Max-Planck-Institut Für Astrophysik Annual Report 2017

Total Page:16

File Type:pdf, Size:1020Kb

Max-Planck-Institut Für Astrophysik Annual Report 2017 Max-Planck-Institut für Astrophysik Annual Report 2017 Contents 1 General Information 3 1.1 AbriefhistoryoftheMPA ........................... ....... 3 1.2 CurrentMPAfacilities . ......... 4 1.3 2017attheMPA.................................... .... 5 2 Scientific Highlights 15 2.1 The Hydrangea project: high-resolution hydrodynamic simulations of galaxy clusters . 15 2.2 Constraining theories of gravity using the large-scale distribution ofgalaxies . 17 2.3 The Circum-galactic Medium of Galaxies as Probe of Gas Accretion ........... 19 2.4 Simulating separate universes to study the clustering ofdarkmatter . .. .. .. .. 20 2.5 Gravitational noise interferes with determining the coordinates of distant sources . 21 2.6 Intense radiation and winds emitted by massive stars regulate star formation in galaxies 23 2.7 Wanted: the rotating radio emission of the Milky Way . ............... 25 2.8 Instabilities in relativistic magnetized accretion disks.................... 26 2.9 Probing molecular clouds with supermassive black hole X-rayflares.. .. .. .. .. 28 2.10 Rise and Shine: Type Ia supernova models at early times . ................ 31 2.11 Bridging the Gap: From Massive Stars to Supernovae in 3D ................ 32 2.12 LOFAR radio observations document rejuvenation in space ................ 34 3 Publications and Invited Talks 37 3.1 PublicationsinJournals . .......... 37 3.1.1 Publicationsthat appearedin 2017(262) . ........... 37 3.1.2 Publicationsacceptedin2017 . ......... 51 3.1.3 Publicationsaselectronicfile . .......... 52 3.2 Publicationsinproceedings . ........... 52 3.2.1 Publications in proceedings appeared in 2017 . ............. 52 3.3 Talks........................................... .... 54 3.3.1 Invited review talks at international meetings . ............... 54 3.3.2 InvitedColloquiatalks. ........ 56 3.3.3 Publictalks................................... .... 57 3.4 Lecturesandlecturecourses. ........... 57 3.4.1 LecturesatLMUandTUM. .. .. .. .. .. .. .. .. .. .. .. ... 57 3.4.2 Shortandpubliclectures . ....... 58 4 Personnel 59 4.1 Scientificstaffmembers . .. .. .. .. .. .. .. .. .. .. .. .. ........ 59 4.1.1 Staffnews...................................... .. 60 4.2 PhDThesis2017andMasterthesis2017. ........... 60 4.2.1 Ph.D.theses2017 ............................... .... 60 4.2.2 Mastertheses2017.............................. ..... 61 4.3 Visitingscientists.. .. .. .. .. .. .. .. .. .. .. .. .. .......... 62 1 1 General Information 1.1 A brief history of the MPA rector is formally the successor of Wolfgang Hille- brandt who retired in 2012. The MPA was orig- The Max-Planck-Institut für Astrophysik, usually inally founded as an institute for theoretical as- called MPA for short, was founded in 1958 under trophysics, aiming to develop the theoretical con- the directorship of Ludwig Biermann. It was estab- cepts and numerical algorithms needed to study lished as an offshoot of the Max-Planck-Institut für the structure and evolution of stars (including the Physik, which at that time had just moved from sun), the dynamics and chemistry of the interstel- Göttingen to Munich. In 1979, as part of plans lar medium, the interaction of hot, dilute plas- to move the headquarters of the European South- mas with magnetic fields and energetic particles, ern Observatory from Geneva to Garching, Bier- and the calculation of transition probabilities and mann’s successor, Rudolf Kippenhahn, relocated cross–sections for astrophysical processes in rar- the MPA to its current site. The MPA became efied media. From its inception the MPA has fully independent in 1991. Kippenhahn retired had an internationally-recognized numerical astro- shortly thereafter and this led to a period of un- physics program that was long unparalleled by any certainty, which ended in 1994 with the appoint- other institution of similar size. ment of Simon White as director. The subsequent appointments of Rashid Sunyaev (1995) and Wolf- Over the last 20 years, activities at the MPA gang Hillebrandt (1997) as directors at the insti- have diversified considerably. They now address tute, together with adoption of new set of statutes a much broader range of topics, including a va- in 1997, allowed the MPA to adopt a system of riety of data analysis and even some observing collegial leadership by a Board of Directors. The projects, although there is still