Large-Scale Gravity Sliding in the Miocene Shadow Valley Supradetachment Basin, Eastern Mojave Desert, California

Total Page:16

File Type:pdf, Size:1020Kb

Large-Scale Gravity Sliding in the Miocene Shadow Valley Supradetachment Basin, Eastern Mojave Desert, California Earth-Science Reviews 73 (2005) 149–176 www.elsevier.com/locate/earscirev Large-scale gravity sliding in the Miocene Shadow Valley Supradetachment Basin, Eastern Mojave Desert, California G.A. Davis a,*, S.J. Friedmann b a Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740, USA b Energy and Environmental Directorate, MC L-640, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA Accepted 1 April 2005 Abstract The Miocene Shadow Valley basin in the eastern Mojave Desert of California developed above the active west-dipping Kingston Range-Halloran Hills extensional detachment fault system between 13.5 and ca. 7 mybp. Although mass-wasting processes are common phenomena in supradetachment basins, the Shadow Valley basin is an exceptional locale for the study of such processes, especially rock-avalanches and gravity sliding. A score of megabreccias, interpreted as rock-avalanche deposits, and half that number of very large (N1km2, up to 200 m thick), internally intact gravity-driven slide sheets are interbedded with various sedimentary facies. The slide sheets, variably composed of Proterozoic crystalline rocks and Proterozoic, Paleozoic, and Tertiary sedimentary strata, moved across both depositional and erosional surfaces in the basin. Although the majority consist of Paleozoic carbonate rocks, the largest slide sheet, the Eastern Star crystalline allochthon, contains Proterozoic gneisses and their sedimentary cover and is now preserved as klippen atop Miocene lacustrine and alluvial fan deposits over an area N40 km2. Estimates of slide sheet runouts into the basin from higher eastern and northern source terranes range from approximately a few km to N10 km; in most cases the exact provenances of the slide blocks are not known. The basal contacts of Shadow Valley slide sheets are characteristically knife sharp, show few signs of lithologic mixing of upper- and lower-plate rocks, and locally exhibit slickensided and striated, planar fault-like bases. Pronounced folding of overridden Miocene lacustrine and fan deposits beneath the Eastern Star allochthon extends to depths up to 40 m at widely scattered localities. We conclude that this slow moving slide sheet encountered isolated topographic asperities (hills) and that stress transfer across the basal slide surface produced folding of footwall strata. Synkinematic gypsum veins in footwall playa sediments, with fibers up to 12 cm long, have trends and shear senses compatible with the direction and sense of displacement of the overriding crystalline allochthon. The undisturbed veins, which closely parallel the base of the slide sheet, attest to high fluid presence and pressure in the playa sediments—factors facilitating allochthon movement across them. The long length of the fibers, indicative of a protracted dilational process, is incompatible with a catastrophic rate of emplacement. We believe that the only explanation for slow displacement of this allochthon and other gravity driven slide sheets across the landscape is that they formed as slumps on high, steep bedrock slopes and that their elevated heads drove their toes across lower fan and playa deposits. Initial detachments from bedrock sources were facilitated by pre-existing structural and stratigraphic anisotropies. * Corresponding author. Tel.: +1 213 740 6726; fax: +1 213 740 8801. E-mail address: [email protected] (G.A. Davis). 0012-8252/$ - see front matter D 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.earscirev.2005.04.008 150 G.A. Davis, S.J. Friedmann / Earth-Science Reviews 73 (2005) 149–176 Detachment of the Eastern Star allochthon from the bedrock of Shadow Mountain likely occurred by inversion along the playa- ward dip of a preexisting Mesozoic thrust fault within Proterozoic rock units. D 2005 Elsevier B.V. All rights reserved. Keywords: slide blocks; gravity tectonics; Shadow Valley; Kingston Wash; Mojave Desert 1. Introduction the corrugated geometry of the detachment fault and its breakaway zone, the emplacement of the shallow- The Miocene Shadow Valley basin lies within the seated Kingston Range pluton across the detachment southern portion of the Mesozoic foreland fold and in northern parts of the early Shadow