index. in North American forests: a meta-analysis. AoB 52. Licht LE. 1974 Survival of embryos, tadpoles, and adults html) Plants 7, plv119. (doi:10.1093/aobpla/plv119) of the Rana aurora aurora and Rana pretiosa 27. Hillebrand H, Gurevitch J. 2014 Meta-analysis results 40. Pujol-Buxo´ E, San Sebastia´n O, Garriga N, Llorente pretiosa sympatric in southwestern British Columbia. are unlikely to be biased by differences in variance GA. 2013 How does the invasive/native nature of Can. J. Zool. 52, 613–627. (doi:10.1139/z74-079) and replication between ecological lab and field species influence tadpoles’ plastic responses to 53. Holzer KA, Lawler SP. 2015 Introduced reed canary studies. Oikos 123, 794–799. (doi:10.1111/oik. predators? Oikos 122, 19–29. (doi:10.1111/j.1600- grass attracts and supports a common native 01288) 0706.2012.20617.x) amphibian. J. Wildlife Manage. 79, 1081–1090. 28. Gallardo B, Clavero M, Sa´nchez MI, Vila` M. 2016 41. Almeida E, Nunes A, Andrade P, Alves S, Guerreiro (doi:10.1002/jwmg.930) Global ecological impacts of invasive species in C, Rebelo R. 2011 Antipredator responses of two 54. Holdich DM, Reynolds JD, Souty-Grosset C, Sibley PJ. aquatic ecosystems. Glob. Change Biol. 22, anurans towards native and exotic predators. Amph- 2009 A review of the ever increasing threat to 151–163. (doi:10.1111/gcb.13004) Rept. 32, 341–350. (doi:10.1163/ European crayfish from non-indigenous crayfish 29. Gurevitch J, Curtis PS, Jones MH. 2001 Meta- 017353711X579849) species. Knowl. Manag. Aquat. Ecol. 11, 394–395. analysis in ecology. Adv. Ecol. Res. 32, 199–247. 42. Lillo F, Faraone FP, Valvo ML. 2011 Can the (doi:10.1051/kmae/2009025) (doi:10.1016/S0065-2504(01)32013-5) introduction of Xenopus laevis affect native 55. Souty-Grosset C, Anasta´cio PM, Aquiloni L, Banha F, 30. van Kleunen M, Weber E, Fischer M. 2010 A meta- amphibian populations? Reduction of reproductive Choquer J, Chucholl C, Tricarico E. 2016 The red analysis of trait differences between invasive and occurrence in presence of the invasive species. Biol. swamp crayfish Procambarus clarkii in Europe: non-invasive plant species. Ecol. Lett. 13, 235–245. Inv. 13, 1533–1541. (doi:10.1007/s10530-010- impacts on aquatic ecosystems and human well- (doi:10.1111/j.1461-0248.2009.01418.x) 9911-8) being. Limnologica 58, 78–93. (doi:10.1016/j. 31. Lajeunesse MJ, Forbes MR. 2003 Variable reporting 43. Li Y, Ke Z, Wang Y, Blackburn TM. 2011 Frog limno.2016.03.003) and quantitative reviews: a comparison of three community responses to recent American bullfrog 56. Nunes AL, Cruz MJ, Tejedo M, Laurila L, Rebelo R. meta-analytical techniques. Ecol. Lett. 6, 448–454. invasions. Curr. Zool. 57, 83–92. (doi:10.1093/ 2010 Nonlethal injury caused by an invasive alien (doi:10.1046/j.1461-0248.2003.00448.x) czoolo/57.1.83) predator and its consequences for an anuran 32. Nunes AL, Richter-Boix A, Laurila A, Rebelo R. 2013 44. Johnson MTJ, Agrawal AA. 2003 The ecological play tadpole. Basic Appl. Ecol. 11, 645–654. (doi:10. Do anuran larvae respond behaviourally to chemical of predator-prey dynamics in an evolutionary 1016/j.baae.2010.09.003) cues from an invasive crayfish predator? A theatre. Trends Ecol. Evol. 18, 549–551. (doi:10. 57. Cruz MJ, Rebelo R, Crespo EG. 2006 Effects of an community-wide study. Oecologia 171, 115–127. 1016/j.tree.2003.09.001) introduced crayfish, Procambarus clarkii, on the (doi:10.1007/s00442-012-2389-6) 45. Preisser EL, Bolnick DI, Benard MF. 2005 Scared to distribution of south-western Iberian amphibians in 33. Viechtbauer W. 2010 Conducting meta-analyses in R death? The effects of intimidation and consumption their breeding habitats. Ecography 29, 329–338. with the metafor package. J. Stat. Softw. 36, 1–48. in predator-prey interactions. Ecology 86, 501–509. (doi:10.1111/j.2006.0906-7590.04333.x) (doi:10.18637/jss.v036.i03) (doi:10.1890/04-0719) 58. Nunes AL, Fill JM, Davies SJ, Louw M, Rebelo AD, 34. Adams DC, Gurevitch J, Rosenberg MS. 1997 46. Werner EE, Peacor SD. 2006 Lethal and nonlethal Thorp CJ, Vimercati G, Measey J. 2019 Data from: A Resampling tests for meta-analysis of ecological predator effects on an herbivore guild mediated by global meta-analysis of the ecological impacts of data. Ecology 78, 1277–1283. (doi:10.1890/0012- system productivity. Ecology 87, 347–361. (doi:10. alien species on native amphibians. Dryad Digital 9658(1997)078[1277:RTFMAO]2.0.CO;2) 1890/05-0091) Repository. (doi:10.5061/dryad.b6f4n81) A global meta-analysis of the ecological impacts of alien species on native amphibians Ana L Nunes, Jennifer M Fill, Sarah J Davies, Marike Louw, Alexander D Rebelo, Corey J Thorp, Giovanni Vimercati, John Measey

SUPPLEMENTARY MATERIAL

Appendix S1. Details of the literature search performed in this meta-analysis. The following search terms were inserted as the ‘topic’, which searches for these terms in the title, abstract and keywords of a record: (invas* OR alien OR exotic OR introduced OR non- native OR nonnative OR non-indigenous OR nonindigenous) AND (impact* OR effect* OR influence* OR consequence OR result) AND (amphib* OR anura* OR frog* OR toad* OR caudata OR urodele OR salamander* OR newt* OR caecilia*). This generated an initial number of 6590 results, which were refined to 1871 by selecting articles only from the following research areas: Environmental Sciences Ecology, Zoology, Biodiversity Conservation, Developmental Biology, Behavioral Sciences, Marine Freshwater Biology, Evolutionary Biology, Toxicology, Plant Sciences, Parasitology, Entomology, Agriculture, Fisheries, Water Resources, Remote Sensing and Forestry. Articles were then further excluded if their titles and abstracts were not relevant, which generated 260 manuscripts for potential inclusion in the meta-analysis. An additional search was performed on Google Scholar, using the search terms invas*, amphib* and impact*. This latter search resulted in only 16 new papers (out of 1000), which indicated that the initial ISI Web of Knowledge search was comprehensive. Using results from these two searches and an additional inspection of the literature cited (reference section) in initially selected articles, we believe we attained an exhaustive coverage of the existing literature.

Appendix S2. Details of specific procedures used to calculate effect sizes in order to avoid pseudo-replication. When a response variable was measured multiple times during an experiment or in multiple sampling occasions of fieldwork, two approaches were used: (1) when intervals were short (days, weeks or months), only results from the last sampling date available were used to calculate effect sizes, as effects of alien species often do not occur in the first moments of exposure; (2) when intervals were longer (different seasons or years), the mean value across sampling events was used. For studies using various densities of the same alien species as different treatments, only data from the highest density treatment were used for the analysis, as has been done in other studies (e.g. Twardochleb et al., 2013; Gallardo et al., 2016). When a study investigated several populations of an alien species (from different locations), these were considered independent cases if populations were from widely spatially distinct regions (e.g. different islands or countries); otherwise, the mean results value across populations was used. When studies included effects of different times since invasion (e.g. recent, intermediate and old invasion) or exposure to invasion (syntopic/experienced vs. allotopic/naïve), only effects representing the largest contrast, i.e., differences between the control and treatments with the longest time since invasion or longest experience, were used (see also Vilà et al., 2011). The same reasoning was used for effects of caged vs. uncaged, and starved vs. fed alien species, in which cases only the largest contrast treatments (uncaged and fed) were used. In studies that examined the effect of different types of cues of alien species (chemical, visual, mechanical), treatments that included chemical cues, alone or in combination with other cues, were selected. This was because in aquatic environments chemical cues acquire special relevance as a reliable source of information in predator detection (Ferrari et al., 2010). Finally, in studies in which treatments combined the effects of alien species with other manipulated ecological factors (e.g. nutrient/pesticide addition, declining water volume), only data from non-manipulated treatments (i.e. alien species alone) was considered. References Ferrari MCO, Wisenden BD, Chivers DP (2010) Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus. Can J Zool, 88, 698-724. Gallardo B, Clavero M, Sánchez MI, Vilà M (2016) Global ecological impacts of invasive species in aquatic ecosystems. Glob Change Biol, 22, 151-163. Twardochleb LA, Olden JD, Larson ER (2013) A global meta-analysis of the ecological impacts of nonnative crayfish. Freshw Sci, 32, 1367-1382. Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett, 14, 702-708.

Table S1. Original full dataset extracted from scientific articles and respective Hedges’ d effect sizes and variance that were used in the meta-analysis. Literature reference numbers (Ref) are indicated in Table S2. Scientific names have been changed to the latest taxonomic nomenclature.