a major empha- Managing Directorship rotates every three years, sis on theory and numerics. Resources are chan- with Eiichiro Komatsu in post for the period 2015- neled into directions where new instrumental or 2017. computational capabilities are expected to lead to rapid developments. Active areas of current In 2007 Martin Asplund arrived as a new direc- research include stellar evolution, stellar atmo- tor but, for personal reasons, decided to return to spheres, accretion phenomena, nuclear and parti- The Australian National University in 2011. He cle astrophysics, supernova physics, astrophysical remains linked to the institute as external Scien- fluid dynamics, high-energy astrophysics, radiative tific Member, joining the other external Scientific processes, the structure, formation and evolution Members: Riccardo Giacconi, Rolf Kudritzki and of galaxies, gravitational lensing, the large-scale Werner Tscharnuter. Eiichiro Komatsu arrived in structure of the Universe, the cosmic microwave 2012 from the University of Texas to take up a di- background, and physical and early universe cos- rectorship, bringing new impetus to the institute’s mology. Several previous research themes (solar research into the early universe and the growth of system physics, the quantum chemistry of astro- structure. This generational change continued in physical molecules, general relativity and gravita- 2013 when the MPA’s own Guinevere Kauffmann tional wave astronomy) have been substantially re- was promoted to a directorship, thereby ensuring duced since 1994. that the institute will remain a centre for studies of the formation and evolution of galaxies. In 2017 Since 2001 the MPA has been part of the In- Volker Springel, a former group leader at MPA, ternational Max-Planck Research School in Astro- came back from the University of Heidelberg to physics, a joint initiative between the Max Planck become a director in the department of Computa- Society and the Ludwig-Maximilians University of tional Astrophysics. Munich. About 70 PhD students participate in Finally, another search is currently underway for the school at any given time, most of them at the a new director, active in general areas including, MPE or the MPA. This has subtantially increased but not limited to, stellar astrophysics, planetary and internationalised the graduate student body at science, and high-energy astrophysics such as ac- MPA over the last decade and has resulted in pro- cretion disks and compact objects. This new di- ductive social and professional links between MPA 3 4 1. General Information students and those at other local institutions. Cur- tists and computer specialists. In addition, a group rently about 25 students at MPA participate in the of scientists constitutes the “Computer Executive IMPRS. Committee”, responsible for the long-term strat- MPA policy is effectively set by the Wis- egy and planning, and for balancing the requests senschaftliche Institutsrat (WIR) which has met of the different groups and users. Our aim is to sat- regularly about 6 times a year since 1995 to discuss isfy the needs by providing both extensive in-house all academic, social and administrative issues af- computer power and by ensuring effective access to fecting the institute. This consists of all the perma- the supercomputers and the mass storage facilities nent scientific staff and the Max-Planck Research at the Max Planck Computing and Data Facility Group leaders, as well as elected representatives of (MPCDF) and the Leibniz Computer Centre of the the postdocs, doctoral students and support staff. state of Bavaria (LRZ). It acts as the main formal conduit for discussion MPCDF and MPA coordinate their activities and communication within the institute, advising and development plans through regular meetings the directorate on all substantive issues. Ad hoc to ensure continuity in the working environment subcommittees of the WIR carry out the annual experienced by the users. Scientists at MPA are postdoc and student hiring exercises, monitor stu- also very successful obtaining additional supercom- dent progress, oversee the running of the computer puting time, typically of the order of millions of system, and, in recent years, have carried out the CPU-hours per project at various other supercom- searches for new directions and directorial candi- puter centres at both national and international dates. level. The most important resources provided by Other aspects of the MPA’s structure have his- the MPCDF are parallel supercomputers, PByte torical origins. Its administrative staff is shared mass storage facilities (also for backups), and the with the neighboring, but substantially larger MPI gateway to the German high-speed network for sci- für extraterrestrische Physik (MPE). The library ence and education. MPA participates actively in in the MPA building also serves the two institutes discussions of major investments at the MPCDF, jointly. All major astronomical books and peri- and has provided several benchmark codes for the odicals are available. The MPA played an im- evaluation of the next generation supercomputer portant role in founding the Max-Planck Society’s options. In