Valley basin thrust belt in the easternmost Mojave Desert, Califor- (Davis et al., 1993), contemporaneous normal faulting nia (Fig. 1; Burchfiel and Davis, 1971, 1988). The of the allochthonous basin fill, and late stage folding basin formed above the active Kingston Range-Hal- associated with sinistral strike-slip faulting beneath loran Hills extensional detachment fault between 13.5 both Kingston Wash (Davis and Burchfiel, 1993) and ca. 7 mybp, during which time it was being and the Kingston Spring area. displaced and internally extended above the shallow- Four unconformity-bounded informal members dipping fault (Fig. 2; Davis et al., 1993; Friedmann et referred to as Member I, II, etc., by Friedmann al., 1994, 1996; Fowler et al., 1995; Friedmann, (1999) constitute its 2.5–3.5 km-thick fill (Figs. 2 1999). Sedimentation patterns in the basin were influ- and 3). Volcanic activity, primarily andesitic to rhyo- enced by a number of tectonic factors, among them litic, was concentrated in Members I and II from ca. Fig. 1. Location map of Kingston Range-Halloran Hills detachment fault, eastern San Bernardino County, California. G.A. Davis, S.J. Friedmann / Earth-Science Reviews 73 (2005) 149–176 151 13 to 11 Ma (Friedmann, 1999) Megabreccias occur range in present areal extent from approximately 0.5 to in Members I, II, and IV, and slide blocks occur in all N40 km2 and include Proterozoic crystalline rocks and four members, but most importantly in Members II Proterozoic, Paleozoic, and Tertiary strata. Some Sha- and III. Collectively, megabreccias and slide blocks dow Valley slide blocks (e.g. Francis, 1109, central and constitute 10–15% of the Shadow Valley basin fill, but southern Eastern Star, Valley Wells) moved into active mass-wasting processes account for 30–50% of the depositional environments, but others (e.g. northern total fill when lahars and debris flow conglomerates Eastern Star, Valjean, Carrara-Bonanza King) were are included. Most of the mass-wasting events in emplaced on erosional surfaces developed across pre- Shadow Valley probably occurred during semi-arid viously tilted and faulted basin units. Estimates of or arid conditions. The presence of relatively deep minimum block run-out from their source terranes perennial lakes between 12 and 11 Ma suggest a range from a few kilometers to N15 km, although in semi-arid to moderate climate, although an arid cli- most cases the exact provenances of the slide blocks mate has not been ruled out. Gypsiferous playa depos- are not known. its between 11 and 10 Ma indicate that Shadow Valley Throughout the western United States, many was arid or semi-arid during that time (Friedmann, internally intact slide blocks were originally mapped 1999). as thin thrust sheets. Lasky and Webber (1949), for Although mass-wasting processes are characteristic example, described the Artillery Mountains thrust phenomena in supradetachment basins (e.g. Yarnold, plate in western Arizona as a Laramide structure. In 1993; Yin and Dunn, 1992; Forshee and Yin, 1995; reality it is a slide block of Proterozoic gneiss encased Friedmann et al., 1994; Friedmann and Burbank, 1995; in a Miocene fanglomerate sequence above the Whip- Friedmann, 1997, 1999), the Shadow Valley basin is ple-Rawhide detachment fault (Eric Frost, personal an exceptional locale for the study of such processes, communication, 1985). Hewett (1955, 1956) first especially rock-avalanches and gravity sliding. A described the slide sheets of Precambrian rocks in score of megabreccias, interpreted as rock-avalanche the Shadow Mountains area, but interpreted them as deposits, and half that number of very large sheets of thrust-fault klippen of Tertiary age, an interpretation structurally intact rock (N1km2, up to 200 m thick), challenged by Burchfiel and Davis (1971). There are interpreted as gravity-driven slide (=glide) blocks, several reasons for such structural misinterpretations. crop out in transverse and longitudinal cross-sections First, many workers originally thought that thrust intercalated with various sedimentary facies. The Sha- plates were gravitationally driven, making the distinc- dow Valley basin megabreccias have been described tion between slide blocks and thrusts sheets essen- elsewhere (Friedmann, 1997), but the spectacular tially semantic and one of scale (e.g. Hubbert and gravity-driven blocks of the basin (Fig. 4) have Rubey, 1959; Kehle, 1970). Second, gravity-gliding received little previous