Anolis Cristatellus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Testing Sustainable Forestry Methods in Puerto Rico
Herpetology Notes, volume 8: 141-148 (2015) (published online on 10 April 2015) Testing sustainable forestry methods in Puerto Rico: Does the presence of the introduced timber tree Blue Mahoe, Talipariti elatum, affect the abundance of Anolis gundlachi? Norman Greenhawk Abstract. The island of Puerto Rico has one of the highest rates of regrowth of secondary forests largely due to abandonment of previously agricultural land. The study was aimed at determining the impact of the presence of Talipariti elatum, a timber species planted for forest enrichment, on the abundance of anoles at Las Casas de la Selva, a sustainable forestry project located in Patillas, Puerto Rico. The trees planted around 25 years ago are fast-growing and now dominate canopies where they were planted. Two areas, a control area of second-growth forest without T. elatum and an area within the T. elatum plantation, were surveyed over an 18 month period. The null hypothesis that anole abundance within the study areas is independent of the presence of T. elatum could not be rejected. The findings of this study may have implications when designing forest management practices where maintaining biodiversity is a goal. Keywords. Anolis gundlachi, Anolis stratulus, Puerto Rican herpetofauna, introduced species, forestry Introduction The secondary growth forest represents a significant resource base for the people of Puerto Rico, and, if At the time of Spanish colonization in 1508, nearly managed properly, an increase in suitable habitat one hundred percent of Puerto Rico was covered in for forest-dwelling herpetofauna. Depending on the forest (Wadsworth, 1950). As a result of forest clearing management methods used, human-altered agro- for agricultural and pastureland, ship building, and fuel forestry plantations have potential conservation wood, approximately one percent of the land surface value (Wunderle, 1999). -
Phylogeny, Ecomorphological Evolution, and Historical Biogeography of the Anolis Cristatellus Series
Uerpetological Monographs, 18, 2004, 90-126 © 2004 by The Herpetologists' League, Inc. PHYLOGENY, ECOMORPHOLOGICAL EVOLUTION, AND HISTORICAL BIOGEOGRAPHY OF THE ANOLIS CRISTATELLUS SERIES MATTHEW C. BRANDLEY^''^'"' AND KEVIN DE QUEIROZ^ ^Sam Noble Oklahoma Museum of Natural History and Department of Zoology, The University of Oklahoma, Norman, OK 73072, USA ^Department of Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20,560, USA ABSTRACT: TO determine the evolutionary relationships within the Anolis cristatellus series, we employed phylogenetic analyses of previously published karyotype and allozyme data as well as newly collected morphological data and mitochondrial DNA sequences (fragments of the 12S RNA and cytochrome b genes). The relationships inferred from continuous maximum likelihood reanalyses of allozyme data were largely poorly supported. A similar analysis of the morphological data gave strong to moderate support for sister relationships of the two included distichoid species, the two trunk-crown species, the grass-bush species A. poncensis and A. pulchellus, and a clade of trunk-ground and grass-bush species. The results of maximum likelihood and Bayesian analyses of the 12S, cyt b, and combined mtDNA data sets were largely congruent, but nonetheless exhibit some differences both with one another and with those based on the morphological data. We therefore took advantage of the additive properties of likelihoods to compare alternative phylogenetic trees and determined that the tree inferred from the combined 12S and cyt b data is also the best estimate of the phylogeny for the morphological and mtDNA data sets considered together. We also performed mixed-model Bayesian analyses of the combined morphology and mtDNA data; the resultant tree was topologically identical to the combined mtDNA tree with generally high nodal support. -
In the Face of Accelerating Habitat Loss and an Increasing Human
ABSTRACT Borkhataria, Rena Rebecca. Ecological and Political Implications of Conversion from Shade to Sun Coffee in Puerto Rico. (Under the direction of Jaime Collazo.) Recent studies have shown that biodiversity is greater in shaded plantations than in sun coffee plantations, yet many farmers are converting to sun coffee varieties to increase short-term yields or to gain access to economic incentives. Through conversion, ecosystem complexity may be reduced and ecological services rendered by inhabitants may be lost. I attempted to quantify differences in abundances and diversity of predators in sun and shade coffee plantations in Puerto Rico and to gain insight into the ecological services they might provide. I also interviewed coffee farmers to determine the factors influencing conversion to sun coffee in Puerto Rico and to examine their attitudes toward the conservation of wildlife. Avian abundances were