Recommended publications
  • Physical Cosmology," Organized by a Committee Chaired by David N
    Proc. Natl. Acad. Sci. USA Vol. 90, p. 4765, June 1993 Colloquium Paper This paper serves as an introduction to the following papers, which were presented at a colloquium entitled "Physical Cosmology," organized by a committee chaired by David N. Schramm, held March 27 and 28, 1992, at the National Academy of Sciences, Irvine, CA. Physical cosmology DAVID N. SCHRAMM Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 The Colloquium on Physical Cosmology was attended by 180 much notoriety. The recent report by COBE of a small cosmologists and science writers representing a wide range of primordial anisotropy has certainly brought wide recognition scientific disciplines. The purpose of the colloquium was to to the nature of the problems. The interrelationship of address the timely questions that have been raised in recent structure formation scenarios with the established parts of years on the interdisciplinary topic of physical cosmology by the cosmological framework, as well as the plethora of new bringing together experts of the various scientific subfields observations and experiments, has made it timely for a that deal with cosmology. high-level international scientific colloquium on the subject. Cosmology has entered a "golden age" in which there is a The papers presented in this issue give a wonderful mul- tifaceted view of the current state of modem physical cos- close interplay between theory and observation-experimen- mology. Although the actual COBE anisotropy announce- tation. Pioneering early contributions by Hubble are not ment was made after the meeting reported here, the following negated but are amplified by this current, unprecedented high papers were updated to include the new COBE data.
    [Show full text]
  • Cosmic Background Explorer (COBE) and Beyond
    From the Big Bang to the Nobel Prize: Cosmic Background Explorer (COBE) and Beyond Goddard Space Flight Center Lecture John Mather Nov. 21, 2006 Astronomical Search For Origins First Galaxies Big Bang Life Galaxies Evolve Planets Stars Looking Back in Time Measuring Distance This technique enables measurement of enormous distances Astronomer's Toolbox #2: Doppler Shift - Light Atoms emit light at discrete wavelengths that can be seen with a spectroscope This “line spectrum” identifies the atom and its velocity Galaxies attract each other, so the expansion should be slowing down -- Right?? To tell, we need to compare the velocity we measure on nearby galaxies to ones at very high redshift. In other words, we need to extend Hubble’s velocity vs distance plot to much greater distances. Nobel Prize Press Release The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2006 jointly to John C. Mather, NASA Goddard Space Flight Center, Greenbelt, MD, USA, and George F. Smoot, University of California, Berkeley, CA, USA "for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation". The Power of Thought Georges Lemaitre & Albert Einstein George Gamow Robert Herman & Ralph Alpher Rashid Sunyaev Jim Peebles Power of Hardware - CMB Spectrum Paul Richards Mike Werner David Woody Frank Low Herb Gush Rai Weiss Brief COBE History • 1965, CMB announced - Penzias & Wilson; Dicke, Peebles, Roll, & Wilkinson • 1974, NASA AO for Explorers: ~ 150 proposals, including: – JPL anisotropy proposal (Gulkis, Janssen…) – Berkeley anisotropy proposal (Alvarez, Smoot…) – Goddard/MIT/Princeton COBE proposal (Hauser, Mather, Muehlner, Silverberg, Thaddeus, Weiss, Wilkinson) COBE History (2) • 1976, Mission Definition Science Team selected by HQ (Nancy Boggess, Program Scientist); PI’s chosen • ~ 1979, decision to build COBE in-house at GSFC • 1982, approval to construct for flight • 1986, Challenger explosion, start COBE redesign for Delta launch • 1989, Nov.