detailed attention and some of rock units into active depositional sites always published misinterpretation. Their impressive scale places older rocks atop younger strata. Third, the and the excellence of their exposure warrant this basal contacts of the allochthonous blocks strongly account. The Shadow Valley basin provides an unpar- resemble shallow low-angle faults, complete with alleled opportunity to examine Neogene examples of gouge zones, brittle microfabrics, slickensided and grand-scale, well-preserved gravity slide blocks and to striated surfaces, and breccia (friction) carpets as learn about their transport history and mechanisms. described below for the Shadow Valley basin exam- ples. Fourth, the very large areal extent of some of supradetachment basin slide blocks (see below) makes 2. General attributes of Shadow Valley
Recommended publications
  • California Vegetation Map in Support of the DRECP
    CALIFORNIA VEGETATION MAP IN SUPPORT OF THE DESERT RENEWABLE ENERGY CONSERVATION PLAN (2014-2016 ADDITIONS) John Menke, Edward Reyes, Anne Hepburn, Deborah Johnson, and Janet Reyes Aerial Information Systems, Inc. Prepared for the California Department of Fish and Wildlife Renewable Energy Program and the California Energy Commission Final Report May 2016 Prepared by: Primary Authors John Menke Edward Reyes Anne Hepburn Deborah Johnson Janet Reyes Report Graphics Ben Johnson Cover Page Photo Credits: Joshua Tree: John Fulton Blue Palo Verde: Ed Reyes Mojave Yucca: John Fulton Kingston Range, Pinyon: Arin Glass Aerial Information Systems, Inc. 112 First Street Redlands, CA 92373 (909) 793-9493 [email protected] in collaboration with California Department of Fish and Wildlife Vegetation Classification and Mapping Program 1807 13th Street, Suite 202 Sacramento, CA 95811 and California Native Plant Society 2707 K Street, Suite 1 Sacramento, CA 95816 i ACKNOWLEDGEMENTS Funding for this project was provided by: California Energy Commission US Bureau of Land Management California Wildlife Conservation Board California Department of Fish and Wildlife Personnel involved in developing the methodology and implementing this project included: Aerial Information Systems: Lisa Cotterman, Mark Fox, John Fulton, Arin Glass, Anne Hepburn, Ben Johnson, Debbie Johnson, John Menke, Lisa Morse, Mike Nelson, Ed Reyes, Janet Reyes, Patrick Yiu California Department of Fish and Wildlife: Diana Hickson, Todd Keeler‐Wolf, Anne Klein, Aicha Ougzin, Rosalie Yacoub California
    [Show full text]
  • NPCA Comments on Proposed Silurian
    Stanford MillsLegalClinic Environmental Law Clinic Crown Quadrangle LawSchool 559 Nathan Abbott Way Stanford, CA 94305-8610 Tel 650 725-8571 Fax 650 723-4426 www.law.stanford.edu September 9, 2014 Via Electronic Mail and Federal Express James G. Kenna, State Director Bureau of Land Management California State Office 2800 Cottage Way, Suite W-1623 Sacramento, CA 95825 (916) 978-4400 [email protected] Katrina Symons Field Manager Bureau of Land Management Barstow Field Office 2601 Barstow Road Barstow, CA 92311 (760) 252-6004 [email protected] Dear State Director Kenna and Field Manager Symons: Enclosed please find comments by the National Parks Conservation Association (“NPCA”) on the solar and wind projects proposed by Iberdrola Renewables, Inc., in Silurian Valley, California. We understand that the U.S. Bureau of Land Management (“BLM”) is currently considering whether to grant the Silurian Valley Solar Project a variance under the October 2012 Record of Decision for Solar Energy Development in Six Southwestern States. We also understand that BLM is currently evaluating the Silurian Valley Wind Project under the National Environmental Policy Act. As the enclosed comments make clear, NPCA has serious concerns about the proposed projects’ compliance with applicable laws and policies, and about their potentially significant adverse effects on the Silurian Valley and surrounding region. We thank you for your consideration of these comments. NPCA looks forward to participating further in the administrative processes associated with the proposed projects. Respectfully submitted, Elizabeth Hook, Certified Law Student Community Law ❖ Criminal Defense ❖ Environmental Law ❖ Immigrants’ Rights ❖ International Human Rights and Conflict Resolution ❖ Juelsgaard Intellectual Property and Innovation ❖ Organizations and Transactions ❖ Religious Liberty ❖Supreme Court Litigation ❖ Youth and Education Law Project Mr.