significantly higher in shaded coffee than in sun (p = 0.01) as were the number of species (p = 0.09). Avian species that were significantly more abundant in shaded coffee tended to be insectivorous, whereas those in sun coffee were granivorous. Lizard abundances (all species combined) did not differ significantly between plantations types, but Anolis stratulus was more abundant in sun plantations and A. gundlachi and A. evermanni were present only in shaded plantations. Insect abundances (all species combined) were significantly higher in shaded coffee (p = 0.02). I used exclosures in a shaded coffee plantation to examine the effects of vertebrate predators on the arthropods associated with coffee, in particular the coffee leaf miner (Leucoptera coffeela) and the flatid planthopper Petrusa epilepsis, in a shaded coffee plantation in Puerto Rico. -
Guide to Theecological Systemsof Puerto Rico
United States Department of Agriculture Guide to the Forest Service Ecological Systems International Institute of Tropical Forestry of Puerto Rico General Technical Report IITF-GTR-35 June 2009 Gary L. Miller and Ariel E. Lugo The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and national grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable sex, marital status, familial status, parental status, religion, sexual orientation genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD).To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W. Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Authors Gary L. Miller is a professor, University of North Carolina, Environmental Studies, One University Heights, Asheville, NC 28804-3299. -
Evolutionary Relationships and Historical Biogeography of Anolis
Journal of Biogeography (J. Biogeogr.) (2007) 34, 1546–1558 ORIGINAL Evolutionary relationships and historical ARTICLE biogeography of Anolis desechensis and Anolis monensis, two lizards endemic to small islands in the eastern Caribbean Sea Javier A. Rodrı´guez-Robles1*, Tereza Jezkova1 and Miguel A. Garcı´a2 1School of Life Sciences, University of Nevada, ABSTRACT Las Vegas, NV 89154-4004, USA, 2Division of Aim We investigated the evolutionary relationships and historical biogeography Wildlife, Department of Natural and Environmental Resources, PO Box 366147, San of two lizard species (Anolis desechensis and Anolis monensis) endemic to small Juan, Puerto Rico 00936-6147, USA oceanic islands in the eastern Caribbean Sea. Location Desecheo, Mona and Monito Islands, in the Mona Passage, and Puerto Rico, eastern Caribbean Sea. Methods We reconstructed the phylogenetic relationships of A. desechensis and A. monensis from DNA sequences of two mitochondrial genes using maximum likelihood, Bayesian inference and maximum parsimony methods. The ingroup included species from Puerto Rico (Anolis cooki, Anolis cristatellus), the Bahamas (Anolis scriptus), and the British Virgin Islands (Anolis ernestwilliamsi). We also constructed a median-joining mutational network to visualize relationships among the haplotypes of A. cooki and A. monensis from Mona and Monito Islands. Results The three phylogenetic methods suggested the same pattern of relationships. Anolis desechensis nests within A. cristatellus, and is most closely related to A. cristatellus from south-western Puerto Rico. Our analyses also indicated that A. monensis is the sister species of A. cooki, an anole restricted to the south-western coast of Puerto Rico. Although they are closely related, the populations of A. -
Referencias Sobre Estudios En El Karso De Puerto Ricorico
Referencias sobre estudios en el karso de Puerto RicoRico Abruña, F., M.A. Lugo López, y R. Pérez Escobar. 1977. Los suelos de Puerto Rico. En Geovisión de Puerto Rico . M.T.B. de Galiñanes, ed. Río Piedras, PR: Editorial Universitaria. 120-157 p. Acevedo Rodríguez,P. y F.S. Axelrod. 1999. Annotated checklist for the tracheophytes of Río Abajo forest reserve, Puerto Rico. Caribbean Journal of Science . 35:265-285. Acevido, G. 1982. Soil survey of Arecibo area of northern Puerto Rico. Washington, DC: USDA Soil Conservation Service. 169 p. +maps. Aguayo, C.G. 1966. Una lista de los moluscos terrestres y fluviales de Puerto Rico. Stahlia . 5:1-17. Allen, J.A. 1916. An extinct Octodont from the island of Porto Rico, West Indies. Annals of the New York Academy of Sciences . 27:17-22. Alvarez, M., P. Acevedo Rodríguez, y M. Vázquez Otero. 1983. Quantitative description of the structure and diversity of the vegetation in the limestone forest of Río Abajo Forest. Progress Report, Project W- 10. San Juan, PR: Puerto Rico Department of Natural Resources. Alvarez Ruiz, M., P. Acevedo Rodríguez, y M. Vázquez. 1997. Quantitative description of the structure and diversity of the vegetation in the limestone forest of Río Abajo, Arecibo-Utuado, Puerto Rico. Acta Científica . 11:21-66. American Ornithologist’s Union. 1976. Report of the committee on conservation. Auk . 93(4, suplemento): 1DD-19DD. Anthony, H.E. 1916a. Preliminary diagnosis of an apparently new family of insectivores. Bulletin American Museum Natural History . 35:725-728. Anthony, H.E. 1916b. Preliminary report of fossil mammals from Porto Rico, with descriptions of a new genus of Hystricomorph rodents. -
