Electrochemical Synthesis of Novel 1,3-Indandione Derivatives and Evaluation of Their Antiplatelet Aggregation Activities

Total Page:16

File Type:pdf, Size:1020Kb

Electrochemical Synthesis of Novel 1,3-Indandione Derivatives and Evaluation of Their Antiplatelet Aggregation Activities Iranian Journal of Pharmaceutical Research (2013), 12 (supplement): 91-103 Copyright © 2013 by School of Pharmacy Received: September 2012 Shaheed Beheshti University of Medical Sciences and Health Services Accepted: February 2013 Original Article Electrochemical Synthesis of Novel 1,3-Indandione Derivatives and Evaluation of Their Antiplatelet Aggregation Activities Salimeh Amidia, Farzad Kobarfardab*, Abdolmajid Bayandori Moghaddamc Kimia Tabiba and Zohreh Soleymania aDepartment of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. bPhytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. cDepartment of Engineering Science, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran. Abstract Electrochemical oxidation of some selected catechol derivatives, using cyclic voltammetry, in the presence of different 2-aryl-1,3-indandiones as nucleophiles, resulted in electrochemical synthesis of new 1,3- indandione derivatives in an undivided cell in good yield and purity. A Michael addition mechanism was proposed for the formation of the analogs based on the reaction conditions which were provided in electrochemical cell. The in-vitro antiplatelet and anticoagulant activity of these compounds was evaluated, using arachidonic acid (AA) and adenosine diphosphate (ADP) as the platelet aggregation inducers. The results show that the incorporation of catechol ring in 1,3-indandione nucleus leads to the emergence of antiplatelet aggregation activity in these compounds. The compounds may exert their antiaggregation activity by interfering with the arachidonic acid pathway. Keywords:Electrochemical synthesis; 1,3-Indandione; Platelet aggregation inhibition. Introduction anticoagulants and platelet aggregation inhibitors is frequently used in high risk patients in order Stroke and cardiovascular diseases are the to achieve more efficient clinical results (4-5). major reasons of morbidity and mortality in the However, these medications exhibit some side world (21.9% of total death) which are mainly effects such as aspirin-related gastrointestinal caused by thrombus formation and platelet ulcers, allergy and bleeding or warfarin-induced activation (1). skin necrosis (3, 6). Furthermore, the efficacy of Antiplatelet agents such as aspirin these drugs is not still satisfactory. Therefore, (acetylsalicylic acid), clopidogrel or ticlopidine medicinal chemists are still trying to find new and anticoagulants such as warfarin are currently drug candidates in this therapeutic area (7). two predominant groups of orally consumable Quercetin (I) is a naturally occurring flavonoid drugs in standard therapeutic protocols for structurally related to coumarins with a catechol prophylaxis and treatment of venous thrombosis ring at its position 2 of coumarin scaffold (Figure and reducing the risk of recurrent myocardial 1). It was also shown to be effective inhibitor of infarction (2-3). Combination therapy with platelets aggregation in dogs and monkeys (8). Catechol (II) is a diphenolic derivative * Corresponding author: which could be electrochemically converted E-mail:[email protected] to 1,2-benzoquinone by a reversible two- Amidi S et al. / IJPR (2013), 12 (supplement): 91-103 OH O OH O O O OH HO O OCH3 OH OH O O O OH Quercetin (I) Catechol (II) 1,3- Indandione (III) Phenindione (IV) Anisindione (V) Cl OH O OH O O O O O O 4-Hydroxycoumarin (VI) Chlorophacinone (VII) Brodifacoum (VIII) Br Figure 1. Chemical structures of quercetin, catechol, 1,3-Indandione and coumarin derivatives. electron, two-proton oxidation (Figure 2). The formation of 2-substituted indandione. electrochemically generated o-benzoquinones 1,3-Indandione derivatives such as are quite reactive intermediates which in a phenindione (IV) and anisindione (V) are a group proper condition can be attacked by a variety of of anticoagulants with anti vitamin K activity nucleophiles and undergo various reactions such similar to 4-hydroxycoumarins (VI) (Figure 1). as Michael addition. Catechols are known to have antiplatelet Electrochemical methods are considered aggregation activity due to their prominent redox as green methods for the synthesis of organic power. Kitagawa et al, (9) have reported the compounds and our goal in the present study inhibitory effect of polyhydric phenols against was to use these methods for preparation of a arachidonic acid-induced aggregation of rabbit few novel catechol containing structures with platelets and they found catechol as the most potential antiplatelet aggregation activity. potent non-substituted dihydric phenols. 