    [Show full text]
  • Birds of the California Desert
    BIRDS OF THE CALIFORNIA DESERT A. Sidney England and William F. Laudenslayer, Jr. i INTRODUCTION i \ 1 The term, "California desert", as used herein, refers to a politically defined region, most of i which is included in the California Desert Conservation Area (CDCA) designated by the Federal Land ; and Management Act of 1976 (FLPMA). Of the 25 million acres in the CDCA, about one-half are i public lands, most of which are managed by the Bureau of Land Management (BLM) according to the "980 P California Desert Conservation Area Plan mandated by FLPMA. The California desert encompasses those portions of the Great Basin Desert (east of the White and lnyo Mountains and A south of the California-Nevada border), the Mojave Desert, and the Colorado Desert which occur " within California; it does not include areas of riparian, aquatic, urban, and agricultural habitats . adjacent to the Colorado River. (Also see chapters on Geology by Norris and Bioclimatology by E3irdsI4 are the most conspicuous vertebrates found in the California deserts. Records exist for at least 425 species (Garrett and Dunn 1981) from 18 orders and 55 families. These counts far exceed those for mammals, reptiles, amphibians and fish, and they are similar to totals for the entire state -- 542 species from 20 orders and 65 families (Laudenslayer and Grenfell 1983). These figures may seem surprisingly similar considering the harsh, arid climates often believed characteristic of I desert environments. However, habiiats found in the California desert range from open water and h marshes at the Salton Sea to pinyon-juniper woodland and limber pinelbristlecone pine forests on a few mountain ranges.
    [Show full text]
  • Transmittal of Draft EIR for Molycorp Mountain Pass Mine Expansion, for Review and Comment
    COUNTY OF SAN BERNARDINO PLANNING DEPARTMENT I,regular-! I PUBLIC WORKS GROUP -- W&- Sw1. NENNO lorth Arrowhead Avenue * San Bernardino, CA 924154182 * (909) 3874131 VALERY PILMER Director of Planning December 9, 1996No. 909) 3873223 IY RESPONSIBLE AND TRUSTEE AGENCIES INTERESTED ORGANIZATIONS AND INDIVIDUALS RE: NOTICE OF AVAILABILITY FOR THE DRAFT EIR ON THE MOLYCORP MOUNTAIN PASS MINE EXPANSION Dear Reader/Reviewer: Enclosed for your review and comment is the Draft EIR for the Molycorp Mountain Pass Mine Expansion. The purpose of the document is to identify and describe the probable environmental impacts that would result from the proposed expansion of Molycorp's existing mine and processing plant complex located at Mountain Pass, California. Mountain Pass is within the unincorporated portion San Bernardino County along Interstate 15 approximately 30 miles northeast of Baker and approximately 14 miles southwest of the Nevada stateline. The proposed quarry and waste rock areas would add 696 acres of disturbance to the existing mine site, resulting in a total disturbed area of approximately 1,044 acres. sag_> This document has been prepared to meet the State requirements of the California Environmental Quality Act. The Draft EIR has been prepared under the supervision of the County of San Bernardino Planning Department. The public comment period will end on January 27, 1997. Written comments should be addressed to: County of San Bemnardino- Planning Dgparnn 385 N. Arrowhead Avenue, Third Floor San Bernardino, CA 92415-0182 Attn: Randy Scott Sincerely, Randy Scottjlanning Manager, San Berardo County Planning Department ~-! - nLA ,;;K Scr.'Eperviscs .,* 1:,. 3 - -, I- . 1 12 4~ ..!A','V34-' TUrCCI Vi~i D;s~ri:n, BARBA~RA CPANM FURtOPAN .
    [Show full text]
  • The California Desert CONSERVATION AREA PLAN 1980 As Amended
    the California Desert CONSERVATION AREA PLAN 1980 as amended U.S. DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT U.S. Department of the Interior Bureau of Land Management Desert District Riverside, California the California Desert CONSERVATION AREA PLAN 1980 as Amended IN REPLY REFER TO United States Department of the Interior BUREAU OF LAND MANAGEMENT STATE OFFICE Federal Office Building 2800 Cottage Way Sacramento, California 95825 Dear Reader: Thank you.You and many other interested citizens like you have made this California Desert Conservation Area Plan. It was conceived of your interests and concerns, born into law through your elected representatives, molded by your direct personal involvement, matured and refined through public conflict, interaction, and compromise, and completed as a result of your review, comment and advice. It is a good plan. You have reason to be proud. Perhaps, as individuals, we may say, “This is not exactly the plan I would like,” but together we can say, “This is a plan we can agree on, it is fair, and it is possible.” This is the most important part of all, because this Plan is only a beginning. A plan is a piece of paper-what counts is what happens on the ground. The California Desert Plan encompasses a tremendous area and many different resources and uses. The decisions in the Plan are major and important, but they are only general guides to site—specific actions. The job ahead of us now involves three tasks: —Site-specific plans, such as grazing allotment management plans or vehicle route designation; —On-the-ground actions, such as granting mineral leases, developing water sources for wildlife, building fences for livestock pastures or for protecting petroglyphs; and —Keeping people informed of and involved in putting the Plan to work on the ground, and in changing the Plan to meet future needs.