Ref Native amphibian species Alien species Type of General response Effect Variance study variable size 1 Lithobates sphenocephalus Triadica sebifera Experimental Development -1.665 0.449 2 Rana aurora aurora Lithobates catesbeianus Experimental Fitness/performance -0.522 0.689 2 Rana aurora aurora Lepomis gibbosus Experimental Fitness/performance -0.739 0.712 2 Pseudacris regilla Lithobates catesbeianus Experimental Fitness/performance 0.314 0.675 2 Pseudacris regilla Lepomis gibbosus Experimental Fitness/performance -1.217 0.790 2 Rana aurora aurora Lithobates catesbeianus Experimental Fitness/performance 0.394 0.680 2 Pseudacris regilla Lithobates catesbeianus Experimental Fitness/performance 0.099 0.667 3 Acris crepitans crepitans Ctenopharyngodon idella Experimental Fitness/performance -7.027 3.586 3 Acris crepitans crepitans Lepomis macrochirus Experimental Fitness/performance -7.027 3.586 3 Acris crepitans crepitans Orconectes rusticus Experimental Fitness/performance -2.858 1.010 3 Lithobates clamitans Orconectes rusticus Experimental Fitness/performance -0.890 0.550 3 Lithobates clamitans Ctenopharyngodon idella Experimental Fitness/performance -1.293 0.604 3 Lithobates clamitans Lepomis macrochirus Experimental Fitness/performance -2.109 0.778 3 Acris crepitans crepitans Ctenopharyngodon idella Experimental Fitness/performance -6.192 2.896 3 Acris crepitans crepitans Lepomis macrochirus Experimental Fitness/performance -6.033 2.775 3 Acris crepitans crepitans Orconectes rusticus Experimental Fitness/performance -2.620 0.929 3 Acris crepitans crepitans Orconectes rusticus Experimental Growth/mass 2.625 0.931 4 Ambystoma mexicanum Oreochormis niloticus Experimental Behaviour (activity) -0.984 0.187 4 Ambystoma mexicanum Oreochormis niloticus Experimental Behaviour (activity) -0.560 0.173 4 Ambystoma mexicanum Oreochormis niloticus Experimental Behaviour (activity) -1.455 0.211 4 Ambystoma mexicanum Oreochormis niloticus Experimental Behaviour (activity) -2.245 0.272 4 Ambystoma mexicanum Oreochormis niloticus Experimental Behaviour (avoidance) 0.533 0.173 5 Discoglossus galganoi Procambarus clarkii Experimental Behaviour (activity) -1.673 0.540 5 Discoglossus galganoi Procambarus clarkii Experimental Behaviour (activity) 0.851 0.436 5 Bufo bufo Procambarus clarkii Experimental Behaviour (activity) -2.615 0.742 5 Bufo bufo Procambarus clarkii Experimental Behaviour (activity) 1.412 0.500 5 Discoglossus galganoi Procambarus clarkii Experimental Behaviour (avoidance) -1.110 0.462 5 Discoglossus galganoi Procambarus clarkii Experimental Behaviour (avoidance) 0.547 0.415 5 Bufo bufo Procambarus clarkii Experimental Behaviour (avoidance) -0.420 0.409 5 Bufo bufo Procambarus clarkii Experimental Behaviour (avoidance) 1.408 0.499 5 Discoglossus galganoi Procambarus clarkii Experimental Development -0.525 0.414 5 Discoglossus galganoi Procambarus clarkii Experimental Development -4.213 1.287 5 Bufo bufo Procambarus clarkii Experimental Development -2.471 0.705 5 Bufo bufo Procambarus clarkii Experimental Development 0.651 0.421 5 Discoglossus galganoi Procambarus clarkii Experimental Growth/mass -0.179 0.402 5 Discoglossus galganoi Procambarus clarkii Experimental Growth/mass 1.579 0.525 5 Bufo bufo Procambarus clarkii Experimental Growth/mass -0.656 0.422 5 Bufo bufo Procambarus clarkii Experimental Growth/mass 2.904 0.822 5 Discoglossus galganoi Procambarus clarkii Experimental Growth/mass -0.214 0.402 5 Discoglossus galganoi Procambarus clarkii Experimental Growth/mass -0.469 0.411 5 Bufo bufo Procambarus clarkii Experimental Growth/mass -2.852 0.807 5 Bufo bufo Procambarus clarkii Experimental Growth/mass 2.706 0.766 5 Discoglossus galganoi Procambarus clarkii Experimental Morphology (tail) 0.329 0.405 5 Discoglossus galganoi Procambarus clarkii Experimental Morphology (tail) -3.809 1.125 5 Discoglossus galganoi Procambarus clarkii Experimental Morphology (tail) 0.853 0.436 5 Discoglossus galganoi Procambarus clarkii Experimental Morphology (tail) -1.677 0.541 6 Pelobates cultripes Procambarus clarkii Experimental Fitness/performance -2.847 0.335 6 Hyla meridionalis Procambarus clarkii Experimental Fitness/performance -0.434 0.171 6 Pelophylax perezi Procambarus clarkii Experimental Fitness/performance -0.778 0.179 6 Triturus pygmaeus Procambarus clarkii Experimental Fitness/performance -2.364 0.283 6 Pelobates cultripes Procambarus clarkii Experimental Fitness/performance -1.653 0.224 6 Hyla meridionalis Procambarus clarkii Experimental Fitness/performance 0.506 0.172 6 Pelophylax perezi Procambarus clarkii Experimental Fitness/performance -0.779 0.179 6 Triturus pygmaeus Procambarus clarkii Experimental Fitness/performance -2.415 0.288 6 Hyla meridionalis Procambarus clarkii Experimental Growth/mass 0.331 0.169 6 Hyla meridionalis Procambarus clarkii Experimental Growth/mass 0.050 0.167 7 Rana temporaria Pacifastacus leniusculus Experimental Fitness/performance -0.303 0.337 7 Bufo bufo Pacifastacus leniusculus Experimental Fitness/performance -1.166 0.390 7 Hyla arborea Pacifastacus leniusculus Experimental Fitness/performance 0.767 0.358 7 Epidalea calamita Pacifastacus leniusculus Experimental Fitness/performance -0.409 0.340 7 Pelophylax ridibundus Pacifastacus leniusculus Experimental Fitness/performance 0.324 0.338 7 Rana temporaria Pacifastacus leniusculus Experimental Fitness/performance 1.853 0.476 7 Bufo bufo Pacifastacus leniusculus Experimental Fitness/performance 1.178 0.391 7 Hyla arborea Pacifastacus leniusculus Experimental Fitness/performance 1.223 0.396 7 Pelophylax ridibundus Pacifastacus leniusculus Experimental Fitness/performance 1.004 0.375 8 Hyla femoralis Clarius batrachus Experimental Fitness/performance 3.636 1.326 8 Hyla femoralis Clarius batrachus Experimental Fitness/performance 3.766 1.387 8 Hyla femoralis Clarius batrachus Experimental Fitness/performance 4.861 1.977 8 Hyla squirella Clarius batrachus Experimental Fitness/performance 10.678 7.627 8 Hyla squirella Clarius batrachus Experimental Fitness/performance 1.076 0.572 8 Hyla squirella Clarius batrachus Experimental Fitness/performance 3.399 1.222 8 Gastrophryne carolinensis Clarius batrachus Experimental Fitness/performance 6.314 2.992 8 Gastrophryne carolinensis Clarius batrachus Experimental Fitness/performance 9.790 6.491 8 Gastrophryne carolinensis Clarius batrachus Experimental Fitness/performance 1.415 0.625 8 Anaxyrus quercicus Clarius batrachus Experimental Fitness/performance -2.088 0.772 8 Anaxyrus quercicus Clarius batrachus Experimental Fitness/performance -0.428 0.511 8 Anaxyrus quercicus Clarius batrachus Experimental Fitness/performance 2.188 0.799 9 Rana temporaria Trachemys scripta elegans Experimental Behaviour (activity) -0.778 0.072 9 Rana temporaria Trachemys scripta elegans Experimental Behaviour (avoidance) 0.189 0.067 9 Rana temporaria Trachemys scripta elegans Experimental Behaviour (avoidance) 0.542 0.069 9 Rana temporaria Trachemys scripta elegans Experimental Behaviour (avoidance) -0.591 0.070 10 Litoria tornieri, nasuta, dahlii Rhinella marina Experimental Behaviour (activity) -0.086 0.067 10 Litoria tornieri, nasuta, dahlii Rhinella marina Experimental Behaviour (activity) -0.313 0.067 11 Lithobates sphenocephalus Lepomis macrochirus Experimental Development 5.624 2.477 11 Ambystoma maculatum Lithobates catesbeianus Experimental Fitness/performance 0.100 0.501 11 Anaxyrus americanus Lithobates catesbeianus Experimental Growth/mass -2.945 1.042 12 Rana iberica Salvelinus fontinalis Experimental Behaviour (activity) -3.825 0.472 13 Anaxyrus americanus Lythrum salicaria Experimental Development -0.720 0.426 13 Anaxyrus americanus Lythrum salicaria Experimental Development -3.979 0.596 13 Anaxyrus americanus Lythrum salicaria Experimental Fitness/performance -1.131 0.464 13 Anaxyrus americanus Lythrum salicaria Experimental Fitness/performance -3.579 0.520 13 Anaxyrus americanus Lythrum salicaria Experimental Fitness/performance -1.500 0.256 14 Lithobates sylvaticus Gambusia affinis Experimental Behaviour (activity) 0.220 0.183 15 Pseudacris regilla Lithobates catesbeianus Experimental Behaviour (avoidance) -0.717 0.082 16 Plethodon angusticlavius Dasypus novemcinctus Experimental Behaviour (activity) 0.954 0.097 16 Plethodon angusticlavius Dasypus novemcinctus Experimental Behaviour (activity) 0.743 0.093 16 Plethodon angusticlavius Dasypus novemcinctus Experimental Behaviour (avoidance) 0.464 0.093 16 Plethodon angusticlavius Dasypus novemcinctus Experimental Physiology 0.882 0.129 17 Platyplectrum ornatum Rhinella marina Experimental Fitness/performance -12.808 10.752 18 Litoria alboguttata Rhinella marina Experimental Fitness/performance -0.677 0.211 18 Litoria alboguttata Rhinella marina Experimental Fitness/performance -8.127 1.851 18 Litoria alboguttata Rhinella marina Experimental Fitness/performance -0.341 0.203 18 Litoria gracilenta Rhinella marina Experimental Fitness/performance -0.216 0.201 18 Litoria rubella Rhinella marina Experimental Fitness/performance 0.438 0.205 18 Litoria rubella Rhinella marina Experimental Fitness/performance -0.451 0.205 18 Platyplectrum ornatum Rhinella marina Experimental Fitness/performance -0.677 0.211 18 Platyplectrum ornatum Rhinella marina Experimental Fitness/performance -0.813 0.217 18 Litoria brevipes Rhinella marina Experimental Fitness/performance -0.861 0.219 19 Pleurodeles waltl Procambarus clarkii Experimental Behaviour (activity) -0.916 0.442 19 Salamandra salamandra Procambarus clarkii Experimental Behaviour (activity) -1.643 0.535 19 Lissotriton boscai Procambarus clarkii Experimental Behaviour (activity) -1.347 0.491 19 Triturus marmoratus Procambarus clarkii Experimental Behaviour (activity) -3.392 1.219 19 Alytes cisternasii Procambarus clarkii Experimental Behaviour (activity) -2.513 0.716 19 Discoglossus galganoi Procambarus clarkii Experimental Behaviour (activity) 1.062 0.456 19 Pelobates cultripes Procambarus clarkii Experimental Behaviour (activity) 1.216 0.474 19 Pelodytes ibericus Procambarus clarkii Experimental Behaviour (activity) -0.630 0.420 19 Bufo bufo Procambarus clarkii Experimental Behaviour (activity) -0.301 0.405 19 Epidalea calamita Procambarus clarkii Experimental Behaviour (activity) 1.574 0.524 19 Hyla arborea Procambarus clarkii Experimental Behaviour (activity) -3.161 1.124 19 Hyla meridionalis Procambarus clarkii Experimental Behaviour (activity) -2.928 0.829 19 Pelophylax perezi Procambarus clarkii Experimental Behaviour (activity) -1.611 0.530 19 Pleurodeles waltl Procambarus clarkii Experimental Behaviour (activity) 1.076 0.458 19 Salamandra salamandra Procambarus clarkii Experimental Behaviour (activity) 2.192 0.640 19 Lissotriton boscai Procambarus clarkii Experimental Behaviour (activity) 1.150 0.466 19 Triturus marmoratus Procambarus clarkii Experimental Behaviour (activity) 0.000 0.500 19 Alytes cisternasii Procambarus clarkii Experimental Behaviour (activity) 6.694 2.640 19 Discoglossus galganoi Procambarus clarkii Experimental Behaviour (activity) 0.502 0.413 19 Pelobates cultripes Procambarus clarkii Experimental Behaviour (activity) 0.439 0.410 19 Pelodytes ibericus Procambarus clarkii Experimental Behaviour (activity) 0.844 0.436 19 Bufo bufo Procambarus clarkii Experimental Behaviour (activity) -0.873 0.438 19 Epidalea calamita Procambarus clarkii Experimental Behaviour (activity) -0.646 0.421 19 Hyla arborea Procambarus clarkii Experimental Behaviour (activity) 1.064 0.571 19 Hyla meridionalis Procambarus clarkii Experimental Behaviour (activity) 1.531 0.517 19 Pelophylax perezi Procambarus clarkii Experimental Behaviour (activity) 1.557 0.521 19 Pleurodeles waltl Procambarus clarkii Experimental Behaviour (activity) 0.067 0.400 19 Salamandra salamandra Procambarus clarkii Experimental Behaviour (activity) 0.558 0.416 19 Lissotriton boscai Procambarus clarkii Experimental Behaviour (activity) 0.553 0.415 19 Triturus marmoratus Procambarus clarkii Experimental Behaviour (activity) 1.128 0.580 19 Alytes cisternasii Procambarus clarkii Experimental Behaviour (activity) -0.791 0.431 19 Discoglossus galganoi Procambarus clarkii Experimental Behaviour (activity) 0.060 0.400 19 Pelobates cultripes Procambarus clarkii Experimental Behaviour (activity) -0.635 0.420 19 Pelodytes ibericus Procambarus clarkii Experimental Behaviour (activity) 0.448 0.410 19 Bufo bufo Procambarus clarkii Experimental Behaviour (activity) 0.823 0.434 19 Epidalea calamita Procambarus clarkii Experimental Behaviour (activity) -2.535 0.721 19 Hyla arborea Procambarus clarkii Experimental Behaviour (activity) 0.551 0.519 19 Hyla meridionalis Procambarus clarkii Experimental Behaviour (activity) 1.707 0.546 19 Pelophylax perezi Procambarus clarkii Experimental Behaviour (activity) -0.001 0.400 19 Pleurodeles waltl Procambarus clarkii Experimental Behaviour (avoidance) -1.103 0.461 19 Salamandra salamandra Procambarus clarkii Experimental Behaviour (avoidance) 0.621 0.419 19 Lissotriton boscai Procambarus clarkii Experimental Behaviour (avoidance) 0.657 0.422 19 Triturus marmoratus Procambarus clarkii Experimental Behaviour (avoidance) -0.567 0.520 19 Alytes cisternasii Procambarus clarkii Experimental Behaviour (avoidance) -2.734 0.774 19 Discoglossus galganoi Procambarus clarkii Experimental Behaviour (avoidance) -2.653 0.752 19 Pelobates cultripes Procambarus clarkii Experimental Behaviour (avoidance) -1.213 0.474 19 Pelodytes ibericus Procambarus clarkii Experimental Behaviour (avoidance) -2.391 0.686 19 Bufo bufo Procambarus clarkii Experimental Behaviour (avoidance) 0.978 0.448 19 Epidalea calamita Procambarus clarkii Experimental Behaviour (avoidance) -0.839 0.435 19 Hyla arborea Procambarus clarkii Experimental Behaviour (avoidance) 0.357 0.508 19 Hyla meridionalis Procambarus clarkii Experimental Behaviour (avoidance) -0.042 0.400 19 Pelophylax perezi Procambarus clarkii Experimental Behaviour (avoidance) -0.220 0.402 19 Pelobates cultripes Procambarus clarkii Experimental Fitness/performance -6.608 2.162 19 Bufo bufo Procambarus clarkii Experimental Fitness/performance -0.571 1.374 19 Pelophylax perezi Procambarus clarkii Experimental Fitness/performance -8.205 4.383 19 Pleurodeles waltl Procambarus clarkii Experimental Fitness/performance -1.026 1.355 19 Pleurodeles waltl Procambarus clarkii Experimental Fitness/performance -4.093 1.238 19 Salamandra salamandra Procambarus clarkii Experimental Fitness/performance -3.034 0.860 19 Lissotriton boscai Procambarus clarkii Experimental Fitness/performance -2.875 0.813 19 Triturus marmoratus Procambarus clarkii Experimental Fitness/performance -2.724 0.964 19 Alytes cisternasii Procambarus clarkii Experimental Fitness/performance -5.076 1.688 19 Discoglossus galganoi Procambarus clarkii Experimental Fitness/performance -8.663 4.152 19 Pelobates cultripes Procambarus clarkii Experimental Fitness/performance -20.757 21.943 19 Pelodytes ibericus Procambarus clarkii Experimental Fitness/performance -5.748 2.052 19 Bufo bufo Procambarus clarkii Experimental Fitness/performance -11.922 7.506 19 Epidalea calamita Procambarus clarkii Experimental Fitness/performance -67.847 230.559 19 Hyla arborea Procambarus clarkii Experimental Fitness/performance -3.969 1.485 19 Hyla meridionalis Procambarus clarkii Experimental Fitness/performance -3.699 1.084 19 Pelophylax perezi Procambarus clarkii Experimental Fitness/performance -7.099 2.920 20 Epidalea calamita Procambarus clarkii Experimental Fitness/performance -9.058 0.901 20 Epidalea calamita Procambarus clarkii Experimental Fitness/performance -7.483 0.640 21 Plethodon glutinosus Plethodon montanus Experimental Behaviour (activity) -0.409 0.102 21 Plethodon glutinosus Plethodon montanus Experimental Behaviour (avoidance) 0.163 0.100 21 Plethodon glutinosus Plethodon montanus Experimental Behaviour (avoidance) 0.310 0.101 22 Eurycea nana Lepomis auritus Experimental Behaviour (activity) -1.365 0.123 22 Eurycea nana Lepomis auritus Experimental Behaviour (activity) 0.622 0.105 22 Eurycea nana Lepomis auritus Experimental Physiology 0.486 0.103 22 Eurycea nana Lepomis auritus Experimental Physiology -0.986 0.112 23 Eurycea nana Lepomis auritus Experimental Behaviour (activity) -1.692 0.181 23 Eurycea nana Lepomis auritus Experimental Behaviour (activity) -0.247 0.134 23 Eurycea nana Lepomis gibbosus Experimental Behaviour (activity) -1.566 0.174 23 Eurycea nana Lepomis gibbosus Experimental Behaviour (activity) 0.217 0.134 23 Eurycea nana Herichthys cyanoguttatum Experimental Behaviour (activity) -1.468 0.169 23 Eurycea nana Herichthys cyanoguttatum Experimental Behaviour (activity) 0.388 0.136 24 Eurycea sosorum Lepomis auritus Experimental Behaviour (activity) -1.275 0.127 24 Eurycea sosorum Lepomis auritus Experimental Behaviour (activity) 0.031 0.105 24 Eurycea sosorum Lepomis auritus Experimental Behaviour (activity) 0.645 0.111 25 Anaxyrus americanus Microstegium vimineum Experimental Fitness/performance 1.851 0.571 26 Lithobates sylvaticus Gambusia affinis Experimental Development -0.613 0.524 26 Lithobates sylvaticus Gambusia affinis Experimental Development -0.392 0.510 26 Lithobates sylvaticus Gambusia affinis Experimental Fitness/performance 0.050 0.500 26 Lithobates sylvaticus Gambusia affinis Experimental Fitness/performance -6.356 3.025 26 Lithobates sylvaticus Gambusia affinis Experimental Growth/mass 0.121 0.501 26 Lithobates sylvaticus Gambusia affinis Experimental Growth/mass 0.192 0.502 27 Ambystoma annulatum Gambusia affinis Experimental Fitness/performance 1.122 0.463 27 Ambystoma annulatum Gambusia affinis Experimental Fitness/performance -0.571 0.416 27 Ambystoma annulatum Pimephales promelas Experimental Fitness/performance -1.315 0.486 27 Ambystoma annulatum Gambusia affinis Experimental Fitness/performance 0.066 0.400 27 Ambystoma annulatum Gambusia affinis Experimental Fitness/performance -3.072 0.872 27 Ambystoma annulatum Gambusia affinis Experimental Fitness/performance -29.832 22.449 27 Ambystoma annulatum Gambusia affinis Experimental Fitness/performance -1.602 0.264 27 Ambystoma annulatum Gambusia affinis Experimental Fitness/performance -2.355 0.339 28 Hyla versicolor Pinus strobus Experimental Fitness/performance 0.172 0.100 28 Hyla versicolor Pinus strobus Experimental Fitness/performance 0.183 0.100 28 Hyla versicolor Pinus strobus Experimental Fitness/performance 1.284 0.121 28 Hyla versicolor Pinus strobus Experimental Fitness/performance 0.517 0.103 28 Hyla versicolor Pinus strobus Experimental Growth/mass -0.664 0.106 28 Hyla versicolor Pinus strobus Experimental Growth/mass -0.223 0.101 28 Hyla versicolor Pinus strobus Experimental Growth/mass 0.582 0.104 28 Hyla versicolor Pinus strobus Experimental Growth/mass -0.244 0.101 28 Hyla versicolor Pinus strobus Experimental Growth/mass -3.387 0.243 28 Hyla versicolor Pinus strobus Experimental Growth/mass -1.053 0.114 28 Hyla versicolor Pinus strobus Experimental Growth/mass -0.564 0.104 28 Hyla versicolor Pinus strobus Experimental Growth/mass -2.019 0.151 29 Eurycea nana Lepomis auritus Experimental Behaviour (activity) 0.070 0.133 29 Eurycea nana Lepomis auritus Experimental Behaviour (activity) 0.828 0.145 30 Rana muscosa Oncorhynchus mykiss Observational Abundance/diversity 2.024 0.678 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (activity) -1.166 0.067 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (activity) -0.534 0.060 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (activity) 0.580 0.059 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (activity) 0.535 0.061 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (activity) 0.481 0.060 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (activity) 0.634 0.064 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (activity) 0.693 0.063 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (activity) -1.214 0.068 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (activity) -0.583 0.060 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (activity) 0.522 0.059 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (activity) 0.482 0.061 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (activity) 0.427 0.059 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (activity) 0.576 0.063 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (activity) 0.636 0.062 31 Cryptobranchus bishopi Oncorhynchus mykiss Experimental Behaviour (activity) -0.426 0.195 31 Cryptobranchus bishopi Oncorhynchus mykiss Experimental Behaviour (activity) 0.991 0.214 31 Cryptobranchus bishopi Oncorhynchus mykiss Experimental Behaviour (activity) 1.151 0.212 31 Cryptobranchus bishopi Salmo trutta Experimental Behaviour (activity) -2.119 0.298 31 Cryptobranchus bishopi Salmo trutta Experimental Behaviour (activity) 0.061 0.191 31 Cryptobranchus bishopi Salmo trutta Experimental Behaviour (activity) 0.261 0.183 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (avoidance) 1.148 0.067 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (avoidance) 0.668 0.061 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (avoidance) -0.589 0.059 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (avoidance) -0.830 0.064 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (avoidance) -0.765 0.062 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (avoidance) -0.776 0.065 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (avoidance) -1.025 0.067 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (avoidance) 1.426 0.072 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (avoidance) 0.840 0.063 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (avoidance) -0.649 0.060 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (avoidance) -0.566 0.061 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (avoidance) -0.646 0.061 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (avoidance) -0.601 0.063 31 Cryptobranchus alleganiensis Oncorhynchus mykiss Experimental Behaviour (avoidance) -0.874 0.065 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (avoidance) 1.315 0.070 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (avoidance) 0.804 0.062 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (avoidance) -0.490 0.058 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (avoidance) -0.737 0.063 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (avoidance) -0.668 0.061 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (avoidance) -0.681 0.064 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (avoidance) -0.932 0.065 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (avoidance) 1.426 0.072 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (avoidance) 0.818 0.063 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (avoidance) -0.640 0.059 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (avoidance) -0.559 0.061 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (avoidance) -0.637 0.061 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (avoidance) -0.593 0.063 31 Cryptobranchus alleganiensis Salmo trutta Experimental Behaviour (avoidance) -0.860 0.064 31 Cryptobranchus bishopi Oncorhynchus mykiss Experimental Behaviour (avoidance) 0.657 0.201 31 Cryptobranchus bishopi Oncorhynchus mykiss Experimental Behaviour (avoidance) -0.345 0.194 31 Cryptobranchus bishopi Oncorhynchus mykiss Experimental Behaviour (avoidance) -0.852 0.198 31 Cryptobranchus bishopi Oncorhynchus mykiss Experimental Behaviour (avoidance) 0.377 0.194 31 Cryptobranchus bishopi Oncorhynchus mykiss Experimental Behaviour (avoidance) -0.912 0.211 31 Cryptobranchus bishopi Oncorhynchus mykiss Experimental Behaviour (avoidance) -1.397 0.226 31 Cryptobranchus bishopi Salmo trutta Experimental Behaviour (avoidance) 1.181 0.224 31 Cryptobranchus bishopi Salmo trutta Experimental Behaviour (avoidance) 0.129 0.191 31 Cryptobranchus bishopi Salmo trutta Experimental Behaviour (avoidance) -0.366 0.185 31 Cryptobranchus bishopi Salmo trutta Experimental Behaviour (avoidance) 1.383 0.236 31 Cryptobranchus bishopi Salmo trutta Experimental Behaviour (avoidance) -0.053 0.191 31 Cryptobranchus bishopi Salmo trutta Experimental Behaviour (avoidance) -0.505 0.188 32 Taricha torosa Procambarus clarkii Experimental Fitness/performance -6.128 1.898 32 Taricha torosa Gambusia affinis Experimental Fitness/performance -0.637 0.350 32 Taricha torosa Procambarus clarkii Experimental Fitness/performance -4.662 1.239 32 Taricha torosa Gambusia affinis Experimental Fitness/performance -1.448 0.421 32 Taricha torosa Procambarus clarkii Experimental Fitness/performance -1.592 0.439 32 Taricha torosa Procambarus clarkii Experimental Fitness/performance -7.215 2.502 32 Taricha torosa Gambusia affinis Experimental Fitness/performance -4.151 1.051 33 Taricha torosa Procambarus clarkii Experimental Abundance/diversity -1.472 0.424 33 Taricha torosa Procambarus clarkii Experimental Abundance/diversity -1.190 0.392 33 Taricha torosa Procambarus clarkii Experimental Abundance/diversity -1.901 0.484 34 Rana iberica Neovison vison Observational Abundance/diversity -0.475 0.078 35 Litoria phyllochroa Salmo trutta Experimental Fitness/performance -0.972 0.280 35 Litoria spenceri Salmo trutta Experimental Fitness/performance -1.570 0.327 35 Litoria lesueuri Salmo trutta Experimental Fitness/performance -0.832 0.272 35 Limnodynastes peronii Salmo trutta Experimental Fitness/performance 0.863 0.273 35 Litoria phyllochroa Salmo trutta Experimental Fitness/performance -0.882 0.274 35 Litoria spenceri Salmo trutta Experimental Fitness/performance -1.570 0.327 35 Litoria lesueuri Salmo trutta Experimental Fitness/performance -0.832 0.272 35 Limnodynastes peronii Salmo trutta Experimental Fitness/performance 0.123 0.250 35 Litoria spenceri Oncorhynchus mykiss Experimental Fitness/performance -2.803 0.991 35 Litoria phyllochroa Oncorhynchus mykiss Experimental Fitness/performance -2.522 0.898 36 Pelophylax perezi Procambarus clarkii Experimental Morphology (tail) 0.089 0.138 36 Pelophylax perezi Procambarus clarkii Experimental Morphology (body) 0.055 0.138 36 Pelophylax perezi Procambarus clarkii Experimental Morphology (tail) -0.625 0.151 36 Pelophylax perezi Procambarus clarkii Experimental Morphology (body) -0.260 0.145 36 Pelophylax perezi Procambarus clarkii Experimental Morphology (tail) -1.119 0.154 36 Pelophylax perezi Procambarus clarkii Experimental Morphology (body) -0.971 0.149 37 Litoria australis Rhinella marina Experimental Behaviour (activity) 0.501 0.413 37 Litoria australis Rhinella marina Experimental Behaviour (activity) 0.479 0.411 37 Litoria australis Rhinella marina Experimental Behaviour (activity) 0.691 0.424 37 Litoria australis Rhinella marina Experimental Behaviour (activity) 0.538 0.414 37 Litoria australis Rhinella marina Experimental Behaviour (activity) 0.689 0.424 37 Litoria australis Rhinella marina Experimental Behaviour (activity) -1.257 0.479 38 Litoria dentata Rhinella marina Experimental Behaviour (avoidance) -0.127 0.334 38 Litoria freycineti Rhinella marina Experimental Behaviour (avoidance) 0.129 0.334 38 Litoria infrafrenata Rhinella marina Experimental Behaviour (avoidance) -0.108 0.334 38 Pseudophryne coriacea Rhinella marina Experimental Behaviour (avoidance) -0.020 0.333 39 Litoria aurea Gambusia holbrooki Experimental Behaviour (activity) 0.000 0.333 39 Litoria aurea Gambusia holbrooki Experimental Behaviour (avoidance) 0.558 0.346 39 Litoria aurea Gambusia holbrooki Experimental Development -0.486 0.343 39 Litoria aurea Gambusia holbrooki Experimental Growth/mass -0.704 0.354 40 Rana cascadae Salvelinus fontinalis Experimental Behaviour (activity) -0.991 0.094 40 Rana cascadae Salvelinus fontinalis Experimental Behaviour (activity) -0.762 0.089 40 Rana cascadae Salvelinus fontinalis Experimental Behaviour (activity) -0.015 0.083 40 Rana cascadae Salvelinus fontinalis Experimental Behaviour (avoidance) 1.146 0.097 41 Anaxyrus americanus Lonicera maackii Experimental Behaviour (activity) 0.542 0.118 41 Anaxyrus americanus Lonicera maackii Experimental Behaviour (activity) 0.512 0.108 41 Anaxyrus americanus Lonicera maackii Experimental Behaviour (activity) 0.643 0.120 41 Anaxyrus americanus Lonicera maackii Experimental Behaviour (activity) 0.408 0.107 41 Anaxyrus americanus Lonicera maackii Experimental Behaviour (avoidance) -0.670 0.121 41 Anaxyrus americanus Lonicera maackii Experimental Behaviour (avoidance) -0.462 0.108 42 Ambystoma macrodactylum Oncorhynchus mykiss Observational Abundance/diversity -0.684 0.111 42 Rana luteiventris Oncorhynchus mykiss Observational Abundance/diversity -0.505 0.109 42 Pseudacris regilla Oncorhynchus mykiss Observational Abundance/diversity -0.416 0.108 42 Ambystoma macrodactylum Oncorhynchus mykiss Observational Abundance/diversity -0.597 0.139 42 Rana luteiventris Oncorhynchus mykiss Observational Abundance/diversity -0.543 0.138 42 Pseudacris regilla Oncorhynchus mykiss Observational Abundance/diversity -0.384 0.136 42 Anaxyrus boreas Oncorhynchus mykiss Observational Abundance/diversity 0.426 0.136 43 Ambystoma gracile Salvelinus fontinalis Observational Abundance/diversity -31.270 123.225 44 Pseudacris regilla Phalaris arundinacea Experimental Fitness/performance 1.583 0.384 44 Pseudacris regilla Phalaris arundinacea Experimental Fitness/performance 1.265 0.480 44 Pseudacris regilla Phalaris arundinacea Experimental Fitness/performance 0.972 0.447 44 Pseudacris regilla Typha angustifolia Experimental Fitness/performance 0.826 0.323 44 Pseudacris regilla Typha angustifolia Experimental Fitness/performance 0.771 