    [Show full text]
  • Sandra Faber Receives $500,000 Gruber Cosmology Prize
    Media Contact: A. Sarah Hreha +1 (203) 432-6231 [email protected] Online Newsroom: www.gruber.yale.edu/news-media SANDRA FABER RECEIVES $500,000 GRUBER COSMOLOGY PRIZE FOR CAREER ACHIEVEMENTS Sandra Faber May 17, 2017, New Haven, CT – The 2017 Gruber Foundation Cosmology Prize recognizes Sandra M. Faber for a body of work that has helped establish many of the foundational principles underlying the modern understanding of the universe on the largest scales. The citation praises Faber for “her groundbreaking studies of the structure, dynamics, and evolution of galaxies.” That work has led to the widespread acceptance of the need to study dark matter, to an appreciation of the inextricable relationship between the presence of dark matter and the formation of galaxies, and to the recognition that black holes reside at the heart of most large galaxies. She has also made significant contributions to the innovations in telescope technology that have revolutionized modern astronomy. Through these myriad achievements, the Gruber citation adds, Faber has “aided and inspired the work of astronomers and cosmologists worldwide.” Faber will receive the $500,000 award as well as a gold medal at a ceremony this fall. Less than a hundred years ago, astronomers were still debating whether our Milky Way Galaxy was the entirety of the universe or if other galaxies existed beyond our own. Today astronomers estimate the number of galaxies within the visible universe at somewhere between 200 billion and 2 trillion. For more than four decades Faber—now Professor Emerita at the University of California, Santa Cruz, and Astronomer Emerita of the University of California Observatories—has served as a pivotal figure in leading and guiding the exploration of this unimaginably vast virgin scientific territory.
    [Show full text]
  • International Astrostatistics Association
    <IAA> International Astrostatistics Association IAA Newsletter – December 2014 Articles on Astrostatistics December 2014 issue Significance magazine 88 pages: 28 on astrostatistics Significance Magazine is a British published magazine-journal for those who are in the statistics and research community. The magazine, which is typically about fifty pages in length, is published five to six times a year and comes with the membership dues of the American Statistical Association (ASA) and Royal Statistical Society (RSS). The International Statistical Institute (ISI) also makes the magazine available to its membership. Given that the ASA and RSS have a combined membership in excess of 30,000, the magazine is read, at least in part, by a relatively large number of people. The December issue, published on 2 December, is 88 pages, with a special 28 page section on astrostatistics included. The section consists of eleven articles.You may access the articles through the URL: http://onlinelibrary.wiley.com/doi/10.1111/sign.2014.11.issue-5/issuetoc 1 The cover portrays the subject of the initial article on meteor impacts. Each article comes with one or more nicely developed pictures. Tables and Graphics are also displayed. ARTICLES (pp 48-76) Life, the Universe, and Everything, Joseph M Hilbe (Arizona State Univ) 48 Will this century see a devastating meteor strike? Joseph M. Hilbe (Arizona State Univ) & Jamie Riggs (Northwestern Univ) 50 Impact records, Carlo Zapponi (Microsoft-UK) 54 The origin of structure, Benjamin Waldelt (Lagrange Institute, Paris) 56 Making sense of massive unknowns, Rafael de Souza (Eötvös Loránd Univ., Hungary) & Emille Ishida (Max Planck Institute, Garching, Ger) 59 Revealing the invisible, Jessi Cisewski (Carnegie Mellon Univ) 61 How many galaxies in the universe?, Vladimir Surdin (Moscow State Univ, Russia) 64 How do you weight a cluster of galaxies?, Madhura Killedar (Ludwig Maximilians Univ.