    [Show full text]
  • Late Quaternary Stratigraphy and Luminescence Geochronology of the Northeastern Mojave Desert
    ARTICLE IN PRESS Quaternary International 166 (2007) 61–78 Late Quaternary stratigraphy and luminescence geochronology of the northeastern Mojave Desert Shannon A. Mahana,Ã, David M. Millerb, Christopher M. Mengesc, James C. Younta aUnited States Geological Survey, Box 25046 MS 974, Denver, CO 80225, USA bUnited States Geological Survey, 345 Middlefield Road, MS 973, Menlo Park, CA 94025, USA cUnited States Geological Survey, 520 N. Park Ave., Tucson, AZ 85719-5035, USA Available online 8 January 2007 Abstract The chronology of the Holocene and late Pleistocene deposits of the northeastern Mojave Desert have been largely obtained using radiocarbon ages. Our study refines and extends this framework using optically stimulated luminescence (OSL) to date deposits from Valjean Valley, Silurian Lake Playa, Red Pass, and California Valley. Of particular interest are eolian fine silts incorporated in ground- water discharge (GWD) deposits bracketed at 185–140 and 20–50 ka. Alluvial fan deposits proved amenable for OSL by dating both eolian sand lenses and reworked eolian sand in a matrix of gravel that occurs within the fan stratigraphy. Lacustrine sand in spits and bars also yielded acceptable OSL ages. These OSL ages fill gaps in the geochronology of desert deposits, which can provide data relevant to understanding the responses of several depositional systems to regional changes in climate. This study identifies the most promising deposits for future luminescence dating and suggests that for several regions of the Mojave Desert, sediments from previously undated landforms can be more accurately placed within correct geologic map units. Published by Elsevier Ltd. 1. Introduction Previous chronologic studies in the northeastern Mojave Desert area include magneto-stratigraphic studies and Extracting paleoclimatic and paleoenvironmental infor- tephrochronology of the upper Pliocene to middle Quatern- mation from terrestrial deposits is an important area of ary Tecopa beds (Hillhouse, 1987; Sarna-Wojcicki et al., Quaternary geologic research.
    [Show full text]
  • Biological Goals and Objectives
    Appendix C Biological Goals and Objectives Draft DRECP and EIR/EIS APPENDIX C. BIOLOGICAL GOALS AND OBJECTIVES C BIOLOGICAL GOALS AND OBJECTIVES C.1 Process for Developing the Biological Goals and Objectives This section outlines the process for drafting the Biological Goals and Objectives (BGOs) and describes how they inform the conservation strategy for the Desert Renewable Energy Conservation Plan (DRECP or Plan). The conceptual model shown in Exhibit C-1 illustrates the structure of the BGOs used during the planning process. This conceptual model articulates how Plan-wide BGOs and other information (e.g., stressors) contribute to the development of Conservation and Management Actions (CMAs) associated with Covered Activities, which are monitored for effectiveness and adapted as necessary to meet the DRECP Step-Down Biological Objectives. Terms used in Exhibit C-1 are defined in Section C.1.1. Exhibit C-1 Conceptual Model for BGOs Development Appendix C C-1 August 2014 Draft DRECP and EIR/EIS APPENDIX C. BIOLOGICAL GOALS AND OBJECTIVES The BGOs follow the three-tiered approach based on the concepts of scale: landscape, natural community, and species. The following broad biological goals established in the DRECP Planning Agreement guided the development of the BGOs: Provide for the long-term conservation and management of Covered Species within the Plan Area. Preserve, restore, and enhance natural communities and ecosystems that support Covered Species within the Plan Area. The following provides the approach to developing the BGOs. Section C.2 provides the landscape, natural community, and Covered Species BGOs. Specific mapping information used to develop the BGOs is provided in Section C.3.