0.430 44 Pseudacris regilla Typha angustifolia Experimental Fitness/performance -0.595 0.418 44 Pseudacris regilla Phalaris arundinacea Experimental Fitness/performance 1.008 0.334 44 Pseudacris regilla Phalaris arundinacea Experimental Fitness/performance 0.639 0.420 44 Pseudacris regilla Phalaris arundinacea Experimental Fitness/performance 0.677 0.423 44 Pseudacris regilla Typha angustifolia Experimental Fitness/performance 0.278 0.303 44 Pseudacris regilla Typha angustifolia Experimental Fitness/performance -0.085 0.400 44 Pseudacris regilla Typha angustifolia Experimental Fitness/performance -0.014 0.400 44 Pseudacris regilla Phalaris arundinacea Experimental Fitness/performance 2.247 0.468 44 Pseudacris regilla Phalaris arundinacea Experimental Fitness/performance 1.774 0.557 44 Pseudacris regilla Phalaris arundinacea Experimental Fitness/performance 2.072 0.615 44 Pseudacris regilla Typha angustifolia Experimental Fitness/performance -0.248 0.302 44 Pseudacris regilla Typha angustifolia Experimental Fitness/performance -0.611 0.419 44 Pseudacris regilla Typha angustifolia Experimental Fitness/performance -0.602 0.418 44 Pseudacris regilla Phalaris arundinacea Experimental Growth/mass 0.722 0.317 44 Pseudacris regilla Phalaris arundinacea Experimental Growth/mass 1.597 0.528 44 Pseudacris regilla Phalaris arundinacea Experimental Growth/mass -0.729 0.427 44 Pseudacris regilla Typha angustifolia Experimental Growth/mass -0.256 0.302 44 Pseudacris regilla Typha angustifolia Experimental Growth/mass 0.234 0.403 44 Pseudacris regilla Typha angustifolia Experimental Growth/mass -1.806 0.563 45 Microhyla ornata Gambusia affinis Experimental Fitness/performance -3.264 0.933 45 Kaloula pulchra Gambusia affinis Experimental Fitness/performance -1.460 0.507 45 Fejervarya limnocharis Gambusia affinis Experimental Fitness/performance -2.713 0.768 45 Polypedates megacephalus Gambusia affinis Experimental Fitness/performance -0.713 0.425 46 Duttaphrynus melanostictus Pomacea canaliculata Experimental Fitness/performance -1.890 0.579 46 Microhyla fissipes Pomacea canaliculata Experimental Fitness/performance -17.083 14.991 46 Kaloula pulchra Pomacea canaliculata Experimental Fitness/performance -2.140 0.629 46 Fejervarya limnocharis Pomacea canaliculata Experimental Fitness/performance -21.601 23.730 46 Duttaphrynus melanostictus Physella acuta Experimental Fitness/performance 2.220 0.646 46 Microhyla fissipes Physella acuta Experimental Fitness/performance -0.957 0.446 46 Kaloula pulchra Physella acuta Experimental Fitness/performance -1.743 0.552 46 Fejervarya limnocharis Physella acuta Experimental Fitness/performance 130.067 846.266 46 Duttaphrynus melanostictus Pomacea canaliculata Experimental Fitness/performance -2.393 0.686 46 Microhyla fissipes Pomacea canaliculata Experimental Fitness/performance -15.850 12.961 46 Kaloula pulchra Pomacea canaliculata Experimental Fitness/performance -6.412 2.455 46 Fejervarya limnocharis Pomacea canaliculata Experimental Fitness/performance -16.292 13.672 46 Duttaphrynus melanostictus Physella acuta Experimental Fitness/performance 0.589 0.417 46 Microhyla fissipes Physella acuta Experimental Fitness/performance -0.971 0.447 46 Kaloula pulchra Physella acuta Experimental Fitness/performance -0.383 0.407 46 Fejervarya limnocharis Physella acuta Experimental Fitness/performance 0.791 0.431 47 Taricha torosa Procambarus clarkii Observational Abundance/diversity -1.537 0.277 47 Taricha torosa Procambarus clarkii Observational Abundance/diversity -1.251 0.613 48 Pseudacris regilla Pacifastacus leniusculus Experimental Behaviour (activity) 0.453 0.342 48 Rana boylii Pacifastacus leniusculus Experimental Behaviour (activity) 0.482 0.343 48 Pseudacris regilla Pacifastacus leniusculus Experimental Behaviour (activity) 1.302 0.404 48 Rana boylii Pacifastacus leniusculus Experimental Behaviour (activity) 1.069 0.381 48 Pseudacris regilla Pacifastacus leniusculus Experimental Fitness/performance -0.327 0.338 48 Rana boylii Pacifastacus leniusculus Experimental Fitness/performance -0.863 0.364 49 Rana aurora Lithobates catesbeianus Experimental Behaviour (activity) -1.364 0.247 49 Rana aurora Lithobates catesbeianus Experimental Behaviour (avoidance) 1.448 0.252 49 Rana aurora Lithobates catesbeianus Experimental Fitness/performance -0.578 0.694 50 Rana aurora Lithobates catesbeianus Experimental Development 2.725 1.286 50 Rana aurora Micropterus dolomieu Experimental Development 0.300 0.674 50 Rana aurora Lithobates catesbeianus Experimental Fitness/performance -2.930 1.382 50 Rana aurora Micropterus dolomieu Experimental Fitness/performance 0.445 0.683 50 Rana aurora Lithobates catesbeianus Experimental Growth/mass -6.187 3.857 50 Rana aurora Micropterus dolomieu Experimental Growth/mass -0.365 0.678 51 Rana aurora Lithobates catesbeianus Experimental Behaviour (activity) -3.584 1.042 51 Rana aurora Lithobates catesbeianus Experimental Behaviour (activity) -6.297 2.383 51 Rana aurora Lithobates catesbeianus Experimental Development 1.450 0.505 51 Rana aurora Lithobates catesbeianus Experimental Fitness/performance -1.801 0.562 51 Rana aurora Lithobates catesbeianus Experimental Growth/mass -1.917 0.584 52 Pelobates fuscus Cyprinus carpio Experimental Fitness/performance -10.233 5.126 52 Hyla arborea Cyprinus carpio Experimental Fitness/performance -6.729 1.909 53 Platyplectrum ornatum Gambusia affinis Experimental Fitness/performance -2.568 0.608 53 Platyplectrum ornatum Gambusia affinis Experimental Fitness/performance -2.758 0.650 53 Platyplectrum ornatum Gambusia affinis Experimental Fitness/performance -5.243 1.479 54 Rana draytonii Lithobates catesbeianus Experimental Behaviour (activity) 0.493 0.258 54 Rana draytonii Lithobates catesbeianus Experimental Development 1.290 0.805 54 Rana draytonii Gambusia affinis Experimental Development 1.405 0.831 54 Rana draytonii Gambusia affinis Experimental Fitness/performance 0.859 0.728 54 Rana draytonii Lithobates catesbeianus Experimental Fitness/performance -6.988 4.736 54 Rana draytonii Gambusia affinis Experimental Growth/mass -1.580 0.875 54 Rana draytonii Lithobates catesbeianus Experimental Growth/mass -0.562 0.693 55 Anaxyrus terrestris Triadica sebifera Experimental Development 1.211 0.237 55 Anaxyrus terrestris Triadica sebifera Experimental Development 1.403 0.249 55 Anaxyrus terrestris Triadica sebifera Experimental Development 1.599 0.264 55 Hyla cinerea Triadica sebifera Experimental Development -1.915 0.292 55 Hyla cinerea Triadica sebifera Experimental Development -1.897 0.290 55 Hyla cinerea Triadica sebifera Experimental Development -1.715 0.274 55 Pseudacris fouquettei Triadica sebifera Experimental Fitness/performance -13.629 4.844 55 Pseudacris fouquettei Triadica sebifera Experimental Fitness/performance -30.925 24.109 55 Pseudacris fouquettei Triadica sebifera Experimental Fitness/performance -14.992 5.819 55 Anaxyrus terrestris Triadica sebifera Experimental Fitness/performance -3.328 0.477 55 Anaxyrus terrestris Triadica sebifera Experimental Fitness/performance -3.126 0.444 55 Anaxyrus terrestris Triadica sebifera Experimental Fitness/performance -3.935 0.587 55 Hyla cinerea Triadica sebifera Experimental Fitness/performance -0.651 0.211 55 Hyla cinerea Triadica sebifera Experimental Fitness/performance -0.488 0.206 55 Hyla cinerea Triadica sebifera Experimental Fitness/performance -1.096 0.230 55 Anaxyrus terrestris Triadica sebifera Experimental Growth/mass -0.681 0.212 55 Anaxyrus terrestris Triadica sebifera Experimental Growth/mass -0.466 0.205 55 Anaxyrus terrestris Triadica sebifera Experimental Growth/mass -0.839 0.218 55 Anaxyrus terrestris Triadica sebifera Experimental Growth/mass -3.097 0.440 55 Anaxyrus terrestris Triadica sebifera Experimental Growth/mass -2.303 0.333 55 Anaxyrus terrestris Triadica sebifera Experimental Growth/mass -3.149 0.448 55 Hyla cinerea Triadica sebifera Experimental Growth/mass 5.426 0.936 55 Hyla cinerea Triadica sebifera Experimental Growth/mass 4.140 0.629 55 Hyla cinerea Triadica sebifera Experimental Growth/mass 7.061 1.447 55 Hyla cinerea Triadica sebifera Experimental Growth/mass 0.909 0.221 55 Hyla cinerea Triadica sebifera Experimental Growth/mass 0.715 0.213 55 Hyla cinerea Triadica sebifera Experimental Growth/mass 0.932 0.222 56 8 species Lithobates catesbeianus Observational Abundance/diversity -0.487 0.069 56 8 species Lithobates catesbeianus Observational Abundance/diversity -0.688 0.071 57 Bufo bufo Xenopus laevis Observational Abundance/diversity -0.250 0.157 58 Anaxyrus terrestris Solenopsis invicta Experimental Behaviour (activity) -0.802 0.120 58 Anaxyrus terrestris Solenopsis invicta Experimental Behaviour (activity) 0.260 0.112 58 Anaxyrus terrestris Solenopsis invicta Experimental Behaviour (activity) 0.567 0.116 59 13 species Pinus elliottii Observational Abundance/diversity -7.633 3.313 59 13 species Pinus elliottii Observational Abundance/diversity -7.859 3.488 59 13 species Pinus elliottii Observational Abundance/diversity -2.460 0.703 59 13 species Pinus elliottii Observational Abundance/diversity -5.978 2.187 60 Anaxyrus americanus Lythrum salicaria Experimental Development -1.406 0.083 60 Anaxyrus americanus Lythrum salicaria Experimental Development -0.841 0.073 60 Hyla versicolor Lythrum salicaria Experimental Development 0.834 0.072 60 Hyla versicolor Lythrum salicaria Experimental Development 0.417 0.068 60 Anaxyrus americanus Lythrum salicaria Experimental Fitness/performance -1.791 0.093 60 Anaxyrus americanus Lythrum salicaria Experimental Fitness/performance -1.891 0.096 60 Hyla versicolor Lythrum salicaria Experimental Fitness/performance -0.168 0.067 60 Hyla versicolor Lythrum salicaria Experimental Fitness/performance -0.007 0.067 61 Bufo bufo Astacus leptodactylus Experimental Behaviour (activity) -1.081 0.382 61 Bufo bufo Astacus leptodactylus Experimental Behaviour (activity) 2.008 0.501 61 Rana temporaria Astacus leptodactylus Experimental Behaviour (activity) -2.746 0.647 61 Rana temporaria Astacus leptodactylus Experimental Behaviour (activity) -1.021 0.377 62 Ambystoma maculatum Phragmites australis Experimental Development 0.048 0.067 62 Ambystoma maculatum Phragmites australis Experimental Development -0.243 0.067 62 Ambystoma maculatum Phragmites australis Experimental Growth/mass 0.151 0.067 62 Ambystoma maculatum Phragmites australis Experimental Growth/mass 0.590 0.070 63 Anaxyrus americanus Acer platanoides Experimental Growth/mass 1.044 0.420 63 Anaxyrus americanus Acer platanoides Experimental Growth/mass 0.442 0.635 63 Anaxyrus americanus Acer platanoides Experimental Growth/mass -1.040 0.221 63 Anaxyrus americanus Acer platanoides Experimental Growth/mass -1.628 0.356 63 Anaxyrus americanus Acer platanoides Experimental Growth/mass -0.436 0.191 63 Anaxyrus americanus Acer platanoides Experimental Growth/mass 0.780 0.210 63 Anaxyrus americanus Acer platanoides Experimental Growth/mass 0.218 0.251 63 Anaxyrus americanus Acer platanoides Experimental Growth/mass 0.091 0.171 63 Anaxyrus americanus Acer platanoides Experimental Growth/mass 0.557 0.216 63 Anaxyrus americanus Acer platanoides Experimental Growth/mass 0.830 0.659 63 Anaxyrus americanus Acer platanoides Experimental Growth/mass 0.730 0.222 63 Anaxyrus americanus Acer platanoides Experimental Growth/mass 0.314 0.190 63 Anaxyrus americanus Alnus glutinosa Experimental Growth/mass 2.569 0.456 63 Anaxyrus americanus Alnus glutinosa Experimental Growth/mass 1.514 0.613 63 Anaxyrus americanus Alnus glutinosa Experimental Growth/mass -1.181 0.149 63 Anaxyrus americanus Alnus glutinosa Experimental Growth/mass -2.355 0.309 63 Anaxyrus americanus Alnus glutinosa Experimental Growth/mass -0.346 0.120 63 Anaxyrus americanus Alnus glutinosa Experimental Growth/mass 1.383 0.157 63 Anaxyrus americanus Alnus glutinosa Experimental Growth/mass 0.527 0.186 63 Anaxyrus americanus Alnus glutinosa Experimental Growth/mass 0.330 0.102 63 Anaxyrus americanus Alnus glutinosa Experimental Growth/mass 0.980 0.155 63 Anaxyrus americanus Alnus glutinosa Experimental Growth/mass 2.438 0.704 63 Anaxyrus americanus Alnus glutinosa Experimental Growth/mass 1.319 0.168 63 Anaxyrus americanus Alnus glutinosa Experimental Growth/mass 0.604 0.123 63 Anaxyrus americanus Fallopia bohemica Experimental Growth/mass 0.815 0.403 63 Anaxyrus americanus Fallopia bohemica Experimental Growth/mass -0.081 0.625 63 Anaxyrus americanus Fallopia bohemica Experimental Growth/mass -2.000 0.287 63 Anaxyrus americanus Fallopia bohemica Experimental Growth/mass -2.659 0.504 63 Anaxyrus americanus Fallopia bohemica Experimental Growth/mass -0.958 0.207 63 Anaxyrus americanus Fallopia bohemica Experimental Growth/mass 0.307 0.199 63 Anaxyrus americanus Fallopia bohemica Experimental Growth/mass -0.159 0.251 63 Anaxyrus americanus Fallopia bohemica Experimental Growth/mass -0.375 0.173 63 Anaxyrus americanus Fallopia bohemica Experimental Growth/mass 0.174 0.209 63 Anaxyrus americanus Fallopia bohemica Experimental Growth/mass 0.597 0.643 63 Anaxyrus americanus Fallopia bohemica Experimental Growth/mass 0.286 0.210 63 Anaxyrus americanus Fallopia bohemica Experimental Growth/mass -0.079 0.188 63 Anaxyrus americanus Lonicera spp. Experimental Growth/mass 1.316 0.326 63 Anaxyrus americanus Lonicera spp. Experimental Growth/mass 0.826 0.557 63 Anaxyrus americanus Lonicera spp. Experimental Growth/mass -0.320 0.116 63 Anaxyrus americanus Lonicera spp. Experimental Growth/mass -0.966 0.202 63 Anaxyrus americanus Lonicera spp. Experimental Growth/mass 0.039 0.106 63 Anaxyrus americanus Lonicera spp. Experimental Growth/mass 1.163 0.133 63 Anaxyrus americanus Lonicera spp. Experimental Growth/mass 0.638 0.175 63 Anaxyrus americanus Lonicera spp. Experimental Growth/mass 0.546 0.092 63 Anaxyrus americanus Lonicera spp. Experimental Growth/mass 0.983 0.141 63 Anaxyrus americanus Lonicera spp. Experimental Growth/mass 1.154 0.570 63 Anaxyrus americanus Lonicera spp. Experimental Growth/mass 1.124 0.145 63 Anaxyrus americanus Lonicera spp. Experimental Growth/mass 0.740 0.113 63 Anaxyrus americanus Lythrum salicaria Experimental Growth/mass -0.883 0.815 63 Anaxyrus americanus Lythrum salicaria Experimental Growth/mass -0.857 1.092 63 Anaxyrus americanus Lythrum salicaria Experimental Growth/mass -3.408 0.934 63 Anaxyrus americanus Lythrum salicaria Experimental Growth/mass -3.112 1.181 63 Anaxyrus americanus Lythrum salicaria Experimental Growth/mass -1.988 0.672 63 Anaxyrus americanus Lythrum salicaria Experimental Growth/mass -1.201 0.616 63 Anaxyrus americanus Lythrum salicaria Experimental Growth/mass -0.962 0.671 63 Anaxyrus americanus Lythrum salicaria Experimental Growth/mass -1.544 0.595 63 Anaxyrus americanus Lythrum salicaria Experimental Growth/mass -0.885 0.611 63 Anaxyrus americanus Lythrum salicaria Experimental Growth/mass -0.630 1.050 63 Anaxyrus americanus Lythrum salicaria Experimental Growth/mass -1.088 0.626 63 Anaxyrus americanus Lythrum salicaria Experimental Growth/mass -1.088 0.595 63 Anaxyrus americanus Phragmites australis Experimental Growth/mass 0.816 0.321 63 Anaxyrus americanus Phragmites australis Experimental Growth/mass 0.281 0.558 63 Anaxyrus americanus Phragmites australis Experimental Growth/mass -1.094 0.146 63 Anaxyrus americanus Phragmites australis Experimental Growth/mass -1.720 0.258 63 Anaxyrus americanus Phragmites australis Experimental Growth/mass -0.574 0.123 63 Anaxyrus americanus Phragmites australis Experimental Growth/mass 0.593 0.132 63 Anaxyrus americanus Phragmites australis Experimental Growth/mass 0.119 0.181 63 Anaxyrus americanus Phragmites australis Experimental Growth/mass -0.042 0.101 63 Anaxyrus americanus Phragmites australis Experimental Growth/mass 0.456 0.142 63 Anaxyrus americanus Phragmites australis Experimental Growth/mass 0.650 0.566 63 Anaxyrus americanus Phragmites australis Experimental Growth/mass 0.569 0.144 63 Anaxyrus americanus Phragmites australis Experimental Growth/mass 0.206 0.119 63 Anaxyrus americanus Typha angustifolia Experimental Growth/mass 0.165 0.376 63 Anaxyrus americanus Typha angustifolia Experimental Growth/mass -0.265 0.629 63 Anaxyrus americanus Typha angustifolia Experimental Growth/mass -1.714 0.263 63 Anaxyrus americanus Typha angustifolia Experimental Growth/mass -2.058 0.409 63 Anaxyrus americanus Typha angustifolia Experimental Growth/mass -1.052 0.211 63 Anaxyrus americanus Typha angustifolia Experimental Growth/mass -0.044 0.196 63 Anaxyrus americanus Typha angustifolia Experimental Growth/mass -0.331 0.253 63 Anaxyrus americanus Typha angustifolia Experimental Growth/mass -0.578 0.176 63 Anaxyrus americanus Typha angustifolia Experimental Growth/mass -0.076 0.208 63 Anaxyrus americanus Typha angustifolia Experimental Growth/mass 0.036 0.625 63 Anaxyrus americanus Typha angustifolia Experimental Growth/mass -0.041 0.208 63 Anaxyrus americanus Typha angustifolia Experimental Growth/mass -0.289 0.189 64 Lithobates clamitans Phragmites australis Observational Abundance/diversity 0.187 0.080 65 Pseudacris regilla Lithobates catesbeianus Experimental Behaviour (activity) 0.508 0.103 65 Pseudacris regilla Lithobates catesbeianus Experimental Growth/mass -2.591 0.920 65 Rana luteiventris Lithobates catesbeianus Experimental Growth/mass 0.908 0.552 66 Ambystoma macrodactylum Carassius auratus Experimental Fitness/performance -1.792 0.701 67 Alytes muletensis Natrix maura Experimental Morphology (body) 0.271 0.101 67 Alytes muletensis Natrix maura Experimental Morphology (body) -0.092 0.100 67 Alytes muletensis Natrix maura Experimental Morphology (body) -0.113 0.100 67 Alytes muletensis Natrix maura Experimental Morphology (body) 0.078 0.100 67 Alytes muletensis Natrix maura Experimental Morphology (body) 0.419 0.102 67 Alytes muletensis Natrix maura Experimental Morphology (body) 0.247 0.101 67 Alytes muletensis Natrix maura Experimental Morphology (tail) 0.434 0.102 67 Alytes muletensis Natrix maura Experimental Morphology (tail) 0.930 0.111 67 Alytes muletensis Natrix maura Experimental Morphology (tail) -0.009 0.100 67 Alytes muletensis Natrix maura Experimental Morphology (tail) -0.232 0.101 67 Alytes muletensis Natrix maura Experimental Morphology (tail) -0.814 0.108 67 Alytes muletensis Natrix maura Experimental Morphology (tail) 0.138 0.100 67 Alytes muletensis Natrix maura Experimental Morphology (tail) 0.851 0.109 67 Alytes muletensis Natrix maura Experimental Morphology (tail) -0.911 0.110 67 Alytes muletensis Natrix maura Experimental Morphology (tail) -0.416 0.102 67 Alytes muletensis Natrix maura Experimental Morphology (tail) -0.609 0.105 67 Alytes muletensis Natrix maura Observational Morphology (body) 0.000 0.450 67 Alytes muletensis Natrix maura Observational Morphology (body) -2.527 0.805 67 Alytes muletensis Natrix maura Observational Morphology (body) -2.291 0.742 67 Alytes muletensis Natrix maura Observational Morphology (tail) 4.035 1.355 67 Alytes muletensis Natrix maura Observational Morphology (tail) 6.240 2.613 67 Alytes muletensis Natrix maura Observational Morphology (tail) -1.067 0.513 67 Alytes muletensis Natrix maura Observational Morphology (tail) -0.554 0.467 67 Alytes muletensis Natrix maura Observational Morphology (tail) -2.483 0.793 68 Litoria aurea Gambusia holbrooki Experimental Fitness/performance -2.453 0.250 69 Ambystoma macrodactylum Lithobates catesbeianus Experimental Behaviour (avoidance) 0.098 0.100 69 Ambystoma macrodactylum Lithobates catesbeianus Experimental Behaviour (avoidance) -0.449 0.103 69 Pseudacris regilla Lithobates catesbeianus Experimental Behaviour (avoidance) -0.424 0.102 69 Pseudacris regilla Lithobates catesbeianus Experimental Behaviour (avoidance) -0.506 0.103 69 Rana luteiventris Lithobates catesbeianus Experimental Behaviour (avoidance) 0.992 0.112 69 Rana luteiventris Lithobates catesbeianus Experimental Behaviour (avoidance) 0.586 0.104 69 Taricha granulosa Lithobates catesbeianus Experimental Behaviour (avoidance) 0.337 0.101 69 Taricha granulosa Lithobates catesbeianus Experimental Behaviour (avoidance) 0.246 0.101 70 Cornufer vitianus Rhinella marina Experimental Physiology 5.777 1.477 70 Cornufer vitianus Rhinella marina Experimental Physiology 6.487 1.788 70 Cornufer vitianus Rhinella marina Experimental Physiology 6.876 1.974 70 Cornufer vitianus Rhinella marina Experimental Physiology 2.148 0.451 70 Cornufer vitianus Rhinella marina Experimental Physiology 2.772 0.560 70 Cornufer vitianus Rhinella marina Experimental Physiology 1.157 0.334 71 Cornufer vitianus Rhinella marina Experimental Fitness/performance -49.956 312.956 71 Cornufer vitianus Rhinella marina Experimental Fitness/performance -46.931 276.314 71 Cornufer vitianus Rhinella marina Experimental Fitness/performance -11.637 17.927 71 Cornufer vitianus Rhinella marina Experimental Growth/mass -1.544 1.298 71 Cornufer vitianus Rhinella marina Experimental Growth/mass -4.517 3.551 71 Cornufer vitianus Rhinella marina Experimental Physiology 38.244 183.828 71 Cornufer vitianus Rhinella marina Experimental Physiology 21.461 58.571 71 Cornufer vitianus Rhinella marina Experimental Physiology -193.719 4691.881 72 Rhinella schneideri Oreochromis niloticus Experimental Fitness/performance 13.709 4.082 72 Physalaemus nattereri Oreochromis niloticus Experimental Fitness/performance -1.301 0.202 73 Pleurodeles waltl Procambarus clarkii Observational Abundance/diversity -0.498 0.133 73 Triturus marmoratus Procambarus clarkii Observational Abundance/diversity -0.199 0.130 73 Lissotriton boscai Procambarus clarkii Observational Abundance/diversity 0.107 0.129 74 Alytes cisternasii Procambarus clarkii Experimental Development -4.258 1.307 74 Discoglossus galganoi Procambarus clarkii Experimental Development -0.391 0.408 74 Pelobates cultripes Procambarus clarkii Experimental Development -1.981 0.596 74 Pelodytes ibericus Procambarus clarkii Experimental Development -0.640 0.420 74 Bufo bufo Procambarus clarkii Experimental Development -2.315 0.668 74 Epidalea calamita Procambarus clarkii Experimental Development -1.229 0.475 74 Hyla arborea Procambarus clarkii Experimental Development -1.723 0.549 74 Hyla meridionalis Procambarus clarkii Experimental Development -1.089 0.459 74 Pelophylax perezi Procambarus clarkii Experimental Development -0.231 0.403 74 Alytes cisternasii Procambarus clarkii Experimental Development -3.061 0.868 74 Discoglossus galganoi Procambarus clarkii Experimental Development -4.069 1.228 74 Pelobates cultripes Procambarus clarkii Experimental Development -1.601 0.528 74 Pelodytes ibericus Procambarus clarkii Experimental Development 0.177 0.402 74 Bufo bufo Procambarus clarkii Experimental Development 0.616 0.419 74 Epidalea calamita Procambarus clarkii Experimental Development -1.330 0.488 74 Hyla arborea Procambarus clarkii Experimental Development -1.189 0.471 74 Hyla meridionalis Procambarus clarkii Experimental Development 0.098 0.400 74 Pelophylax perezi Procambarus clarkii Experimental Development -0.239 0.403 74 Alytes cisternasii Procambarus clarkii Experimental Growth/mass 2.993 0.848 74 Discoglossus galganoi Procambarus clarkii Experimental Growth/mass 0.238 0.403 74 Pelobates cultripes Procambarus clarkii Experimental Growth/mass 0.287 0.404 74 Pelodytes ibericus Procambarus clarkii Experimental Growth/mass -0.139 0.401 74 Bufo bufo Procambarus clarkii Experimental Growth/mass -0.084 0.400 74 Epidalea calamita Procambarus clarkii Experimental Growth/mass -0.362 0.407 74 Hyla arborea Procambarus clarkii Experimental Growth/mass 2.904 0.822 74 Hyla meridionalis Procambarus clarkii Experimental Growth/mass 0.622 0.419 74 Pelophylax perezi Procambarus clarkii Experimental Growth/mass 1.139 0.465 74 Alytes cisternasii Procambarus clarkii Experimental Growth/mass 2.287 0.662 74 Discoglossus galganoi Procambarus clarkii Experimental Growth/mass 2.731 0.773 74 Pelobates cultripes Procambarus clarkii Experimental Growth/mass 0.735 0.427 74 Pelodytes ibericus Procambarus clarkii Experimental Growth/mass -2.802 0.793 74 Bufo bufo Procambarus clarkii Experimental Growth/mass 1.616 0.531 74 Epidalea calamita Procambarus clarkii Experimental Growth/mass 0.578 0.417 74 Hyla arborea Procambarus clarkii Experimental Growth/mass 1.168 0.468 74 Hyla meridionalis Procambarus clarkii Experimental Growth/mass -0.408 0.408 74 Pelophylax perezi Procambarus clarkii Experimental Growth/mass -0.148 0.401 74 Alytes cisternasii Procambarus clarkii Experimental Growth/mass 2.490 0.710 74 Discoglossus galganoi Procambarus clarkii Experimental Growth/mass -0.166 0.401 74 Pelobates cultripes Procambarus clarkii Experimental Growth/mass -0.302 0.405 74 Pelodytes ibericus Procambarus clarkii Experimental Growth/mass -1.089 0.459 74 Bufo bufo Procambarus clarkii Experimental Growth/mass -2.845 0.805 74 Epidalea calamita Procambarus clarkii Experimental Growth/mass -1.449 0.505 74 Hyla arborea Procambarus clarkii Experimental Growth/mass 1.303 0.485 74 Hyla meridionalis Procambarus clarkii Experimental Growth/mass -0.398 0.408 74 Pelophylax perezi Procambarus clarkii Experimental Growth/mass 1.014 0.451 74 Alytes cisternasii Procambarus clarkii Experimental Growth/mass 0.773 0.430 74 Discoglossus galganoi Procambarus clarkii Experimental Growth/mass -0.475 0.411 74 Pelobates cultripes Procambarus clarkii Experimental Growth/mass 0.203 0.402 74 Pelodytes ibericus Procambarus clarkii Experimental Growth/mass -3.316 0.950 74 Bufo bufo Procambarus clarkii Experimental Growth/mass 2.684 0.760 74 Epidalea calamita Procambarus clarkii Experimental Growth/mass -0.419 0.409 74 Hyla arborea Procambarus clarkii Experimental Growth/mass 0.277 0.404 74 Hyla meridionalis Procambarus clarkii Experimental Growth/mass -2.011 0.602 74 Pelophylax perezi Procambarus clarkii Experimental Growth/mass -0.142 0.401 74 Alytes cisternasii Procambarus clarkii Experimental Morphology (body) -0.494 0.412 74 Discoglossus galganoi Procambarus clarkii Experimental Morphology (body) 0.732 0.427 74 Pelobates cultripes Procambarus clarkii Experimental Morphology (body) 0.277 0.404 74 Pelodytes ibericus Procambarus clarkii Experimental Morphology (body) 0.759 0.429 74 Bufo bufo Procambarus clarkii Experimental Morphology (body) 1.158 0.467 74 Epidalea calamita Procambarus clarkii Experimental Morphology (body) 0.621 0.419 74 Hyla arborea Procambarus clarkii Experimental Morphology (body) -0.361 0.407 74 Hyla meridionalis Procambarus clarkii Experimental Morphology (body) -0.565 0.416 74 Pelophylax perezi Procambarus clarkii Experimental Morphology (body) 1.087 0.459 74 Alytes cisternasii Procambarus clarkii Experimental Morphology (body) -9.415 4.833 74 Discoglossus galganoi Procambarus clarkii Experimental Morphology (body) -5.100 1.700 74 Pelobates cultripes Procambarus clarkii Experimental Morphology (body) -1.896 0.580 74 Pelodytes ibericus Procambarus clarkii Experimental Morphology (body) -4.340 1.342 74 Bufo bufo Procambarus clarkii Experimental Morphology (body) -0.087 0.400 74 Epidalea calamita Procambarus clarkii Experimental Morphology (body) 0.006 0.400 74 Hyla arborea Procambarus clarkii Experimental Morphology (body) -2.520 0.717 74 Hyla meridionalis Procambarus clarkii Experimental Morphology (body) -4.346 1.345 74 Pelophylax perezi Procambarus clarkii Experimental Morphology (body) -1.890 0.579 75 Pelophylax perezi Procambarus clarkii Experimental Behaviour (activity) -0.350 0.406 75 Pelophylax perezi Procambarus clarkii Experimental Behaviour (activity) -0.392 0.408 75 Pelophylax perezi Procambarus clarkii Experimental Morphology (body) 0.143 0.401 75 Pelophylax perezi Procambarus clarkii Experimental Morphology (body) -0.517 0.413 75 Pelophylax perezi Procambarus clarkii Experimental Morphology (body) 2.366 0.680 75 Pelophylax perezi Procambarus clarkii Experimental Morphology (body) 0.539 0.415 76 Alytes cisternasii Procambarus clarkii Experimental Behaviour (activity) -0.407 0.408 76 Alytes cisternasii Procambarus clarkii Experimental Behaviour (activity) 1.158 0.467 76 Bufo bufo Procambarus clarkii Experimental Behaviour (activity) -6.300 2.384 76 Bufo bufo Procambarus clarkii Experimental Behaviour (activity) 1.800 0.562 76 Discoglossus galganoi Procambarus clarkii Experimental Behaviour (activity) -0.556 0.415 76 Discoglossus galganoi Procambarus clarkii Experimental Behaviour (activity) -0.367 0.407 76 Hyla meridionalis Procambarus clarkii Experimental Behaviour (activity) -1.620 0.531 76 Hyla meridionalis Procambarus clarkii Experimental Behaviour (activity) 0.711 0.425 76 Hyla arborea Procambarus clarkii Experimental Behaviour (activity) -1.721 0.548 76 Hyla arborea Procambarus clarkii Experimental Behaviour (activity) 0.000 0.400 76 Pelobates cultripes Procambarus clarkii Experimental Behaviour (activity) -0.297 0.404 76 Pelobates cultripes Procambarus clarkii Experimental Behaviour (activity) -0.404 0.408 76 Pelophylax perezi Procambarus clarkii Experimental Behaviour (activity) -0.347 0.406 76 Pelophylax perezi Procambarus clarkii Experimental Behaviour (activity) -0.477 0.411 76 Pelodytes ibericus Procambarus clarkii Experimental Behaviour (activity) -0.595 0.418 76 Pelodytes ibericus Procambarus clarkii Experimental Behaviour (activity) 2.475 0.706 76 Epidalea calamita Procambarus clarkii Experimental Behaviour (activity) -0.280 0.404 76 Epidalea calamita Procambarus clarkii Experimental Behaviour (activity) 0.145 0.401 76 Alytes cisternasii Procambarus clarkii Experimental Behaviour (avoidance) -2.393 0.686 76 Alytes cisternasii Procambarus clarkii Experimental