    [Show full text]
  • LIGO's Unsung Heroes : Nature News & Comment
    NATURE | NEWS LIGO's unsung heroes Nature highlights just a few of the people who played a crucial part in the discovery of gravitational waves — but didn’t win the Nobel Prize. Davide Castelvecchi 09 October 2017 Corrected: 19 October 2017 Joe McNally/Getty LIGO hunts gravitational waves with the help of two laser interferometers — and hundreds of people. Expand Every October, the announcements of the Nobel Prizes bring with them some controversy. This year’s physics prize — in recognition of the Laser Interferometer Gravitational-Wave Observatory (LIGO) in the United States — was less debated than most. The three winners — Kip Thorne and Barry Barish, both at the California Institute of Technology (Caltech) in Pasadena, and Rainer Weiss at the Massachusetts Institute of Technology (MIT) in Cambridge — had attracted near-universal praise for their roles in the project’s success. But the award has still put into stark relief the difficulty of singling out just a few individuals from the large collaborations of today’s 'Big Science'. The LIGO collaboration uses two giant laser interferometers to listen for deformations in space-time caused by some of the Universe’s most cataclysmic events. Physicists detected their first gravitational waves — interpreted as being produced by the collision of two black holes more than a billion years ago — in September 2015. The resulting paper, published in February 20161, has a mind-boggling 1,004 authors. Some of those are members of the LIGO Laboratory, the Caltech–MIT consortium that manages LIGO’s two interferometers in Louisiana and Washington State. But the list also includes the larger LIGO Scientific Collaboration: researchers from 18 countries, some of which — such as Germany and the United Kingdom — have made crucial contributions to the detectors.
    [Show full text]
  • Anniversary of the Einstein Equations
    TH CELEBRATING THE 100 ANNIVERSARY OF THE MG14 RO ME 12-18 JULY 2015 EINSTEIN EQUATIONS FONO RECUENT DREVETLOEPMEENTNS IN TTHEHORET ICMAL ANAD EXRPERCIMEENTALL G EGNERRAL ROELATSIVSITYM, ASTRAOPHYNSICS,N AND REMLATIVEISTEIC FTIELID TNHEORG IES LOCAL ORGANIZING COMMITTEE INTERNATIONAL COORDINATING COMMITTEE Amati L., Angelantonj C., Barbiellini G., Bassan B., Battistelli E., Belinski V., Belli P., • ALBANIA : Hafizi M. • ESTONIA : Einasto J., Saar E. • FINLAND : Volovik G. • POLAND : Demianski M., Lewandowski J., Nurowski P., Benedetti R., Bernabei R., Bianchi M. (chair), Bianco C., Bini D., Buchert T., Burgio F., • ARGENTINA : Ghezzi, C.R., Mirabel F., Romero G.E. • FRANCE : Brillet A., Buchert T., Chardonnet P., Coullet P., Sokolowski L. Capozziello S., Chakrabarti S., Chardonnet P., Dall’Agata G., De Angelis A., De Bernardis P., • ARMENIA : Aharonian F., Harutyunian H., Sahakyan N. de Freitas Pacheco J.A., Deruelle N., Iliopoulos J., Mignard F. • PORTUGAL : Costa M., Moniz P., Pizarro de Sande e Lemos J., Della Valle M., Di Virgilio A., Fiorini E., Frasca S., Fré P., Frontera F., Giavalisco M., • AUSTRALIA : Ju L., Lun A., Manchester D., Melatos A., • GEORGIA : Lavrelashvili G. Silva L.O. • ROMANIA : Visinescu M. Giommi P., Gionti G., Ingrosso G., Jantzen R., Jetzer P., Lee H.W., Lerda A., Liberati S., Quinn P., Scott S.M., Steele J.D. • GERMANY : Biermann P., Blumlein J., Di Piazza A., Fritzsch • RUSSIA : Aksenov A., Arkhangelskaja I., Bisnovatyi Kogan Longo R., Mandolesi N., Marmo G., Masi S., Menotti P., Morselli A., Pelster A., • AUSTRIA : Aichelburg P.C., Schindler S. H., Genzel R., Gilmozzi R., Hehl F., Keitel C., Kiefer C., G., Blinnikov S., Chechetikin V.M., Cherepaschuk A.M., Piacentini F., Pian E., Quevedo H., Riccioni F., Rosati R., Scarpetta E.V., • BELARUS : Kilin S., Minkevich A.V.