    [Show full text]
  • Inventory of Amphibians and Reptiles at Death Valley National Park
    Inventory of Amphibians and Reptiles at Death Valley National Park Final Report Permit # DEVA-2003-SCI-0010 (amphibians) and DEVA-2002-SCI-0010 (reptiles) Accession # DEVA- 2493 (amphibians) and DEVA-2453 (reptiles) Trevor B. Persons and Erika M. Nowak Common Chuckwalla in Greenwater Canyon, Death Valley National Park (TBP photo). USGS Southwest Biological Science Center Colorado Plateau Research Station Box 5614, Northern Arizona University Flagstaff, Arizona 86011 May 2006 Death Valley Amphibians and Reptiles_____________________________________________________ ABSTRACT As part of the National Park Service Inventory and Monitoring Program in the Mojave Network, we conducted an inventory of amphibians and reptiles at Death Valley National Park in 2002- 2004. Objectives for this inventory were to: 1) Inventory and document the occurrence of reptile and amphibian species occurring at DEVA, primarily within priority sampling areas, with the goal of documenting at least 90% of the species present; 2) document (through collection or museum specimen and literature review) one voucher specimen for each species identified; 3) provide a GIS-referenced list of sensitive species that are federally or state listed, rare, or worthy of special consideration that occur within priority sampling locations; 4) describe park-wide distribution of federally- or state-listed, rare, or special concern species; 5) enter all species data into the National Park Service NPSpecies database; and 6) provide all deliverables as outlined in the Mojave Network Biological Inventory Study Plan. Methods included daytime and nighttime visual encounter surveys, road driving, and pitfall trapping. Survey effort was concentrated in predetermined priority sampling areas, as well as in areas with a high potential for detecting undocumented species.
    [Show full text]
  • The Structural Geology of the Shadow Mountains Area, San Bernadino County, California by Raymond C
    3 1272 00095 6803 BICE ffiiim&SX?2 Ths Stmr&wral Goology of tbo Shadow JSm&alns Axoa# San Bemadim Comity $ Cc&Afognia W Basrcaomi C» saiooa &?* A mss st&BsmsD IB PARTIAL 1ULLW OF HIE BBQOZRSEIEBSS FOR Tf!B DBSBiiS OF tlaatjos? of As$s Thesis Directors algmtm'SJ Housbor^ Team UQF 2.966 ABSTRACT The Structural Geology of the Shadow Mountains Area, San Bernadino County, California by Raymond C. Y/ilson, Jr. Within the Shadow Mountains area, located in the northeast corner of San Bernadino County, California, a series of alloch¬ thonous blocks of Precambrian gneisses rest on Late Tertiary non-marine sediments. The Precambrian gneisses consist of dioritic sills and granitic country rock. The Tertiary sediments consist of Pliocene (?) non-marine gravels, sands, tuffs, bentonitic playa clay, and lenses of massive, recemented dolomite megabreccia up to 500 feet thick. During the-Sevier Orogeny, the Mesquite and the Winters thrusts developed in the Mesquite Range and Winters Pass area to the east of the Shadow Mountains, and the Halloran and the Kingston Peak batholiths were intruded south and north of the area respectively. In the early Tertiary (?), the Riggs thrust was emplaced in the Silurian Hills west of the Shadow Mountains, and the Kingston Valley graben formed between the Silurian Hills, the Kingston Range, and the Mesquite Range. During middle and late Tertiary (?), a thick sequence of non-marine sediments were deposited in the Kingston Valley graben. Interbedded with these sediments are a series of thick lenses of dolomite megabreccia which were emplaced by a comb- ination of sedimentation and incoherent gravity sliding.
    [Show full text]
  • UC Riverside UC Riverside Electronic Theses and Dissertations
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Competing Models for the Timing of Cryogenian Glaciation: Evidence From the Kingston Peak Formation, Southeastern California Permalink https://escholarship.org/uc/item/3ph3f3ps Author Mrofka, David Douglas Publication Date 2010 Supplemental Material https://escholarship.org/uc/item/3ph3f3ps#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Competing Models for the Timing of Cryogenian Glaciation: Evidence From the Kingston Peak Formation, Southeastern California A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy In Geological Sciences By David Douglas Mrofka August 2010 Dissertation Committee: Dr.Martin J. Kennedy, Chairperson Dr. Mary M. Droser Dr.Richard A. Minnich Copyright by David Douglas Mrofka 2010 The Dissertation of David Douglas Mrofka is approved: Committee Chairperson ACKNOWLEDGEMENTS First and foremost, I thank my advisor, Martin J. Kennedy, for his patience, commitment to communicating the importance of scientific thinking, consistent honest criticism and unwavering interest in my many academic endeavors. He never failed to provide me with the funding and analytical facilities needed to better investigate a wide range of geological questions. More importantly, he inspired me to better understand Earth history in general and during the Neoproterozoic specifically. I deeply appreciate his friendship and obvious commitment to my development. I am deeply thankful to Mary L. Droser for her consistent support, encouragement and friendship. I was honored to learn about Australia and the Ediacaran Fauna under her guidance at the beginning of my graduate work. She has been an unwavering supporter and source of practical advice for understanding both ―real‖ and academic life.