Behaviour (avoidance) 0.696 0.424 76 Bufo bufo Procambarus clarkii Experimental Behaviour (avoidance) -0.562 0.416 76 Bufo bufo Procambarus clarkii Experimental Behaviour (avoidance) 1.171 0.469 76 Discoglossus galganoi Procambarus clarkii Experimental Behaviour (avoidance) -1.118 0.462 76 Discoglossus galganoi Procambarus clarkii Experimental Behaviour (avoidance) 0.256 0.403 76 Hyla meridionalis Procambarus clarkii Experimental Behaviour (avoidance) -0.153 0.401 76 Hyla meridionalis Procambarus clarkii Experimental Behaviour (avoidance) 0.079 0.400 76 Hyla arborea Procambarus clarkii Experimental Behaviour (avoidance) -0.848 0.436 76 Hyla arborea Procambarus clarkii Experimental Behaviour (avoidance) -0.117 0.401 76 Pelobates cultripes Procambarus clarkii Experimental Behaviour (avoidance) 0.316 0.405 76 Pelobates cultripes Procambarus clarkii Experimental Behaviour (avoidance) 1.045 0.455 76 Pelophylax perezi Procambarus clarkii Experimental Behaviour (avoidance) -0.676 0.423 76 Pelodytes ibericus Procambarus clarkii Experimental Behaviour (avoidance) 0.145 0.401 76 Pelodytes ibericus Procambarus clarkii Experimental Behaviour (avoidance) 2.092 0.619 76 Epidalea calamita Procambarus clarkii Experimental Behaviour (avoidance) -2.135 0.628 76 Epidalea calamita Procambarus clarkii Experimental Behaviour (avoidance) 1.493 0.511 77 Rana temporaria Oncorhynchus mykiss Experimental Behaviour (activity) -3.328 0.954 77 Rana temporaria Pacifastacus leniusculus Experimental Behaviour (activity) -0.997 0.450 77 Bufo bufo Oncorhynchus mykiss Experimental Behaviour (activity) -1.585 0.526 77 Bufo bufo Pacifastacus leniusculus Experimental Behaviour (activity) -3.731 1.096 77 Rana temporaria Oncorhynchus mykiss Experimental Fitness/performance -0.391 0.408 77 Rana temporaria Pacifastacus leniusculus Experimental Fitness/performance -3.116 0.886 77 Bufo bufo Oncorhynchus mykiss Experimental Fitness/performance -0.263 0.403 77 Bufo bufo Pacifastacus leniusculus Experimental Fitness/performance -12.156 7.789 77 Rana temporaria Oncorhynchus mykiss Experimental Growth/mass 0.452 0.410 77 Rana temporaria Pacifastacus leniusculus Experimental Growth/mass 3.921 1.169 77 Bufo bufo Oncorhynchus mykiss Experimental Growth/mass 0.858 0.437 77 Bufo bufo Pacifastacus leniusculus Experimental Growth/mass 0.232 0.403 78 Rana temporaria Pacifastacus leniusculus Experimental Abundance/diversity 0.377 0.407 78 Rana temporaria Oncorhynchus mykiss Experimental Abundance/diversity -1.185 0.470 78 Rana temporaria Pacifastacus leniusculus Experimental Growth/mass 0.229 0.403 78 Rana temporaria Oncorhynchus mykiss Experimental Growth/mass -2.820 0.798 79 Lissotriton helveticus Salmo trutta Experimental Development -0.143 0.040 79 Lissotriton helveticus Salmo trutta Experimental Growth/mass -0.153 0.040 79 Lissotriton helveticus Salmo trutta Experimental Growth/mass -0.609 0.042 79 Lissotriton helveticus Salmo trutta Experimental Growth/mass -0.020 0.040 79 Lissotriton helveticus Salmo trutta Experimental Morphology (body) -0.192 0.040 79 Lissotriton helveticus Salmo trutta Experimental Morphology (body) -0.149 0.040 79 Lissotriton helveticus Salmo trutta Experimental Morphology (body) -0.664 0.042 79 Lissotriton helveticus Salmo trutta Experimental Morphology (body) -0.086 0.040 79 Lissotriton helveticus Salmo trutta Experimental Morphology (body) -0.519 0.041 79 Lissotriton helveticus Salmo trutta Experimental Morphology (body) -0.344 0.041 80 Bufo bufo Salmo trutta Observational Abundance/diversity 0.028 0.067 80 Alytes obstetricans Salmo trutta Observational Abundance/diversity -0.530 0.069 80 Rana temporaria Salmo trutta Observational Abundance/diversity -0.775 0.072 80 Ichthyosaura alpestris, Salmo trutta Observational Abundance/diversity -0.912 0.074 Triturus marmoratus, Lissotriton helveticus 80 Ichthyosaura alpestris, Salmo trutta Observational Abundance/diversity -0.540 0.069 Triturus marmoratus, Lissotriton helveticus 81 Rana boylii Micropterus dolomieu Experimental Behaviour (activity) 0.071 0.250 81 Rana boylii Micropterus dolomieu Experimental Behaviour (activity) 0.463 0.257 81 Rana boylii Micropterus dolomieu Experimental Behaviour (activity) 1.307 0.303 82 Rana aurora aurora Procambarus clarkii Experimental Behaviour (activity) -0.925 0.277 82 Rana aurora aurora Procambarus clarkii Experimental Behaviour (activity) 0.149 0.326 82 Rana aurora aurora Lepomis macrochirus Experimental Behaviour (activity) -1.262 0.300 82 Rana aurora aurora Lepomis macrochirus Experimental Behaviour (activity) 0.537 0.336 82 Pseudacris regilla Procambarus clarkii Experimental Behaviour (activity) -0.153 0.251 82 Pseudacris regilla Procambarus clarkii Experimental Behaviour (activity) 0.697 0.265 82 Pseudacris regilla Lepomis macrochirus Experimental Behaviour (activity) -0.608 0.262 82 Pseudacris regilla Lepomis macrochirus Experimental Behaviour (activity) 1.064 0.285 83 Ambystoma macrodactylum Pimephales promelas Experimental Behaviour (avoidance) 0.718 0.177 83 Ambystoma macrodactylum Oncorhynchus mykiss Experimental Behaviour (avoidance) 0.083 0.167 83 Ambystoma macrodactylum Pimephales promelas Experimental Fitness/performance -2.162 0.792 83 Ambystoma macrodactylum Oncorhynchus mykiss Experimental Fitness/performance -1.969 0.742 83 Ambystoma macrodactylum Pimephales promelas Experimental Fitness/performance -2.954 1.045 83 Ambystoma macrodactylum Oncorhynchus mykiss Experimental Fitness/performance -2.175 0.796 83 Ambystoma macrodactylum Pimephales promelas Experimental Fitness/performance -3.107 1.555 83 Ambystoma macrodactylum Oncorhynchus mykiss Experimental Fitness/performance -11.938 12.626 83 Ambystoma macrodactylum Pimephales promelas Experimental Growth/mass -2.159 0.791 83 Ambystoma macrodactylum Oncorhynchus mykiss Experimental Growth/mass -0.994 0.562 83 Ambystoma macrodactylum Pimephales promelas Experimental Growth/mass -2.530 0.900 83 Ambystoma macrodactylum Oncorhynchus mykiss Experimental Growth/mass -1.271 0.601 84 Pseudacris regilla Procambarus clarkii Experimental Behaviour (activity) -0.319 0.253 85 Lithobates sylvaticus Phragmites australis Experimental Fitness/performance 0.629 0.700 85 Lithobates sylvaticus Phragmites australis Experimental Fitness/performance 0.817 0.722 86 Pelobates cultripes Procambarus clarkii Experimental Behaviour (activity) 0.059 0.133 86 Pelobates cultripes Procambarus clarkii Experimental Behaviour (activity) 1.515 0.172 87 Pelophylax perezi Trachemys scripta Experimental Behaviour (activity) -0.120 0.134 87 Pelophylax perezi Graptemys Experimental Behaviour (activity) -0.098 0.133 pseudogeographica 87 Pelophylax perezi Trachemys scripta Experimental Behaviour (activity) 1.823 0.189 87 Pelophylax perezi Trachemys scripta Experimental Behaviour (activity) 1.237 0.159 87 Pelophylax perezi Graptemys Experimental Behaviour (activity) 1.852 0.191 pseudogeographica 87 Pelophylax perezi Graptemys Experimental Behaviour (activity) 1.262 0.160 pseudogeographica 87 Pelobates cultripes Trachemys scripta Experimental Behaviour (activity) -0.260 0.134 87 Pelobates cultripes Graptemys Experimental Behaviour (activity) -0.306 0.135 pseudogeographica 87 Pelobates cultripes Trachemys scripta Experimental Behaviour (activity) 1.106 0.154 87 Pelobates cultripes Trachemys scripta Experimental Behaviour (activity) 0.793 0.144 87 Pelobates cultripes Graptemys Experimental Behaviour (activity) 1.138 0.155 pseudogeographica 87 Pelobates cultripes Graptemys Experimental Behaviour (activity) 0.799 0.144 pseudogeographica 87 Epidalea calamita Trachemys scripta Experimental Behaviour (activity) -0.458 0.137 87 Epidalea calamita Graptemys Experimental Behaviour (activity) -0.257 0.134 pseudogeographica 87 Epidalea calamita Trachemys scripta Experimental Behaviour (activity) -0.371 0.136 87 Epidalea calamita Trachemys scripta Experimental Behaviour (activity) -0.293 0.135 87 Epidalea calamita Graptemys Experimental Behaviour (activity) -0.094 0.133 pseudogeographica 87 Epidalea calamita Graptemys Experimental Behaviour (activity) -0.048 0.133 pseudogeographica 87 Hyla arborea Trachemys scripta Experimental Behaviour (activity) -0.177 0.134 87 Hyla arborea Graptemys Experimental Behaviour (activity) -0.222 0.134 pseudogeographica 87 Hyla arborea Trachemys scripta Experimental Behaviour (activity) 0.799 0.144 87 Hyla arborea Trachemys scripta Experimental Behaviour (activity) 1.077 0.153 87 Hyla arborea Graptemys Experimental Behaviour (activity) 0.747 0.143 pseudogeographica 87 Hyla arborea Graptemys Experimental Behaviour (activity) 1.015 0.151 pseudogeographica 88 Pseudacris regilla Lithobates catesbeianus Experimental Development -3.027 0.858 88 Pseudacris regilla Gambusia affinis Experimental Development -1.611 0.530 88 Anaxyrus boreas Lithobates catesbeianus Experimental Development -2.315 0.668 88 Anaxyrus boreas Gambusia affinis Experimental Development 1.525 0.516 88 Pseudacris regilla Lithobates catesbeianus Experimental Fitness/performance -0.664 0.422 88 Pseudacris regilla Gambusia affinis Experimental Fitness/performance -11.068 6.525 88 Anaxyrus boreas Lithobates catesbeianus Experimental Fitness/performance 0.172 0.401 88 Anaxyrus boreas Gambusia affinis Experimental Fitness/performance -0.482 0.412 88 Taricha torosa Lithobates catesbeianus Experimental Fitness/performance 0.406 0.408 88 Taricha torosa Gambusia affinis Experimental Fitness/performance -6.209 2.328 89 Pelodytes punctatus Gambusia holbrooki Experimental Behaviour (activity) -1.927 0.586 89 Pelodytes punctatus Gambusia holbrooki Experimental Behaviour (activity) 1.641 0.535 89 Pelodytes punctatus Procambarus clarkii Experimental Behaviour (activity) -1.038 0.454 89 Pelodytes punctatus Procambarus clarkii Experimental Behaviour (activity) 3.695 1.083 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (body) 0.928 0.443 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (body) 0.124 0.401 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (body) 2.193 0.641 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (body) 1.331 0.489 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (body) -3.338 0.957 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (body) -2.450 0.700 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (body) -5.331 1.821 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (body) -4.061 1.225 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (body) 1.400 0.498 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (body) -0.793 0.431 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (body) 0.865 0.437 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (body) -1.029 0.453 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (body) 0.326 0.405 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (body) 1.977 0.595 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (body) 2.029 0.606 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (body) 3.681 1.077 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (body) 0.875 0.438 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (body) 1.696 0.544 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (body) 1.573 0.524 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (body) 2.307 0.666 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (body) 1.448 0.505 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (body) 4.431 1.382 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (body) 1.902 0.581 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (body) 4.962 1.631 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (body) -0.083 0.400 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (body) 2.025 0.605 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (body) -1.060 0.456 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (body) 1.521 0.516 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (body) 0.116 0.401 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (body) 2.125 0.626 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (body) 0.052 0.400 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (body) 1.984 0.597 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (tail) -0.572 0.416 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (tail) 0.330 0.405 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (tail) -2.167 0.635 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (tail) -1.365 0.493 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (tail) 1.474 0.509 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (tail) -4.912 1.606 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (tail) 2.069 0.614 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (tail) -3.405 0.980 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (tail) -0.158 0.401 89 Pelodytes punctatus Gambusia holbrooki Experimental Morphology (tail) -1.283 0.482 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (tail) -0.381 0.407 89 Pelodytes punctatus Procambarus clarkii Experimental Morphology (tail) -1.528 0.517 90 Epidalea calamita Discoglossus pictus Experimental Behaviour (activity) -4.586 1.814 90 Pelodytes punctatus Discoglossus pictus Experimental Behaviour (activity) 2.066 0.767 90 Epidalea calamita Discoglossus pictus Experimental Development 1.403 0.623 90 Pelodytes punctatus Discoglossus pictus Experimental Development -0.511 0.516 90 Epidalea calamita Discoglossus pictus Experimental Fitness/performance -3.900 1.451 90 Pelodytes punctatus Discoglossus pictus Experimental Fitness/performance -0.904 0.551 90 Epidalea calamita Discoglossus pictus Experimental Growth/mass -5.711 2.538 90 Pelodytes punctatus Discoglossus pictus Experimental Growth/mass -0.655 0.527 90 Epidalea calamita Discoglossus pictus Experimental Growth/mass -2.425 0.867 90 Pelodytes punctatus Discoglossus pictus Experimental Growth/mass 0.081 0.500 91 Plethodon glutinosus Plethodon jordani Experimental Behaviour (activity) 1.203 0.343 91 Plethodon glutinosus Plethodon jordani Experimental Behaviour (activity) 0.548 0.302 92 Anaxyrus americanus Phalaris arundinacea Experimental Fitness/performance 1.816 0.941 92 Lithobates palustris Phalaris arundinacea Experimental Fitness/performance -0.004 0.667 92 Lithobates sylvaticus Phalaris arundinacea Experimental Fitness/performance 0.241 0.672 92 Hyla chrysoscelis Phalaris arundinacea Experimental Fitness/performance 0.516 0.344 93 Lithobates catesbeianus Phragmites australis Experimental Development 0.353 0.041 93 Lithobates catesbeianus Phragmites australis Experimental Development 0.583 0.042 93 Lithobates catesbeianus Phragmites australis Experimental Fitness/performance 1.330 0.049 93 Lithobates catesbeianus Phragmites australis Experimental Fitness/performance 0.400 0.041 93 Lithobates catesbeianus Phragmites australis Experimental Growth/mass 1.111 0.046 93 Lithobates catesbeianus Phragmites australis Experimental Growth/mass 0.531 0.041 94 Lithobates sphenocephalus Procambarus nigrocinctu Experimental Fitness/performance -4.250 0.434 95 Rana temporaria Neovison vison Observational Abundance/diversity -0.669 0.048 96 Salamandra infraimmaculata Gambusia affinis Experimental Fitness/performance -5.332 1.138 96 Salamandra infraimmaculata Gambusia affinis Experimental Fitness/performance -1.787 0.350 96 Salamandra infraimmaculata Gambusia affinis Experimental Growth/mass -1.457 0.316 96 Salamandra infraimmaculata Gambusia affinis Experimental Morphology (tail) -1.570 0.327 96 Salamandra infraimmaculata Gambusia affinis Observational Morphology (tail) -3.404 0.398 97 Lithobates yavapaiensis Lepomis cyanellus Experimental Behaviour (activity) 0.427 0.205 98 Anaxyrus terrestris Rhinella marina Experimental Development 0.000 0.125 98 Anaxyrus terrestris Osteopilus septentrionalis Experimental Development -1.814 0.176 98 Anaxyrus terrestris Rhinella marina Experimental Development -0.157 0.125 98 Anaxyrus terrestris Osteopilus septentrionalis Experimental Development 1.407 0.156 98 Hyla cinerea Rhinella marina Experimental Development -0.764 0.134 98 Hyla cinerea Osteopilus septentrionalis Experimental Development -3.945 0.368 98 Hyla cinerea Rhinella marina Experimental Development -0.614 0.131 98 Hyla cinerea Osteopilus septentrionalis Experimental Development 1.635 0.167 98 Anaxyrus terrestris Rhinella marina Experimental Growth/mass -0.335 0.127 98 Anaxyrus terrestris Osteopilus septentrionalis Experimental Growth/mass -1.381 0.155 98 Anaxyrus terrestris Rhinella marina Experimental Growth/mass 0.000 0.125 98 Anaxyrus terrestris Osteopilus septentrionalis Experimental Growth/mass -7.072 0.907 98 Hyla cinerea Rhinella marina Experimental Growth/mass -0.713 0.133 98 Hyla cinerea Osteopilus septentrionalis Experimental Growth/mass -3.493 0.316 98 Hyla cinerea Rhinella marina Experimental Growth/mass 1.603 0.165 98 Hyla cinerea Osteopilus septentrionalis Experimental Growth/mass 1.159 0.146 99 Anaxyrus terrestris Rhinella marina Experimental Fitness/performance 0.831 0.435 99 Anaxyrus terrestris Osteopilus septentrionalis Experimental Fitness/performance -2.702 0.765 99 Gastrophryne carolinensis Rhinella marina Experimental Fitness/performance -0.622 0.419 99 Gastrophryne carolinensis Osteopilus septentrionalis Experimental Fitness/performance -0.569 0.416 99 Hyla squirella Rhinella marina Experimental Fitness/performance -0.773 0.430 99 Hyla squirella Osteopilus septentrionalis Experimental Fitness/performance -1.311 0.486 99 Lithobates sphenocephalus Rhinella marina Experimental Fitness/performance 0.353 0.406 99 Lithobates sphenocephalus Osteopilus septentrionalis Experimental Fitness/performance -0.641 0.421 99 Anaxyrus terrestris Rhinella marina Experimental Fitness/performance 0.785 0.431 99 Anaxyrus terrestris Osteopilus septentrionalis Experimental Fitness/performance -2.642 0.749 99 Anaxyrus terrestris Rhinella marina Experimental Growth/mass -0.599 0.418 99 Anaxyrus terrestris Osteopilus septentrionalis Experimental Growth/mass -1.796 0.561 100 Lithobates clamitans Gambusia affinis Experimental Behaviour (activity) -0.843 0.084 100 Lithobates clamitans Gambusia affinis Experimental Behaviour (activity) -0.705 0.076 100 Lithobates clamitans Gambusia affinis Experimental Behaviour (avoidance) 0.645 0.081 100 Lithobates clamitans Gambusia affinis Experimental Behaviour (avoidance) 0.448 0.073 101 Anaxyrus americanus Gambusia affinis Experimental Behaviour (activity) -0.414 0.204 101 Lithobates catesbeianus Gambusia affinis Experimental Behaviour (activity) 0.121 0.067 101 Anaxyrus americanus Gambusia affinis Experimental Behaviour (avoidance) 0.273 0.202 101 Lithobates catesbeianus Gambusia affinis Experimental Behaviour (avoidance) -0.145 0.067 102 Anaxyrus americanus Carassius auratus Experimental Behaviour (activity) 0.056 0.138 102 Anaxyrus americanus Carassius auratus Experimental Behaviour (activity) 1.223 0.178 102 Anaxyrus americanus Carassius auratus Experimental Behaviour (activity) 0.525 0.163 102 Lithobates catesbeianus Carassius auratus Experimental Behaviour (activity) -0.437 0.152 102 Lithobates catesbeianus Carassius auratus Experimental Behaviour (activity) 0.222 0.156 102 Lithobates catesbeianus Carassius auratus Experimental Behaviour (activity) -0.045 0.148 102 Lithobates clamitans Carassius auratus Experimental Behaviour (activity) -0.907 0.152 102 Lithobates clamitans Carassius auratus Experimental Behaviour (activity) -0.584 0.156 102 Anaxyrus americanus Carassius auratus Experimental Behaviour (avoidance) -0.144 0.138 102 Anaxyrus americanus Carassius auratus Experimental Behaviour (avoidance) -0.146 0.150 102 Anaxyrus americanus Carassius auratus Experimental Behaviour (avoidance) -0.495 0.162 102 Lithobates catesbeianus Carassius auratus Experimental Behaviour (avoidance) -0.797 0.160 102 Lithobates catesbeianus Carassius auratus Experimental Behaviour (avoidance) 0.057 0.155 102 Lithobates catesbeianus Carassius auratus Experimental Behaviour (avoidance) 0.711 0.158 102 Lithobates clamitans Carassius auratus Experimental Behaviour (avoidance) -0.013 0.138 102 Lithobates clamitans Carassius auratus Experimental Behaviour (avoidance) 0.024 0.150 103 Anaxyrus americanus Gambusia affinis Experimental Development 0.574 0.347 103 Anaxyrus americanus Gambusia affinis Experimental Fitness/performance -0.003 0.333 103 Anaxyrus americanus Gambusia affinis Experimental Growth/mass -0.975 0.373 103 Anaxyrus americanus Gambusia affinis Experimental Growth/mass 0.268 0.336 104 Lithobates sylvaticus Phragmites australis Experimental Development 0.458 0.410 104 Lithobates sylvaticus Phragmites australis Experimental Development -0.878 0.439 104 Lithobates sylvaticus Phragmites australis Experimental Development -0.576 0.417 104 Lithobates sylvaticus Phragmites australis Experimental Development -0.383 0.407 104 Lithobates sylvaticus Phragmites australis Experimental Development -1.158 0.467 104 Lithobates sylvaticus Phragmites australis Experimental Development -1.507 0.514 104 Lithobates sylvaticus Phragmites australis Experimental Development -0.415 0.409 104 Lithobates sylvaticus Phragmites australis Experimental Development -0.409 0.408 104 Lithobates sylvaticus Phalaris arundinacea Experimental Development 0.489 0.412 104 Lithobates sylvaticus Phalaris arundinacea Experimental Development -2.467 0.704 104 Lithobates sylvaticus Phalaris arundinacea Experimental Development -1.142 0.465 104 Lithobates sylvaticus Phalaris arundinacea Experimental Development -0.876 0.438 104 Lithobates sylvaticus Phalaris arundinacea Experimental Development -2.814 0.796 104 Lithobates sylvaticus Phalaris arundinacea Experimental Development -3.216 0.917 104 Lithobates sylvaticus Phalaris arundinacea Experimental Development -0.700 0.425 104 Lithobates sylvaticus Phalaris arundinacea Experimental Development -0.855 0.437 104 Lithobates sylvaticus Rhamnus frangula Experimental Development 0.012 0.400 104 Lithobates sylvaticus Rhamnus frangula Experimental Development -2.141 0.629 104 Lithobates sylvaticus Rhamnus frangula Experimental Development -1.241 0.477 104 Lithobates sylvaticus Rhamnus frangula Experimental Development -1.005 0.451 104 Lithobates sylvaticus Rhamnus frangula Experimental Development -2.478 0.707 104 Lithobates sylvaticus Rhamnus frangula Experimental Development -2.878 0.814 104 Lithobates sylvaticus Rhamnus frangula Experimental Development -0.821 0.434 104 Lithobates sylvaticus Rhamnus frangula Experimental Development -0.984 0.448 104 Lithobates sylvaticus Phragmites australis Experimental Fitness/performance -0.532 0.414 104 Lithobates sylvaticus Phragmites australis Experimental Fitness/performance 1.803 0.563 104 Lithobates sylvaticus Phragmites australis Experimental Fitness/performance 1.814 0.564 104 Lithobates sylvaticus Phragmites australis Experimental Fitness/performance 1.304 0.485 104 Lithobates sylvaticus Phragmites australis Experimental Fitness/performance 2.463 0.703 104 Lithobates sylvaticus Phragmites australis Experimental Fitness/performance 3.497 1.011 104 Lithobates sylvaticus Phragmites australis Experimental Fitness/performance 1.348 0.491 104 Lithobates sylvaticus Phragmites australis Experimental Fitness/performance 1.053 0.455 104 Lithobates sylvaticus Phalaris arundinacea Experimental Fitness/performance -0.288 0.404 104 Lithobates sylvaticus Phalaris arundinacea Experimental Fitness/performance 1.779 0.558 104 Lithobates sylvaticus Phalaris arundinacea Experimental Fitness/performance 1.814 0.565 104 Lithobates sylvaticus Phalaris arundinacea Experimental Fitness/performance 1.236 0.476 104 Lithobates sylvaticus Phalaris arundinacea Experimental Fitness/performance 2.310 0.667 104 Lithobates sylvaticus Phalaris arundinacea Experimental Fitness/performance 3.389 0.974 104 Lithobates sylvaticus Phalaris arundinacea Experimental Fitness/performance 1.367 0.493 104 Lithobates sylvaticus Phalaris arundinacea Experimental Fitness/performance 1.081 0.458 104 Lithobates sylvaticus Rhamnus frangula Experimental Fitness/performance -0.455 0.410 104 Lithobates sylvaticus Rhamnus frangula Experimental Fitness/performance 1.717 0.547 104 Lithobates sylvaticus Rhamnus frangula Experimental Fitness/performance 1.761 0.555 104 Lithobates sylvaticus Rhamnus frangula Experimental Fitness/performance 1.142 0.465 104 Lithobates sylvaticus Rhamnus frangula Experimental Fitness/performance 2.255 0.654 104 Lithobates sylvaticus Rhamnus frangula Experimental Fitness/performance 3.353 0.962 104 Lithobates sylvaticus Rhamnus frangula Experimental Fitness/performance 1.311 0.486 104 Lithobates sylvaticus Rhamnus frangula Experimental Fitness/performance 1.015 0.452 104 Lithobates sylvaticus Phragmites australis Experimental Growth/mass -5.929 2.157 104 Lithobates sylvaticus Phragmites australis Experimental Growth/mass 2.215 0.645 104 Lithobates sylvaticus Phragmites australis Experimental Growth/mass 3.340 0.958 104 Lithobates sylvaticus Phragmites australis Experimental Growth/mass 3.060 0.868 104 Lithobates sylvaticus Phragmites australis Experimental Growth/mass 4.035 1.214 104 Lithobates sylvaticus Phragmites australis Experimental Growth/mass 5.569 1.951 104 Lithobates sylvaticus Phragmites australis Experimental Growth/mass 4.038 1.215 104 Lithobates sylvaticus Phragmites australis Experimental Growth/mass 8.303 3.847 104 Lithobates sylvaticus Phalaris arundinacea Experimental Growth/mass -3.111 0.884 104 Lithobates sylvaticus Phalaris arundinacea Experimental Growth/mass 3.728 1.095 104 Lithobates sylvaticus Phalaris arundinacea Experimental Growth/mass 4.444 1.387 104 Lithobates sylvaticus Phalaris arundinacea Experimental Growth/mass 4.312 1.330 104 Lithobates sylvaticus Phalaris arundinacea Experimental Growth/mass 4.932 1.616 104 Lithobates sylvaticus Phalaris arundinacea Experimental Growth/mass 5.614 1.976 104 Lithobates sylvaticus Phalaris arundinacea Experimental Growth/mass 5.046 1.673 104 Lithobates sylvaticus Phalaris arundinacea Experimental Growth/mass 6.441 2.474 104 Lithobates sylvaticus Rhamnus frangula Experimental Growth/mass -3.439 0.991 104 Lithobates sylvaticus Rhamnus frangula Experimental Growth/mass 3.810 1.126 104 Lithobates sylvaticus Rhamnus frangula Experimental Growth/mass 4.648 1.480 104 Lithobates sylvaticus Rhamnus frangula Experimental Growth/mass 4.410 1.372 104 Lithobates sylvaticus Rhamnus frangula Experimental Growth/mass 5.151 1.726 104 Lithobates sylvaticus Rhamnus frangula Experimental Growth/mass 5.989 2.194 104 Lithobates sylvaticus Rhamnus frangula Experimental Growth/mass 5.176 1.740 104 Lithobates sylvaticus Rhamnus frangula Experimental Growth/mass 7.022 2.865 105 Hyla cinerea Osteopilus septentrionalis Experimental Fitness/performance -3.146 0.373 105 Hyla cinerea Osteopilus septentrionalis Experimental Fitness/performance 1.493 0.213 105 Hyla cinerea Osteopilus septentrionalis Experimental Fitness/performance -0.607 0.174 105 Hyla cinerea Osteopilus septentrionalis Experimental Fitness/performance -0.487 0.172 105 Hyla cinerea Osteopilus septentrionalis Experimental Fitness/performance 0.507 0.172 105 Hyla femoralis Osteopilus septentrionalis Experimental Fitness/performance -0.057 0.286 105 Hyla femoralis Osteopilus septentrionalis Experimental Fitness/performance 0.107 0.286 105 Hyla femoralis Osteopilus septentrionalis Experimental Fitness/performance -0.116 0.286 105 Hyla femoralis Osteopilus septentrionalis Experimental Fitness/performance -1.942 0.420 105 Hyla femoralis Osteopilus septentrionalis Experimental Fitness/performance -0.144 0.286 106 Anaxyrus fowleri Incilius nebulifer Experimental Development -0.822 0.723 106 Anaxyrus fowleri Incilius nebulifer Experimental Fitness/performance -2.202 1.071 106 Anaxyrus fowleri Incilius nebulifer Experimental Growth/mass -1.945 0.982 106 Anaxyrus fowleri Incilius nebulifer Experimental Growth/mass -0.757 0.714 107 Lithobates clamitans Lonicera maackii Observational Abundance/diversity 0.447 0.342 107 Lithobates palustris Lonicera maackii Observational Abundance/diversity -0.523 0.345 108 Limnodynastes tasmaniensis Rhinella marina Experimental Fitness/performance 0.569 0.416 108 Platyplectrum ornatum Rhinella marina Experimental Fitness/performance -0.966 0.447 108 Notaden bennettii Rhinella marina Experimental Fitness/performance 0.471 0.411 108 Limnodynastes terraereginae Rhinella marina Experimental Fitness/performance -1.180 0.470 108 Limnodynastes tasmaniensis Rhinella marina Experimental Fitness/performance -0.207 0.503 108 Limnodynastes tasmaniensis Rhinella marina Experimental Growth/mass -3.251 1.037 108 Platyplectrum ornatum Rhinella marina Experimental Growth/mass 0.126 0.534 108 Notaden bennettii Rhinella marina Experimental Growth/mass -2.464 0.913 108 Limnodynastes terraereginae Rhinella marina Experimental Growth/mass -2.577 0.948 108 Limnodynastes tasmaniensis Rhinella marina Experimental Growth/mass -0.935 0.646 109 Ichthyosaura alpestris Carassius auratus Experimental Behaviour (activity) -0.631 0.210 109 Ichthyosaura alpestris Carassius auratus Experimental Behaviour (avoidance) -0.265 0.202 109 Ichthyosaura alpestris Carassius auratus Experimental Behaviour (avoidance) 0.817 0.217 109 Ichthyosaura alpestris Carassius auratus Experimental Behaviour (avoidance) 0.705 0.212 110 Ichthyosaura alpestris Carassius auratus Experimental Behaviour (activity) -4.270 0.546 110 Ichthyosaura alpestris Carassius auratus Experimental Fitness/performance -0.699 0.177 110 Ichthyosaura alpestris Carassius auratus Experimental Fitness/performance -1.444 0.210 110 Ichthyosaura alpestris Carassius auratus Experimental Fitness/performance -3.012 0.356