    [Show full text]
  • Finding the Radiation from the Big Bang
    Finding The Radiation from the Big Bang P. J. E. Peebles and R. B. Partridge January 9, 2007 4. Preface 6. Chapter 1. Introduction 13. Chapter 2. A guide to cosmology 14. The expanding universe 19. The thermal cosmic microwave background radiation 21. What is the universe made of? 26. Chapter 3. Origins of the Cosmology of 1960 27. Nucleosynthesis in a hot big bang 32. Nucleosynthesis in alternative cosmologies 36. Thermal radiation from a bouncing universe 37. Detecting the cosmic microwave background radiation 44. Cosmology in 1960 52. Chapter 4. Cosmology in the 1960s 53. David Hogg: Early Low-Noise and Related Studies at Bell Lab- oratories, Holmdel, N.J. 57. Nick Woolf: Conversations with Dicke 59. George Field: Cyanogen and the CMBR 62. Pat Thaddeus 63. Don Osterbrock: The Helium Content of the Universe 70. Igor Novikov: Cosmology in the Soviet Union in the 1960s 78. Andrei Doroshkevich: Cosmology in the Sixties 1 80. Rashid Sunyaev 81. Arno Penzias: Encountering Cosmology 95. Bob Wilson: Two Astronomical Discoveries 114. Bernard F. Burke: Radio astronomy from first contacts to the CMBR 122. Kenneth C. Turner: Spreading the Word — or How the News Went From Princeton to Holmdel 123. Jim Peebles: How I Learned Physical Cosmology 136. David T. Wilkinson: Measuring the Cosmic Microwave Back- ground Radiation 144. Peter Roll: Recollections of the Second Measurement of the CMBR at Princeton University in 1965 153. Bob Wagoner: An Initial Impact of the CMBR on Nucleosyn- thesis in Big and Little Bangs 157. Martin Rees: Advances in Cosmology and Relativistic Astro- physics 163.
    [Show full text]
  • A Brief History of Gravitational Waves
    Review A Brief History of Gravitational Waves Jorge L. Cervantes-Cota 1, Salvador Galindo-Uribarri 1 and George F. Smoot 2,3,4,* 1 Department of Physics, National Institute for Nuclear Research, Km 36.5 Carretera Mexico-Toluca, Ocoyoacac, Mexico State C.P.52750, Mexico; [email protected] (J.L.C.-C.); [email protected] (S.G.-U.) 2 Helmut and Ana Pao Sohmen Professor at Large, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, 999077 Kowloon, Hong Kong, China. 3 Université Sorbonne Paris Cité, Laboratoire APC-PCCP, Université Paris Diderot, 10 rue Alice Domon et Leonie Duquet 75205 Paris Cedex 13, France. 4 Department of Physics and LBNL, University of California; MS Bldg 50-5505 LBNL, 1 Cyclotron Road Berkeley, CA 94720, USA. * Correspondence: [email protected]; Tel.:+1-510-486-5505 Abstract: This review describes the discovery of gravitational waves. We recount the journey of predicting and finding those waves, since its beginning in the early twentieth century, their prediction by Einstein in 1916, theoretical and experimental blunders, efforts towards their detection, and finally the subsequent successful discovery. Keywords: gravitational waves; General Relativity; LIGO; Einstein; strong-field gravity; binary black holes 1. Introduction Einstein’s General Theory of Relativity, published in November 1915, led to the prediction of the existence of gravitational waves that would be so faint and their interaction with matter so weak that Einstein himself wondered if they could ever be discovered. Even if they were detectable, Einstein also wondered if they would ever be useful enough for use in science.