It Is Time for a New Classification of Anoles (Squamata: Dactyloidae)
Zootaxa 3477: 1–108 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Monograph ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:32126D3A-04BC-4AAC-89C5-F407AE28021C ZOOTAXA 3477 It is time for a new classification of anoles (Squamata: Dactyloidae) KIRSTEN E. NICHOLSON1, BRIAN I. CROTHER2, CRAIG GUYER3 & JAY M. SAVAGE4 1Department of Biology, Central Michigan University, Mt. Pleasant, MI 48859, USA. E-mail: [email protected] 2Department of Biology, Southeastern Louisiana University, Hammond, LA 70402, USA. E-mail: [email protected] 3Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA. E-mail: [email protected] 4Department of Biology, San Diego State University, San Diego, CA 92182, USA. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by S. Carranza: 17 May 2012; published: 11 Sept. 2012 KIRSTEN E. NICHOLSON, BRIAN I. CROTHER, CRAIG GUYER & JAY M. SAVAGE It is time for a new classification of anoles (Squamata: Dactyloidae) (Zootaxa 3477) 108 pp.; 30 cm. 11 Sept. 2012 ISBN 978-1-77557-010-3 (paperback) ISBN 978-1-77557-011-0 (Online edition) FIRST PUBLISHED IN 2012 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2012 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. -
Poor Performance Does Not Deter Anolis Lizards from Using Artificial Substrates in Human‐Modified Ah Bitats Jason J
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@URI University of Rhode Island DigitalCommons@URI Biological Sciences Faculty Publications Biological Sciences 2015 City slickers: poor performance does not deter Anolis lizards from using artificial substrates in human‐modified ah bitats Jason J. Kolbe University of Rhode Island, [email protected] Andrew C. Battles University of Rhode Island See next page for additional authors Follow this and additional works at: https://digitalcommons.uri.edu/bio_facpubs The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits oy u. This is a pre-publication author manuscript of the final, published article. Terms of Use This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use. Citation/Publisher Attribution Kolbe, J. J., Battles, A. C. and Avilés‐Rodríguez, K. J. (2016), City slickers: poor performance does not deter Anolis lizards from using artificial substrates in human‐modified habitats. Funct Ecol, 30: 1418-1429. doi: 10.1111/1365-2435.12607 Available at: https://doi.org/10.1111/1365-2435.12607 This Article is brought to you for free and open access by the Biological Sciences at DigitalCommons@URI. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. -
Cfreptiles & Amphibians
WWW.IRCF.ORG/REPTILESANDAMPHIBIANSJOURNALTABLE OF CONTENTS IRCF REPTILES & IRCFAMPHIBIANS REPTILES • VOL 15,& NAMPHIBIANSO 4 • DEC 2008 •189 27(1):105–106 • APR 2020 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS FEATURE ARTICLES Envenomation. Chasing Bullsnakes (Pituophis catenifer sayi ) ofin Wisconsin: a Puerto Rican Whiptail On the Road to Understanding the Ecology and Conservation of the Midwest’s Giant Serpent ...................... Joshua M. Kapfer 190 (Pholidoscelis. The Shared History of Treeboas exsul (Corallus grenadensis: )Teiidae) and Humans on Grenada: by a Puerto Rican A Hypothetical Excursion ............................................................................................................................Robert W. Henderson 198 RacerRESEARCH (Borikenophis ARTICLES portoricensis: Dipsadidae) . The Texas Horned Lizard in Central and Western Texas ....................... Emily Henry, Jason Brewer, Krista Mougey, and Gad Perry 204 . The Knight Anole (Anolis equestris) in Florida .............................................in SouthernBrian J. Camposano, Kenneth L. Krysko, Puerto Kevin M. Enge, Ellen M. Donlan,Rico and Michael Granatosky 212 CONSERVATION ALERT Alejandro J. Sánchez Muñoz . World’s Mammals in Crisis ............................................................................................................................................................. 220 . More Than Mammals36 ...............................................................................................................................Calle -
REPTILIA: SQUAMATA: DACTYLOIDAE Anolis Gingivinus