Table S2. References of all scientific articles from which data was extracted for the meta- analysis. 1. Adams CK, Saenz D (2012) Leaf litter of invasive Chinese tallow (Triadica sebifera) negatively affects hatching success of an aquatic breeding anuran, the southern leopard frog (Lithobates sphenocephalus). Canadian Journal of Zoology 90: 991-998. 2. Adams MJ (2000) Pond permanence and the effects of exotic vertebrates on anurans. Ecological Applications 10: 559-568. 3. Ade CM, Boone MD, Puglis HJ (2010) Effects of an insecticide and potential predators on green frogs and northern cricket frogs. Journal of Herpetology 44: 591-600. 4. Alcaraz G, López-Portela X, Robles-Mendoza C (2015) Response of a native endangered axolotl, Ambystoma mexicanum (Amphibia), to exotic fish predator. Hydrobiologia 753: 73-80. 5. Almeida E, Nunes A, Andrade P, Alves S, Guerreiro C, Rebelo R (2011) Antipredator responses of two anurans towards native and exotic predators. Amphibia-Reptilia 32: 341-350. 6. Arribas R, Díaz‐Paniagua C, Gomez‐Mestre I (2014) Ecological consequences of amphibian larvae and their native and alien predators on the community structure of temporary ponds. Freshwater Biology 59: 1996-2008. 7. Axelsson E, Nyström P, Sidenmark J, Brönmark C (1997) Crayfish predation on amphibian eggs and larvae. Amphibia-Reptilia 18: 217-228. 8. Baber MJ, Babbitt KJ (2003) The relative impacts of native and introduced predatory fish on a temporary wetland tadpole assemblage. Oecologia 136: 289-295. 9. Berec M, Klapka V, Zemek R (2016) Effect of an alien turtle predator on movement activity of European brown frog tadpoles. Italian Journal of Zoology 83: 68-76. 10. Bleach I, Beckmann C, Brown GP, Shine R (2014) Effects of an invasive species on refuge-site selection by native fauna: The impact of cane toads on native frogs in the Australian tropics. Austral Ecology 39: 50-59. 11. Boone MD, Semlitsch RD, Little EE, Doyle MC (2007) Multiple stressors in amphibian communities: effects of chemical contamination, bullfrogs, and fish. Ecological Applications 17: 291-301. 12. Bosch J, Rincon PA, Boyero L, Martinez-Solano I (2006) Effects of introduced salmonids on a montane population of Iberian frogs. Conservation Biology 20: 180-189. 13. Brown CJ, Blossey B, Maerz JC, Joule SJ (2006) Invasive plant and experimental venue affect tadpole performance. Biological Invasions 8: 327-338. 14. Buttermore KF, Litkenhaus PN, Torpey DC, Smith GR, Rettig JE (2011) Effects of mosquitofish (Gambusia affinis) cues on wood frog (Lithobates sylvaticus) tadpole activity. Acta Herpetologica 6: 81-85. 15. Chivers DP, Wildy EL, Kiesecker JM, Blaustein AR (2001) Avoidance response of juvenile pacific treefrogs to chemical cues of introduced predatory bullfrogs. Journal of Chemical Ecology 27: 1667-1676. 16. Crane AL, McGrane CE, Mathis A (2011) Behavioral and physiological responses of Ozark zigzag salamanders to stimuli from an invasive predator: the armadillo. International Journal of Ecology 2012: 1-7. 17. Crossland MR (1998) A comparison of cane toad and native tadpoles as predators of native anuran eggs, hatchlings and larvae. Wildlife Research 25: 373-381. 18. Crossland MR (2000) Direct and indirect effects of the introduced toad Bufo marinus (Anura: Bufonidae) on populations of native anuran larvae in Australia. Ecography 23: 283-290. 19. Cruz MJ, Pascoal S, Tejedo M, Rebelo R (2006) Predation by an exotic crayfish, Procambarus clarkii, on natterjack toad, Bufo calamita, embryos: Its role on the exclusion of this amphibian from its breeding ponds. Copeia 2006(2): 274-280. 20. Cruz MJ, Rebelo R (2005) Vulnerability of Southwest Iberian amphibians to an introduced crayfish, Procambarus clarkii. Amphibia-Reptilia 26: 293-303. 21. Cunningham HR, Rissler LJ (2013) Investigating behavioral shifts in aggression between a naturalized and native salamander species of the genus Plethodon. Herpetological Conservation and Biology 8: 276-287. 22. Davis DR, Epp KJ, Gabor CR (2012) Predator generalization decreases the effect of introduced predators in the San Marcos salamander, Eurycea nana. Ethology 118: 1191- 1197. 23. Davis DR, Gabor CR (2015) Behavioral and physiological antipredator responses of the San Marcos salamander, Eurycea nana. Physiology and Behavior 139: 145-149. 24. Desantis DL, Davis DR, Gabor CR (2013) Chemically mediated predator avoidance in the Barton springs salamander (Eurycea sosorum). Herpetologica 69: 291-297. 25. DeVore JL, Maerz JC (2014) Grass invasion increases top‐down pressure on an amphibian via structurally mediated effects on an intraguild predator. Ecology 95: 1724- 1730. 26. Dibble CJ, Kauffman JE, Zuzik EM, Smith GR, Rettig JE (2009) Effects of potential predator and competitor cues and sibship on wood frog (Rana sylvatica) embryos. Amphibia-Reptilia 30: 294-298. 27. Drake DL, Anderson TL, Smith LM, Lohraff KM, Semlitsch RD (2014) Predation of eggs and recently hatched larvae of endemic ringed salamanders (Ambystoma annulatum) by native and introduced aquatic predators. Herpetologica 70: 378-387. 28. Earl JE, Castello PO, Cohagen KE, Semlitsch RD (2014) Effects of subsidy quality on reciprocal subsidies: how leaf litter species changes frog biomass export. Oecologia 175: 209-218. 29. Epp KJ, Gabor CR (2008) Innate and learned predator recognition mediated by chemical signals in Eurycea nana. Ethology 114: 607-615. 30. Finlay JC, Vredenburg VT (2007) Introduced trout sever trophic connections in watersheds: Consequences for a declining amphibian. Ecology 88: 2187-2198. 31. Gall BG, Mathis A (2010) Innate predator recognition and the problem of introduced trout. Ethology 116: 47-58. 32. Gamradt SC, Kats LB (1996) Effect of introduced crayfish and mosquitofish on California newts. Conservation Biology 10: 1155-1162. 33. Gamradt SC, Kats LB, Anzalone CB (1997) Aggression by non‐native crayfish deters breeding in California newts. Conservation Biology 11: 793-796. 34. García-Díaz P, Arévalo V, Vicente R, Lizana M (2013) The impact of the American mink (Neovison vison) on native vertebrates in mountainous streams in Central Spain. European Journal of Wildlife Research 59: 823-831. 35. Gillespie GR (2001) The role of introduced trout in the decline of the spotted tree frog (Litoria spenceri) in south-eastern Australia. Biological Conservation 100: 187-198. 36. Gomez-Mestre I, Díaz-Paniagua C (2011) Invasive predatory crayfish do not trigger inducible defences in tadpoles. Proceedings of the Royal Society of London B 278: 3364- 3370. 37. Greenlees MJ, Brown GP, Webb JK, Phillips BL, Shine R (2007) Do invasive cane toads (Chaunus marinus) compete with Australian frogs (Cyclorana australis)? Austral Ecology 32: 900-907. 38. Hagman M, Shine R (2008) Australian tadpoles do not avoid chemical cues from invasive cane toads (Bufo marinus). Wildlife Research 35: 59-64. 39. Hamer A, Lane S, Mahony M (2002) The role of introduced mosquitofish (Gambusia holbrooki) in excluding the native green and golden bell frog (Litoria aurea) from original habitats in south-eastern Australia. Oecologia 132: 445-452. 40. Hartman R, Lawler S (2014) Evidence for contemporary evolution of behavioural responses to introduced fish. Behaviour 97: 213-220. 41. Hickman CR, Watling JI (2014) Leachates from an invasive shrub causes risk-prone behavior in a larval amphibian. Behavioral Ecology 25: 300-305. 42. Hirner JLM, Cox SP (2007) Effects of rainbow trout (Oncorhynchus mykiss) on amphibians in productive recreational fishing lakes of British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 64: 1770-1780. 43. Hoffman RL, Larson GL, Samora B (2004) Responses of Ambystoma gracile to the removal of introduced nonnative fish from a mountain lake. Journal of Herpetology 38: 578-585. 44. Holzer KA, Lawler SP (2015) Introduced reed canary grass attracts and supports a common native amphibian. The Journal of Wildlife Management 79: 1081-1090. 45. Karraker NE, Arrigoni J, Dudgeon D (2010) Effects of increased salinity and an introduced predator on lowland amphibians in Southern China: species identity matters. Biological Conservation 143: 1079-1086. 46. Karraker NE, Dudgeon D (2014) Invasive apple snails (Pomacea canaliculata) are predators of amphibians in South China. Biological Invasions 16: 1785-1789. 47. Kats LB, Bucciarelli G, Vandergon TL, Honeycutt RL, Mattiasen E, Sanders A, Riley SPD, Kerby JL, Fisher, R N (2013) Effects of natural flooding and manual trapping on the facilitation of invasive crayfish-native amphibian coexistence in a semi-arid perennial stream. Journal of Arid Environments 98: 109-112. 48. Kerby JL, Sih A (2015) Effects of carbaryl on species interactions of the foothill yellow legged frog (Rana boylii) and the Pacific treefrog (Pseudacris regilla). Hydrobiologia 746: 255-269. 49. Kiesecker JM, Blaustein AR (1997) Population differences in responses of red-legged frogs (Rana aurora) to introduced bullfrogs. Ecology 78: 1752-1760. 50. Kiesecker JM, Blaustein AR (1998) Effects of introduced bullfrogs and smallmouth bass on microhabitat use, growth, and survival of native red‐legged frogs (Rana aurora). Conservation Biology 12: 776-787. 51. Kiesecker JM, Blaustein AR, Miller CL (2001) Potential mechanisms underlying the displacement of native red‐legged frogs by introduced bullfrogs. Ecology 82: 1964-1970. 52. Kloskowski J (2011) Impact of common carp Cyprinus carpio on aquatic communities: direct trophic effects versus habitat deterioration. Fundamental and Applied Limnology 178: 245-255. 53. Komak S, Crossland MR (2000) An assessment of the introduced mosquitofish (Gambusia affinis holbrooki) as a predator of eggs, hatchlings and tadpoles of native and non-native anurans. Wildlife Research 27: 185-189. 54. Lawler SP, Dritz D, Strange T, Holyoak M (1999) Effects of introduced mosquitofish and bullfrogs on the threatened California red‐legged frog. Conservation Biology 13: 613- 622. 55. Leonard NE (2008) The effects of the invasive exotic Chinese tallow tree (Triadica sebifera) on amphibians and aquatic invertebrates. University of New Orleans Theses and Dissertations. Paper 656. 56. Li Y, Ke Z, Wang Y, Blackburn TM (2011) Frog community responses to recent American bullfrog invasions. Current Zoology 57: 83-92. 57. Lillo F, Faraone FP, Valvo ML (2011) Can the introduction of Xenopus laevis affect native amphibian populations? Reduction of reproductive occurrence in presence of the invasive species. Biological Invasions 13: 1533-1541. 58. Long AK, Knapp DD, Mccullough L, Smith LL, Conner LM, Mccleery RA (2015) Southern toads alter their behavior in response to red-imported fire ants. Biological Invasions 17: 2179-2186. 59. Machado IF, Moreira LF, Maltchik L (2012) Effects of pine invasion on anurans assemblage in southern Brazil coastal ponds. Amphibia-Reptilia 33: 227-237. 60. Maerz JC, Brown CJ, Chapin CT, Blossey B (2005) Can secondary compounds of an invasive plant affect larval amphibians? Functional Ecology 19: 970-975. 61. Marquis O, Saglio P, Neveu A (2004) Effects of predators and conspecific chemical cues on the swimming activity of Rana temporaria and Bufo bufo tadpoles. Archiv für Hydrobiologie 160: 153-170. 62. Martin LJ, Blossey B (2013) Intraspecific variation overrides origin effects in impacts of litter-derived secondary compounds on larval amphibians. Oecologia 173: 449-459. 63. Martin LJ, Rainford S-K, Blossey B (2015) Effects of plant litter diversity, species, origin and traits on larval toad performance. Oikos 124: 871-879. 64. Mazerolle MJ, Perez A, Brisson J (2014) Common reed (Phragmites australis) invasion and amphibian distribution in freshwater wetlands. Wetlands Ecology and Management 22: 325-340. 65. Monello RJ, Dennehy JJ, Murray DL, Wirsing AJ (2006) Growth and behavioral responses of tadpoles of two native frogs to an exotic competitor, Rana catesbeiana. Journal of Herpetology 40: 403-407. 66. Monello RJ, Wright RG (2001) Predation by goldfish (Carassius auratus) on eggs and larvae of the eastern long-toed salamander (Ambystoma macrodactylum columbianum). Journal of Herpetology 35: 350-353. 67. Moore RD, Griffiths RA, O’Brien CM, Murphy A, Jay D (2004) Induced defences in an endangered amphibian in response to an introduced snake predator. Oecologia 141: 139- 147. 68. Morgan LA, Buttemer WA (1996) Predation by the non-native fish Gambusia holbrooki on small Litoria aurea and L. dentata tadpoles. Australian Zoologist 30: 143-149. 69. Murray DL, Roth JD, Wirsing AJ (2004) Predation risk avoidance by terrestrial amphibians: the role of prey experience and vulnerability to native and exotic predators. Ethology 110: 635-647. 70. Narayan EJ, Cockrem JF, Hero JM (2013) Sight of a predator induces a corticosterone stress response and generates fear in an amphibian. PLoS One 8: e73564. 71. Narayan EJ, Jessop TS, Hero JM (2015) Invasive cane toad triggers chronic physiological stress and decreased reproductive success in an island endemic. Functional Ecology 29: 1435-1444. 72. Nomura F, do Prado VHM, da Silva FR, Borges RE, Dias NYN, Rossa‐Feres DDC (2011) Are you experienced? Predator type and predator experience trade‐offs in relation to tadpole mortality rates. Journal of Zoology 284: 144-150. 73. Nunes AL, Cruz MJ, Tejedo M, Laurila A, Rebelo R (2010) Nonlethal injury caused by an invasive alien predator and its consequences for an anuran tadpole. Basic and Applied Ecology 11: 645-654. 74. Nunes AL, Orizaola G, Laurila A, Rebelo R (2014) Morphological and life‐history responses of anurans to predation by an invasive crayfish: an integrative approach. Ecology and Evolution 4: 1491-1503. 75. Nunes AL, Orizaola G, Laurila A, Rebelo R (2014) Rapid evolution of constitutive and inducible defenses against an invasive predator. Ecology 95: 1520-1530. 76. Nunes AL, Richter-Boix A, Laurila A, Rebelo R (2013) Do anuran larvae respond behaviourally to chemical cues from an invasive crayfish predator? A community-wide study. Oecologia 171: 115-127. 77. Nyström P, Åbjörnsson K (2000) Effects of fish chemical cues on the interactions between tadpoles and crayfish. Oikos 88: 181-190. 78. Nyström P, Svensson O, Lardner B, Brönmark C, Granéli W (2001) The influence of multiple introduced predators on a littoral pond community. Ecology 82: 1023-1039. 79. Orizaola G, Brana F (2005) Plasticity in newt metamorphosis: the effect of predation at embryonic and larval stages. Freshwater Biology 50: 438-446. 80. Orizaola G, Brana F (2006) Effect of salmonid introduction and other environmental characteristics on amphibian distribution and abundance in mountain lakes of northern Spain. Animal Conservation 9: 171-178. 81. Paoletti DJ, Olson DH, Blaustein AR (2011) Responses of foothill yellow-legged frog (Rana boylii) larvae to an introduced predator. Copeia 2011(1): 161-168. 82. Pearl CA, Adams MJ, Schuytema GS, Nebeker AV (2003) Behavioral responses of anuran larvae to chemical cues of native and introduced predators in the Pacific Northwestern United States. Journal of Herpetology 37: 572-576. 83. Pearson KJ, Goater CP (2009) Effects of predaceous and nonpredaceous introduced fish on the survival, growth, and antipredation behaviours of long-toed salamanders. Canadian Journal of Zoology 87: 948-955. 84. Pease KM, Wayne RK (2014) Divergent responses of exposed and naïve Pacific tree frog tadpoles to invasive predatory crayfish. Oecologia 174: 241-252. 85. Perez A, Mazerolle MJ, Brisson J (2013) Effects of exotic common reed (Phragmites australis) on wood frog (Lithobates sylvaticus) tadpole development and food availability. Journal of Freshwater Ecology 28: 165-177. 86. Polo‐Cavia N, Gomez‐Mestre I (2014) Learned recognition of introduced predators determines survival of tadpole prey. Functional Ecology 28: 432-439. 87. Polo-Cavia N, Gonzalo A, López P, Martín J (2010) Predator recognition of native but not invasive turtle predators by naïve anuran tadpoles. Animal Behaviour 80: 461-466. 88. Preston DL, Henderson JS, Johnson PT (2012) Community ecology of invasions: direct and indirect effects of multiple invasive species on aquatic communities. Ecology, 93: 1254-1261. 89. Pujol-Buxó E, San Sebastián O, Garriga N, Llorente GA (2013) How does the invasive/native nature of species influence tadpoles' plastic responses to predators? Oikos 122: 19-29. 90. Richter-Boix A, Garriga N, Montori A, Franch M, San Sebastián O, Villero D, Llorente GA (2013) Effects of the non-native amphibian species Discoglossus pictus on the recipient amphibian community: niche overlap, competition and community organization. Biological Invasions 15: 799-815. 91. Rissler LJ, Barber AM, Wilbur HM (2000) Spatial and behavioral interactions between a native and introduced salamander species. Behavioral Ecology and Sociobiology 48: 61- 68. 92. Rittenhouse TA (2011) Anuran larval habitat quality when reed canary grass is present in wetlands. Journal of Herpetology 45: 491-496. 93. Rogalski MA, Skelly DK (2012) Positive effects of nonnative invasive Phragmites australis on larval bullfrogs. PloS One 7: e44420. 94. Saenz D, Johnson JB, Adams CK, Dayton GH (2003) Accelerated hatching of southern leopard frog (Rana sphenocephala) eggs in response to the presence of a crayfish (Procambarus nigrocinctus) predator. Copeia 2003: 646-649. 95. Salo P, Ahola MP, Korpimäki E (2010) Habitat-mediated impact of alien mink predation on common frog densities in the outer archipelago of the Baltic Sea. Oecologia 163: 405- 413. 96. Segev O, Mangel M, Blaustein L (2009) Deleterious effects by mosquitofish (Gambusia affinis) on the endangered fire salamander (Salamandra infraimmaculata). Animal Conservation 12: 29-37. 97. Shah AA, Ryan MJ, Bevilacqua E, Schlaepfer MA (2010) Prior experience alters the behavioral response of prey to a nonnative predator. Journal of Herpetology 44: 185-192. 98. Smith KG (2005) Effects of nonindigenous tadpoles on native tadpoles in Florida: evidence of competition. Biological Conservation 123: 433-441. 99. Smith KG (2006) Keystone predators (eastern newts, Notophthalmus viridescens) reduce the impacts of an aquatic invasive species. Oecologia 148: 342-349. 100. Smith GR, Boyd A, Dayer CB, Ogle ME, Terlecky AJ, Dibble CJ (2010) Effects of sibship and the presence of multiple predators on the behavior of green frog (Rana clamitans) tadpoles. Ethology 116: 217-213. 101. Smith GR, Boyd A, Dayer CB, Winter KE (2008) Behavioral responses of American toad and bullfrog tadpoles to the presence of cues from the invasive fish, Gambusia affinis. Biological Invasions 10: 743-748. 102. Smith GR, Burgett AA, Temple KG, Sparks KA, Winter KE (2008) The ability of three species of tadpoles to differentiate among potential fish predators. Ethology 114: 701- 710. 103. Smith GR, Dibble CJ (2012) Effects of an invasive fish (Gambusia affinis) and anthropogenic nutrient enrichment on American toad (Anaxyrus americanus) tadpoles. Journal of Herpetology 46: 198-202. 104. Stephens JP, Berven KA, Tiegs SD (2013) Anthropogenic changes to leaf litter input affect the fitness of a larval amphibian. Freshwater Biology 58: 1631-1646. 105. Tennessen JB, Parks SE, Tennessen TP, Langkilde T (2016) Raising a racket: invasive species compete acoustically with native treefrogs. Animal Behaviour 114: 53-61. 106. Vogel LS, Pechmann JH (2010) Response of Fowler's Toad (Anaxyrus fowleri) to competition and hydroperiod in the presence of the invasive Coastal Plain toad (Incilius nebulifer). Journal of Herpetology 44: 382-389. 107. Watling JI, Hickman CR, Orrock JL (2011) Invasive shrub alters native forest amphibian communities. Biological Conservation 144: 2597-2601. 108. Williamson I (1999) Competition between the larvae of the introduced cane toad Bufo marinus (Anura: Bufonidae) and native anurans from the Darling Downs area of southern Queensland. Australian Journal of Ecology 24: 636-643. 109. Winandy L, Denoel M (2013) Cues from introduced fish alter shelter use and feeding behaviour in adult alpine newts. Ethology 119: 121-129. 110. Winandy L, Denoël M (2013) Introduced goldfish affect amphibians through inhibition of sexual behaviour in risky habitats: an experimental approach. PloS One 8: e82736.