    [Show full text]
  • Brinson Mather 2011.Pptx
    From the Big Bang to the Nobel Prize and on to James Webb Space Telescope and the Discovery of Alien Life John C. Mather Senior Project Scientist, James Webb Space Telescope, NASA’s Goddard Space Flight Center Nov. 1, 2011 Nov. 1, 2011 Mather Brinson 2011 1 (as of 1985) 2 Nov. 1, 2011 Mather Brinson 2011 Can you imagine? Your chin is made of exploded stars! Nov. 1, 2011 Mather Brinson 2011 3 Looking Back in Time Nov. 1, 2011 Mather Brinson 2011 4 Measuring Distance This technique enables measurement of enormous distances Nov. 1, 2011 Mather Brinson 2011 5 Astronomer's Toolbox #2: Doppler Shift - Light Atoms emit light at discrete wavelengths that can be seen with a spectroscope This “line spectrum” identifies the atom and its velocity Nov. 1, 2011 Mather Brinson 2011 6 Hubble’s Law – 1929 Data Discovered by Lemaître, 1927! Speed proportional to distance Age = distance/speed Speed --> Nov. 1, 2011 Mather Brinson 2011 Distance --> 7 The Power of Thought Alexander Friedman Georges Lemaître & Albert Einstein George Gamow Robert Herman & Ralph Alpher Rashid Sunyaev Jim Peebles Nov. 1, 2011 Mather Brinson 2011 8 Nov. 1, 2011 Mather Brinson 2011 9 Big Bang - Cosmic Explosion 13.7 billion years ago IMPOSSIBLE TO DRAW A PICTURE! Nov. 1, 2011 Mather Brinson 2011 10 How did a smooth Big Bang make complicated things like us? • Gravity is long range attractive force – Matter distribution is unstable • Remove heat, and system heats up more • Makes condensed objects (stars, galaxies, etc.) • Gravitational energy flows support complexity • Stars release heat from nuclear reactions – Heat & light received by Earth support complexity, from weather to photosynthesis Nov.
    [Show full text]
  • Faculty and Members 2015–2016
    INSTITUTE FOR ADVANCED STUDY EINSTEIN DRIVE PRINCETON, NEW JERSEY 08540 Faculty and Members (609) 734-8000 www.ias.edu 2015–2016 It is fundamental in our purpose, and our express desire, that in the appointments to the staff and faculty as well as in the admission of workers and students, no account shall be taken, directly or indirectly, of race, religion, or sex. We feel strongly that the spirit characteristic of America at its noblest, above all the pursuit of higher learning, cannot admit of any conditions as to personnel other than those designed to promote the objects for which this institution is established, and particularly with no regard whatever to accidents of race, creed, or sex. —Louis Bamberger and Caroline Bamberger Fuld, in a letter dated June 4, 1930, to the Institute’s first Board of Trustees Cover: Members working in the Historical Studies–Social Science Library Photo: Amy Ramsey Opposite page: South Lawn, Fuld Hall Photo: Dan King Contents Introduction 2 School of Historical Studies 4 School of Mathematics 22 School of Natural Sciences 44 School of Social Science 60 Program in Interdisciplinary Studies 68 Director’s Visitors 71 Artist-in-Residence Program 72 73 Founders, Trustees, and Officers of the Board and of the Corporation 75 Administration 77 Past Directors and Faculty 78 Index Information contained herein is current as of September 21, 2015. 1 Introduction FROM THE DEVELOPMENT of programmable computers and the uncovering of the deep symmetries of nature to advances in societal understanding and historical practice, long and complex chains of knowledge have developed in numerous and astounding ways through research originating at the Institute for Advanced Study for eighty-five years.