    [Show full text]
  • Mojave Preserve Herps Final Report April 2007
    Inventory of Amphibians and Reptiles at Mojave National Preserve Final Report Study # MOJA-00129; Permit # MOJA-2003-SCI-0071 and MOJA-2005-SCI-0013; Accession # MOJA-32 Trevor B. Persons and Erika M. Nowak Sidewinder on Kelso Dunes, Mojave National Preserve (TBP photo). USGS Southwest Biological Science Center Colorado Plateau Research Station Box 5614, Northern Arizona University Flagstaff, Arizona 86011 April 2007 Mojave National Preserve Amphibians and Reptiles___________________________________________ ABSTRACT As part of the National Park Service Inventory and Monitoring Program in the Mojave Network, we conducted an inventory of amphibians and reptiles at Mojave National Preserve in 2004- 2005. Objectives for this inventory were to use fieldwork, museum collections, and literature review to document the occurrence of reptile and amphibian species occurring at MOJA. Our goals were to document at least 90% of the species present, provide one voucher specimen for each species identified, provide GIS-referenced distribution information for sensitive species, and provide all deliverables, including NPSpecies entries, as outlined in the Mojave Network Biological Inventory Study Plan. Methods included daytime and nighttime visual encounter surveys and nighttime road driving. Survey effort was concentrated in predetermined priority sampling areas, as well as in areas with a high potential for detecting undocumented species. We recorded 31 species during our surveys. During literature review and museum specimen database searches, we found records for seven additional species from MOJA, elevating the documented species list to 38 (two amphibians and 36 reptiles). Based on our surveys, as well as literature and museum specimen review, we estimate an overall inventory completeness of 95% for Mojave National Preserve herpetofauna; 67% for amphibians and 97% for reptiles.
    [Show full text]
  • Stratigraphy and Paleogeographic Significance of Metamorphic Rocks in the Shadow Mountains, Western Mojave Desert, California
    Stratigraphy and paleogeographic significance of metamorphic rocks in the Shadow Mountains, western Mojave Desert, California Mark W. Martin* Isotope Geochemistry Laboratory and Department of Geology, University of Kansas, J. Douglas Walker } Lawrence, Kansas 66045 ABSTRACT work of the Late Proterozoic to early Mesozoic tectonic develop- ment of the southwestern Cordillera. In addition, the affinity of the Stratigraphic correlations presented here for the ductilely de- Shadow Mountain strata is critical to evaluating models for the formed and metamorphosed rocks exposed in the Shadow Moun- Mesozoic and Paleozoic paleogeography of the southwestern Cor- tains indicate that they formed on the North American continental dillera, which call for major tectonic boundaries to be present in the margin and are not exotic or significantly displaced from their site area (e.g., Walker, 1988; Stone and Stevens, 1988; Lahren et al., of origin. These strata represent a depositional history that spans 1990). Late Proterozoic and Paleozoic passive margin development, late The significance of the Shadow Mountains stratigraphy for un- Paleozoic transitional passive to active plate margin tectonics, and derstanding the regional geology can best be appreciated by review- late Paleozoic–early Mesozoic establishment of a convergent mar- ing our current knowledge of the Proterozoic and Paleozoic tectonic gin along the western edge of the North American craton. history of this region. The Late Proterozoic and Paleozoic western The stratigraphic sequence in the Shadow Mountains is rep- margin of North America, as defined by cratonal, miogeoclinal, and resented by a basal siliceous and calcareous section that is corre- eugeoclinal facies patterns, generally trends northeast (Fig. 1; lated with upper Proterozoic and Cambrian miogeoclinal strata.
    [Show full text]