Table S3. Alien species from different taxonomic groups used in the meta-analysis.

Group Species Plants Acer platanoides Alnus glutinosa Fallopia bohemica Lythrum salicaria Lonicera maackii Lonicera spp. Microstegium vimineum Pinus elliottii Pinus strobus Phalaris arundinacea Phragmites australis Rhamnus frangula Triadica sebifera Typha angustifolia Invertebrates Astacus leptodactylus Orconectes rusticus Pacifastacus leniusculus Physella acuta Pomacea canaliculata Procambarus clarkii Procambarus nigrocinctu Solenopsis invicta Fishes Carassius auratus Clarius batrachus Ctenopharyngodon idella Cyprinus carpio Gambusia affinis Gambusia holbrooki Herichthys cyanoguttatum Lepomis auritus Lepomis cyanellus Lepomis gibbosus Lepomis macrochirus Micropterus dolomieu Oncorynchus mykiss Oreochormis niloticus Pimephales promelas Salmo trutta Salvelinus fontinalis Amphibians Discoglossus pictus Incilius nebulifer Lithobates catesbeianus Osteopilus septentrionalis Plethodon jordani Plethodon montanus Rhinella marina Xenopus laevis Reptiles Graptemys pseudogeographica Natrix maura Trachemys scripta elegans Trachemys scripta Mammals Dasypus novemcinctus Neovison vison