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UT Digital Repository 893.1 REPTILIA: SQUAMATA: DACTYLOIDAE Anolis gingivinus Catalogue of American Amphibians and Reptiles. Powell, R. and A.M. Bauer. 2012. Anolis gingivinus . Anolis gingivinus Cope Anguilla Bank Tree Anole Anolis gingivinus Cope 1864:170. Type-locality, “Anguilla Rock near Trinidad” (see Cope 1871), restricted by Lazell (1972) to Sandy Ground, Anguilla. Syntypes, British Museum of Natural History [now The Natural History Museum, London] (BMNH) 1946.8.29.15–20, BMNH 1946.8.29.15, an adult male, was designated the lectotype by Lazell (1980), the series was “pre - sented by W.J. Cooper to the British Museum” (not examined by authors). See Remarks . Anolis virgatus Garman 1887:41. Type-locality, “St.- Barthélémy.” Syntypes, Academy of Natural Sciences of Philadelphia (ANSP) 23007 (adult female), National Museum of Natural History (USNM) 39300 (an adult male), University of FIGURE 1. Adult male (top) and female Anolis gingivinus Michigan Museum of Zoology (UMMZ) 60243 from St. Martin (photographs by John S. Parmerlee, Jr.). (an adult male and a subadult), Museum of Comparative Zoology (MCZ) 6165 (MCZ-R- 171265–72, including at least one adult male), Barthélémy (Schwartz and Henderson 1991). An collected in 1884 by F. Lagois (not examined by introduced population of A. bimaculatus was reported authors). from St. Maarten by Powell et al. (1992), but that pop - Anolis krugi gingivinus : Barbour 1937:121. ulation is no longer extant (Powell et al. 2011). Anolis Anolis bimaculatus gingivinus : Underwood 1959:196. carolinensis was recently introduced to Anguilla Ctenonotus gingivinus : Schwartz and Henderson (Eaton et al. -
Phenotypic Shifts in Urban Areas in the Tropical Lizard <I>Anolis Cristatellus
ORIGINAL ARTICLE doi:10.1111/evo.12925 Phenotypic shifts in urban areas in the tropical lizard Anolis cristatellus Kristin M. Winchell,1,2 R. Graham Reynolds,3 Sofia R. Prado-Irwin,4 Alberto R. Puente-Rolon,´ 5 and Liam J. Revell1 1Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125 2E-mail: [email protected] 3Department of Biology, University of North Carolina Asheville, Asheville, North Carolina 28804 4Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138 5Departamento de Ciencias y Tecnologıa,´ Universidad Interamericana de Puerto Rico, Recinto Arecibo, Arecibo, Puerto Rico 00614 Received March 19, 2014 Accepted April 1, 2016 Urbanization is an increasingly important dimension of global change, and urban areas likely impose significant natural selection on the species that reside within them. Although many species of plants and animals can survive in urban areas, so far relatively little research has investigated whether such populations have adapted (in an evolutionary sense) to their newfound milieu. Even less of this work has taken place in tropical regions, many of which have experienced dramatic growth and intensification of urbanization in recent decades. In the present study, we focus on the neotropical lizard, Anolis cristatellus. We tested whether lizard ecology and morphology differ between urban and natural areas in three of the most populous municipalities on the island of Puerto Rico. We found that environmental conditions including temperature, humidity, and substrate availability differ dramatically between neighboring urban and natural areas. We also found that lizards in urban areas use artificial substrates a large proportion of the time, and that these substrates tend to be broader than substrates in natural forest. -
Use of Sleeping Perches by the Lizard Anolis Uniformis (Squamata: Polychrotidae) in the Fragmented Tropical Rainforest at Los Tuxtlas, Mexico
Revista Mexicana de Biodiversidad 81: 921- 924, 2010 Research note Use of sleeping perches by the lizard Anolis uniformis (Squamata: Polychrotidae) in the fragmented tropical rainforest at Los Tuxtlas, Mexico Uso de perchas para dormir por la lagartija Anolis uniformis (Squamata: Polychrotidae) en el bosque tropical fragmentado de Los Tuxtlas, México Elisa Cabrera-Guzmán1,2* and Víctor Hugo Reynoso1 1Colección Nacional de Anfibios y Reptiles, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México. Circuito exterior, Ciudad Universitaria, 04510 México, D.F., México. 2School of Biological Sciences, The University of Sydney. Tropical Ecology Research Facility, Middle Point, Northern Territory 0836, Australia. *Correspondent: [email protected] Abstract. The use of nocturnal perches by the lizard Anolis uniformis is described. Bimonthly surveys were made throughout a year in small fragments and continuous tropical rainforest areas at Los Tuxtlas, Mexico. Twenty three juvenile individuals and 7 adults were recorded sleeping during the sampling time (18:00 - 23:00 h.). All individuals were found on leaves of plants of 14 species. Perch height ranged from 41.0 to 140.5 cm (mean: 90.1 cm juveniles; 80.6 cm adults) and the most frequent sleeping position observed was with the body oriented along the longitudinal axis of the leaf and the head facing the stem of the plant. This apparently vulnerable position can permit the perception of external stimuli such as proximity of predators; although, eco-physiological factors may also influence selection of sleeping perch sites. Key words: perch, nocturnal, Anolis uniformis, Los Tuxtlas, to sleep, leaves, plants. Resumen. Se describe el uso de perchas nocturnas por parte de la lagartija Anolis uniformis.