    [Show full text]
  • A Brief History of Gravitational Waves
    universe Review A Brief History of Gravitational Waves Jorge L. Cervantes-Cota 1, Salvador Galindo-Uribarri 1 and George F. Smoot 2,3,4,* 1 Department of Physics, National Institute for Nuclear Research, Km 36.5 Carretera Mexico-Toluca, Ocoyoacac, C.P. 52750 Mexico, Mexico; [email protected] (J.L.C.-C.); [email protected] (S.G.-U.) 2 Helmut and Ana Pao Sohmen Professor at Large, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong, China 3 Université Sorbonne Paris Cité, Laboratoire APC-PCCP, Université Paris Diderot, 10 rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13, France 4 Department of Physics and LBNL, University of California; MS Bldg 50-5505 LBNL, 1 Cyclotron Road Berkeley, 94720 CA, USA * Correspondence: [email protected]; Tel.:+1-510-486-5505 Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 21 July 2016; Accepted: 2 September 2016; Published: 13 September 2016 Abstract: This review describes the discovery of gravitational waves. We recount the journey of predicting and finding those waves, since its beginning in the early twentieth century, their prediction by Einstein in 1916, theoretical and experimental blunders, efforts towards their detection, and finally the subsequent successful discovery. Keywords: gravitational waves; General Relativity; LIGO; Einstein; strong-field gravity; binary black holes 1. Introduction Einstein’s General Theory of Relativity, published in November 1915, led to the prediction of the existence of gravitational waves that would be so faint and their interaction with matter so weak that Einstein himself wondered if they could ever be discovered.
    [Show full text]
  • Heinz Billing
    Heinz Billing Born April 7, 1914, Salzwedel, Germany; an inventor1, of magnetic drum storage and built the first working electronic computer in Germany; searched for gravity waves and became unsurpassed in not finding them. Education: doctoral degree, University of Göttingen, 1938. Professional Experience: Aerodynamic Test Centre, Göttingen (Aerodynamische Versuchsanstalt, AVA) 1938-1946; German Air Force, 1938-1941; Institute für Instrumentenkunde (Institute for Scientific Instruments), Kaiser-Wilhelm-Gesellschaft (later Max-Planck- Gesellschaft), 1946-1949, and again in 1950-1972; Commonwealth Scientific and Industrial Organization, Sydney, Australia, 1949-1950; Max Planck Institute, Garching, Germany, 1972-1982. Honors and Awards: honorary professorship in computing, Erlangen University, 1967; Konrad Zuse Prize, 1987. Heinz Billing was born on April 7, 1914 in Salzwedel, a small town some 30 miles north of Wolfsburg, where Volkswagen automobiles are made. He went to school at Salzwedel, graduated from high school (“Abitur”-examination) at 18 and, after studies at Göttingen (a famous university town south of Hanover) and Munich, he received his doctorate in physics at the age of 24. His thesis under Walter Gerlach was on Light Interference with Canal Rays. He began his career June 1, 1938, at the Aerodynamic Test Centre at Göttingen (Aerodynamische Versuchsanstalt, AVA) connected with Ludwig Prandt], the famous director of the Kaiser- Wilhelm-Institut für Strömungsforschung (fluid mechanics). By October 1, 1938, he was drafted to the Air Force, where he worked in weather forecasting. He was released from these duties in May 1941 to do research in aeronautical acoustics. Magnetic Sound Recording In those days German engineering was well known for excellent results with magnetic sound recording, first on steel wire and then on tape.
    [Show full text]