Table S4. Taxonomy (order, family) and IUCN Red List status of native amphibian species used in the meta-analysis.

Species Order Family IUCN status Alytes cisternasii Anura Alytidae Near Threatened Alytes muletensis Anura Alytidae Vulnerable Alytes obstetricans Anura Alytidae Least Concern Discoglossus galganoi Anura Alytidae Least Concern Anaxyrus americanus Anura Bufonidae Least Concern Anaxyrus boreas Anura Bufonidae Least Concern Anaxyrus fowleri Anura Bufonidae Least concern Anaxyrus quercicus Anura Bufonidae Least Concern Anaxyrus terrestris Anura Bufonidae Least Concern Bufo bufo Anura Bufonidae Least Concern Duttaphrynus melanostictus Anura Bufonidae Least Concern Epidalea calamita Anura Bufonidae Least Concern Rhinella dorbignyi Anura Bufonidae Least Concern Rhinella schneideri Anura Bufonidae Least Concern Cornufer vitianus Anura Ceratobatrachidae Endangered Fejervarya limnocharis Anura Dicroglossidae Least Concern Acris crepitans crepitans Anura Hylidae Least Concern minutus Anura Hylidae Least Concern Dendropsophus sanborni Anura Hylidae Least Concern Hyla arborea Anura Hylidae Least Concern Hyla chrysoscelis Anura Hylidae Least Concern Hyla cinerea Anura Hylidae Least Concern Hyla femoralis Anura Hylidae Least Concern Hyla meridionalis Anura Hylidae Least Concern Hyla squirella Anura Hylidae Least Concern Hyla versicolor Anura Hylidae Least Concern Hypsiboas pulchellus Anura Hylidae Least Concern Litoria alboguttata Anura Hylidae Least Concern Litoria aurea Anura Hylidae Vulnerable Litoria australis Anura Hylidae Least Concern Litoria brevipes Anura Hylidae Least Concern Litoria dahlii Anura Hylidae Least Concern Litoria dentata Anura Hylidae Least Concern Litoria freycineti Anura Hylidae Vulnerable Litoria gracilenta Anura Hylidae Least Concern Litoria infrafrenata Anura Hylidae Least Concern Litoria lesueuri Anura Hylidae Least Concern Litoria nasuta Anura Hylidae Least Concern Litoria phyllochroa Anura Hylidae Least Concern Litoria rubella Anura Hylidae Least Concern Litoria spenceri Anura Hylidae Critically Endangered Litoria tornieri Anura Hylidae Least Concern Pseudacris fouquettei Anura Hylidae Least Concern Pseudacris regilla Anura Hylidae Least Concern Pseudis minuta Anura Hylidae Least Concern Scinax fuscovarius Anura Hylidae Least Concern Scinax squalirostris Anura Hylidae Least Concern Leptodactylus gracilis Anura Leptodactylidae Least Concern Leptodactylus latrans Anura Leptodactylidae Least Concern Physalaemus biligonigerus Anura Leptodactylidae Least Concern Physalaemus gracilis Anura Leptodactylidae Least Concern Physalaemus nattereri Anura Leptodactylidae Least Concern Physalaemus riograndensis Anura Leptodactylidae Least Concern Pseudopaludicola falcipes Anura Leptodactylidae Least Concern Gastrophryne carolinensis Anura Microhylidae Least Concern Kaloula pulchra Anura Microhylidae Least Concern Microhyla fissipes Anura Microhylidae Least Concern Microhyla ornata Anura Microhylidae Least Concern Limnodynastes peronii Anura Myobatrachidae Least Concern Limnodynastes tasmaniensis Anura Myobatrachidae Least Concern Limnodynastes terraereginae Anura Myobatrachidae Least Concern Notaden bennettii Anura Myobatrachidae Least Concern Platyplectrum ornatum Anura Myobatrachidae Least Concern Pseudophryne coriacea Anura Myobatrachidae Least Concern Pelobates cultripes Anura Pelobatidae Near Threatened Pelobates fuscus Anura Pelobatidae Least Concern Pelodytes ibericus Anura Pelodytidae Least Concern Pelodytes punctatus Anura Pelodytidae Least Concern Lithobates catesbeianus Anura Ranidae Least Concern Lithobates clamitans Anura Ranidae Least Concern Lithobates palustris Anura Ranidae Least Concern Lithobates sphenocephalus Anura Ranidae Least Concern Lithobates sylvaticus Anura Ranidae Least Concern Lithobates yavapaiensis Anura Ranidae Least Concern Pelophylax perezi Anura Ranidae Least Concern Pelophylax ridibundus Anura Ranidae Least Concern Rana aurora Anura Ranidae Least Concern Rana aurora aurora Anura Ranidae Least Concern Rana boylii Anura Ranidae Near Threatened Rana cascadae Anura Ranidae Near Threatened Rana draytonii Anura Ranidae Vulnerable Rana iberica Anura Ranidae Near Threatened Rana luteiventris Anura Ranidae Least Concern Rana muscosa Anura Ranidae Endangered Rana temporaria Anura Ranidae Least Concern Polypedates megacephalus Anura Rhacophoridae Least Concern Ambystoma annulatum Urodela Ambystomatidae Least Concern Ambystoma gracile Urodela Ambystomatidae Least Concern Ambystoma macrodactylum Urodela Ambystomatidae Least Concern Ambystoma maculatum Urodela Ambystomatidae Least Concern Ambystoma mexicanum Urodela Ambystomatidae Critically Endangered Cryptobranchus alleganiensis Urodela Cryptobranchidae Near Threatened Cryptobranchus bishopi Urodela Cryptobranchidae Near Threatened Eurycea nana Urodela Plethodontidae Vulnerable Eurycea sosorum Urodela Plethodontidae Vulnerable Plethodon angusticlavius Urodela Plethodontidae Least Concern Plethodon glutinosus Urodela Plethodontidae Least Concern Ichthyosaura alpestris Urodela Salamandridae Least Concern Lissotriton boscai Urodela Salamandridae Least Concern Lissotriton helveticus Urodela Salamandridae Least Concern Pleurodeles waltl Urodela Salamandridae Near Threatened Salamandra infraimmaculata Urodela Salamandridae Near Threatened Salamandra salamandra Urodela Salamandridae Least Concern Taricha granulosa Urodela Salamandridae Least Concern Taricha torosa Urodela Salamandridae Least Concern Triturus marmoratus Urodela Salamandridae Least Concern Triturus pygmaeus Urodela Salamandridae Near Threatened

Table S5. Meta-regression random effects models of the impacts of alien species on different response variables of different life stages of native amphibians (eggs/larvae and metamorphs/adults), taking into account different control types (no species or native impacting species). Significant differences (P< 0.05) are highlighted in bold.

Eggs/Larvae Control type Response variable Mean 95% CI P Heterogeneity Random variables effect statistics (σ) No species Abundance/ -0.95 -1.60, -0.31 0.004 Q=52.07, df=20, ID=0.29, Diversity p=0.0001 ID(Type)=0.29 Fitness/ -1.75 -2.47, -1.03 <0.0001 Q=1104.68, ID=2.30, performance df=135, p<0.0001 ID(Type)=2.30 Growth/mass -0.27 -0.89, 0.35 0.40 Q=359.22, df=70, ID=1.10, p<0.0001 ID(Type)=1.10 Development -0.18 -0.62, 0.25 0.41 Q=201.52, df=40, ID=0.34, p<0.0001 ID(Type)=0.34 Behaviour (activity) -0.52 -0.86, -0.19 0.002 Q=416.03, df=109, ID=0.33, p<0.0001 ID(Type)=0.33 Behaviour 0.16 -0.22, 0.54 0.41 Q=207.70, df=51, ID=0.21, (avoidance) p<0.0001 ID(Type)=0.21 Morphology (body) 0.11 -0.40, 0.62 0.67 Q=73.21, df=32, ID=0.01, p<0.0001 ID(Type)=0.37 Morphology (tail) -0.34 -1.32, 0.63 0.49 Q=129.71, df=25, ID=1.13, p<0.0001 ID(Type)=0 Native species Fitness/ -0.55 -1.21, 0.11 0.10 Q=821.66, df=103, ID=0.83, performance p<0.0001 ID(Type)=0.83 Growth/mass 0.24 -0.51, 0.99 0.53 Q=667.86, df=71, ID=0.66, p<0.0001 ID(Type)=0.66 Development -0.58 -1.01, -0.15 0.01 Q=212.08, df=43, ID=0.13, p<0.0001 ID(Type)=0.13 Behaviour (activity) 0.59 0.24, 0.94 0.001 Q=178.55, df=61, ID=0.14, p<0.0001 ID(Type)=0.14 Behaviour 0.15 -0.31, 0.62 0.52 Q=193.81, df=48, ID=0.13, (avoidance) p<0.0001 ID(Type)=0.13 Morphology (body) -0.85 -1.81, 0.12 0.09 Q=69.52, df=14, ID=0.32, p<0.0001 ID(Type)=0.32 Morphology (tail) -1.40 -2.13, -0.66 <0.001 Q=28.27, df=9, ID=0.14, p=0.001 ID(Type)=0.14 Metamorphs/Adults Control type Response variable Mean 95% CI P Heterogeneity Random variables effect statistics (σ) No species Abundance/ -0.79 -1.91, 0.33 0.17 Q=58.08, df=14, ID=1.50, Diversity p<0.0001 ID(Type)=1.50 Fitness/ -1.88 -6.69, 2.93 0.44 Q=120.67, df=18, ID=13.87, performance p<0.0001 ID(Type)=13.87 Growth/mass -0.67 -2.16, 0.81 0.37 Q=96.89, df=7, ID=0.69, p<0.0001 ID(Type)=0.69 Behaviour (activity) -0.55 -1.34, 0.23 0.17 Q=126.55, df=19, ID=0.82, p<0.0001 ID(Type)=0.82 Behaviour 0.31 0.06, 0.56 0.01 Q=13.68, df=7, ID=0, (avoidance) p=0.06 ID(Type)=0 Morphology (body) 0.29 -0.12, 0.70 0.16 Q=51.70, df=11, N/A p<0.0001 Native species Fitness/ 0.57 -0.08, 1.22 0.08 Q=4.71, df=3, N/A performance p=0.19 Growth/mass 0.03 -0.07, 0.13 0.53 Q=304.09, df=83, N/A p<0.0001 Behaviour (activity) 0.12 -0.18, 0.42 0.43 Q=24.33, df=10, ID=0.04, p=0.01 ID(Type)=0.04 Behaviour -0.14 -0.65, 0.37 0.59 Q=15.43, df=6, ID=0.08, (avoidance) p=0.02 ID(Type)=0.08 Morphology (body) 1.57 1.09, 2.06 <0.0001 Q=68.34, df=11, N/A p<0.0001

Table S6. Meta-regression random effects models of the impacts of different taxonomic groups of alien species (plants, invertebrates, fishes, amphibians, reptiles) on different response variables of native amphibians, taking into account different control types (no species or native impacting species). Significant differences (P< 0.05) are highlighted in bold.

Control type Response variable Mean 95% CI P Heterogeneity Random effect statistics variables (σ) No species Abundance/ Diversity Plants -1.36 -4.23, 1.50 0.35 Q=58.44, df=6, ID=3.10, p<0.0001 ID(Type)=3.10 Invertebrates -0.73 -1.59, 0.13 0.09 Q=17.54, df=8, ID=0.29, p=0.03 ID(Type)=0.29 Fishes -0.24 -1.32, 0.85 0.67 Q=32.29, df=14, ID=0.50, p=0.004 ID(Type)=0.50 Amphibians -0.52 -0.86, -0.19 0.002 Q=0.88, df=2, ID=0 p=0.64 Fitness/performance Plants 0.68 -0.05, 1.34 0.07 Q=95.24, df=15, ID=0.30, p<0.0001 ID(Type)=0.30 Invertebrates -3.10 -4.64, -1.55 <0.001 Q=385.23, ID=2.66, df=42, p<0.0001 ID(Type)=2.66 Fishes -2.00 -2.90, -1.08 <0.001 Q=223.49, ID=1.76, df=42, p<0.0001 ID(Type)=1.76 Amphibians -0.85 -1.36, -0.35 0.001 Q=189.40, ID=0.27, df=52, p<0.0001 ID(Type)=0.27 Growth/mass Plants 2.08 -1.00, 5.16 0.19 Q=49.20, df=7, ID=4.82, p<0.0001 ID(Type)=4.82 Invertebrates 0.42 -0.29, 1.12 0.24 Q=87.77, df=26, ID=0.26, p<0.0001 ID(Type)=0.26 Fishes -0.67 -1.23, -0.11 0.02 Q=31.31, df=14, ID=0.23, p=0.01 ID(Type)=0.23 Amphibians -1.20 -1.68, -0.73 <0.001 Q=194.70, ID=0.14, df=28, p<0.0001 ID(Type)=0.14 Development Plants -0.30 -0.87, 0.27 0.30 Q=34.59, df=8, ID=0.16, p<0.0001 ID(Type)=0.16 Invertebrates -1.23 -1.65, -0.80 <0.0001 Q=18.63, df=10, ID=0, p=0.05 ID(Type)=0 Fishes 0.09 -0.33, 0.51 0.68 Q=27.65, df=8, ID=0.03, p=0.001 ID(Type)=0.03 Amphibians 0.18 -1.05, 1.42 0.77 Q=129.24, ID=1.13, df=15, p<0.0001 ID(Type)=1.13 Behaviour (activity) Invertebrates -0.53 -1.02, -0.04 0.03 Q=219.21, ID=0.29, df=65, p<0.0001 ID(Type)=0.29 Fishes -0.88 -1.29, -0.47 <0.0001 Q=139.43, ID=0.34, df=34, p<0.0001 ID(Type)=0.34 Amphibians -0.35 -1.41, 0.71 0.52 Q=69.60, df=15, ID=1.04, p<0.0001 ID(Type)=1.04 Reptiles -0.46 -0.98, 0.07 0.09 Q=3.99, df=8, ID=0.05, p=0.86 ID(Type)=0.05 Behaviour (avoidance) Invertebrates -0.59 -0.87, -0.32 <0.0001 Q=47.22, df=23, ID=0, p=0.002 ID(Type)=0 Fishes 0.50 0.14, 0.87 0.01 Q=70.28, df=21, ID=0.11, p<0.0001 ID(Type)=0.11 Amphibians 0.44 -0.31, 1.20 0.25 Q=16.40, df=8, ID=0.17, p=0.04 ID(Type)=0.17 Reptiles 0.05 -0.25, 0.35 0.74 Q=9.70, df=2, N/A p=0.01 Morphology (body) Invertebrates 0.41 0.14, 0.69 0.003 Q=56.76, df=21, ID=0, p<0.0001 ID(Type)=0 Fishes 0.01 -0.71, 0.74 0.97 Q=35.42, df=13, ID=0.12, p=0.001 ID(Type)=0.12 Reptiles -0.51 -1.91, 0.88 0.47 Q=18.30, df=8, ID(Type)=0, p=0.02 ID(Type)=0.91 Morphology (tail) Invertebrates 0.14 -0.33, 0.60 0.56 Q=16.38, df=5, ID=0, p=0.006 ID(Type)=0 Fishes -1.27 -3.84, 1.30 0.33 Q=29.74, df=4, ID=2.33, p<0.0001 ID(Type)=1.29 Reptiles -0.07 -0.26, 0.12 0.47 Q=72.94, df=14, ID=0, p<0.0001 ID(Type)=0 Native Response variable Mean 95% CI P Heterogeneity Random Species effect statistics variables (σ) Fitness/performance Plants -0.24 -1.19, 0.72 0.62 Q=427.88, ID=0.80, df=54, p<0.0001 ID(Type)=0.80 Invertebrates -0.51 -1.49, 0.47 0.30 Q=143.05, ID=0.34 df=20, p<0.0001 ID(Type)=0.34 Fishes -1.22 -2.97, 0.52 0.17 Q=244.48, ID=2.15, df=31, p<0.0001 ID(Type)=2.15 Growth/mass Plants 0.36 -0.65, 1.36 0.49 Q=869.51, ID=0.77, df=129, ID(Type)=0.77 p<0.0001 Invertebrates 0.50 -0.22, 1.22 0.18 Q=87.49, df=22, ID=0.15, p<0.0001 ID(Type)=0.15 Fishes -0.83 -2.75, 1.10 0.40 Q=5.54, df=2, ID=0.75, p=0.06 ID(Type)=0.75 Development Plants -0.60 -1.27, 0.08 0.08 Q=170.73, ID=0.26, df=31, p<0.0001 ID(Type)=0.26 Invertebrates -0.73 -1.15, -0.30 0.001 Q=40.59, df=10, ID=0, p<0.0001 ID(Type)=0 Behaviour (activity) Invertebrates 0.77 0.15, 1.39 0.01 Q=59.34, df=18, ID=0.25, p<0.0001 ID(Type)=0.25 Fishes 0.39 0.09, 0.69 0.01 Q=81.62, df=33, ID=0.07, p<0.0001 ID(Type)=0.07 Reptiles 0.74 0.55, 0.93 <0.0001 Q=46.07, df=15, N/A p<0.0001 Behaviour (avoidance) Invertebrates 0.79 0.37, 1.20 <0.0001 Q=9.11, df=9, ID=0, p=0.43 ID(Type)=0 Fishes -0.04 -0.56, 0.47 0.87 Q=154.80, ID=0.09, df=37, p<0.0001 ID(Type)=0.09 Amphibians -0.14 -0.65, 0.37 0.59 Q=15.43, df=6, ID=0.08, p=0.02 ID(Type)=0.08 Morphology (body) Invertebrates -0.42 -2.08, 1.24 0.62 Q=148.54, ID=1.04, df=18, p<0.0001 ID(Type)=1.04 Fishes 0.83 0.30, 1.36 0.002 Q=40.73, df=7, N/A p<0.0001 Morphology (tail) Invertebrates -1.58 -2.47, -0.69 0.001 Q=13.73, df=6, ID=0.21, p=0.03 ID(Type)=0.21 Fishes -0.95 -1.81, -0.09 0.03 Q=14.04, df=2, N/A p=0.001

a)

b)

16

14

12

10

8

6 Narticles

4

2

0

2009 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2010 2011 2012 2013 2014 2015 2016

Year published

Figure S1. a) Continent and b) year of publication of studies used in the meta-analysis. Note: No records were found for Africa.

Figure S2. Alien impacting species, per taxonomic group, mostly represented in the meta- analysis and respective number of effect sizes (N cases) extracted from scientific articles for each of them.

Figure S3. Family of native amphibian species and the respective number of species and effect sizes (N cases) represented by each of them in the meta-analysis.

Figure S4. Effect sizes of response variables describing ecological impacts of alien species on a) eggs/larvae and b) metamorphs/adults of native amphibians, considering different control types (no species or native species). Error bars represent 95% confidence intervals (CI) and effects are considered significant when CIs do not overlap zero. Sample size and number of publications are shown in parentheses. * P<0.05, ** P≤0.01, *** P≤0.001