1,3-Indandiones (III) were selected as In fact, it has been reported that various the compounds with nucleophilic carbon. phenolic compounds such as quercetin inhibit 1,3-Indandione is an aromatic β-diketone. In platelet cyclooxygenase (10). the solid state it occurs as a diketone while in Dolmella et al. (11) have proposed a three- solution, it is partially enolized and the enolate dimensional (3D) biophore model that explains anion exhibits significant delocalization and the the requirements for efficient indandione and highest electron density is on the second carbon. coumarin derivatives. They have suggested two If catechol is oxidized to o-benzoquinone domains in the structure of these derivatives: a in the presence of indandione derivatives, a recognition domain which consists of a phenyl Michael addition reaction will occur between ring plus two negatively charged oxygens indandione and o-benzoquinone resulting to the (recognition flag), and an activity domain which OH O -2 e - 2 H OH O Catechol (II) 1, 2 - benzoquinone (IX) Figure 2. Electrochemical conversion of catechol to 1,2-benzoquinone. 92 Electrochemical Synthesis of Novel 1,3-Indandione Derivatives Figure 3. Main parameters of the biophore model. V is excluded volume (11). starts half way between the two oxygens on a purity of the products, easy process and better short aliphatic chain and consists of a second control over the reaction process. They are also phenyl ring attached to the terminal atom of considered as green chemical synthesis methods the chain (Figure 3). Indandione and coumarin (16-17). derivatives, with a bulky lipophilic side chain Here, we used a simple one-pot at activity domain such as chlorophacinone electrochemical synthesis for preparing the (VII) and brodifacoum (VIII), enjoy more proposed indandione derivatives and the potency due to establishing an additional drug- antiplatelet aggregation activities of these new receptor interaction by this extra anchoring compounds were evaluated. group (Figure 1) (11). According to the previously reported methods Our goal in this study was incorporating for the synthesis of compound 15a-b (15-16), we a catechol ring to the structure of indandione described here a facile one pot electrochemical derivatives in the activity domain of Dolmella’s method for the synthesis of new indandione model. The catechol ring is assumed to increase derivatives (16a-b, 17a-b, 18a-b, 19a-b). the resemblance of these compounds to quercetin The key reactions involved the and they are thus expected to show antiplatelet electrooxidation of catechol derivatives aggregation activity. (compouds12-14) in the presence of indandiones Different methods have been used for the (7-11) as nucleophiles. Compounds 7-11 are synthesis of 1,3-indandione derivatives with 1,3-diketones with an acidic methylene group substitution at position 2. Beringer et al. (12) at position 2, which is easily converted to their and Matano et al. (13) reported phenylation of corresponding enolate ions (7i – 11i). These 1,3-Indandione with diaryliodonium salts and can act as nucleophile in Michael addition α-alkenylation of β-dicarbonyl compounds with reaction and add to the beta carbon of an α,β- alkenyltriarylbismuthonium salts, respectively. unsaturated system. Compounds 12-14 could be The Friedel-Crafts methods were also reported for electrochemically oxidized to its corresponding the derivatization of 1,3-indandione at position 2 quinonic form (12i-14i). When the oxidation (14). In addition to these conventional methods, process takes place in the presence of 7-11, the the electrochemical synthesis has also been used methylene group of compounds 7-11 can attack for preparation of indandione derivatives with the quinonic ring in a Michael type addition catechol or 2,3-dimethylhydroquinone ring on reaction. The quinine ring could then be reduced their position 2 (15-17). The main advantages electrochemically, using a cyclic voltammetric of the electrochemical methods lie in their high process, to regenerate the reduced form of 93 Amidi S et al. / IJPR (2013), 12 (supplement): 91-103 OH OH R2 R3 12-14 -2e, -2H O O O O R 1 -H R1 +H R2 O O R 7-11 7i-11i 3 12i-14i HO OH OH O O O R2 R2 R3 H R3 O O 15a-c 16a-c 15ia-ic 16ia-ic 17a-c R1 18a-c 17ia-ic 19a-c 18ia-ic R1 19ia-ic The overall reaction : HO OH 3 4 O OH O 2 5 OH R2 1 6 R1 -2e, -2H R R2 3 O R3 15a-c O 7-11 12-14 16a-c 17a-c 18a-c R1 19a-c R1 R2 R3 R = H 7 1 12 R2 = H R3= H 15a H H H R = F 15b H CH3 H 8 1 13 R2 = CH3 R3= H 9 R = Cl 15c H H COOH 1 14 R2 = H R3= COOH 10 R1 = Br 16a F H H 11 R1 = OCH3 16b F CH3 H 16c F H COOH 17a Cl H H 17b Cl CH3 H 17c Cl H COOH 18a Br H H 18b Br CH3 H 18c Br H COOH 19a OCH3 H H 19b OCH3 CH3 H 19c OCH3 H COOH Figure 4. Mechanism of Michael addition reaction occurred in electrochemical cell. 94 Electrochemical Synthesis of Novel 1,3-Indandione Derivatives O O NaOC2H5 O R R H C2H5OH O Reflux O R : H, F, Cl, Br, OCH3 R : H, F, Cl, Br, OCH3 1 2-6 7-11 Figure 5. Synthesis route of 1,3-indandiones 7-11. catechol ring (Figure 4). on a 500 MHz Bruker spectrometer and the Compounds 7-11 were prepared by chemical shifts were expressed in δ (ppm) condensation of phthalide (1) with appropriate using TMS (tetramethylsilane) as an internal benzaldehydes (2-6), in the presence of sodium standard.
Recommended publications
  • Enoxaparin Sodium Solution for Injection, Manufacturer's Standard
    PRODUCT MONOGRAPH INCLUDING PATIENT MEDICATION INFORMATION PrLOVENOX® Enoxaparin sodium solution for injection 30 mg in 0.3 mL solution (100 mg/mL), pre-filled syringes for subcutaneous or intravenous injection 40 mg in 0.4 mL solution (100 mg/mL), pre-filled syringes for subcutaneous or intravenous injection 60 mg in 0.6 mL solution (100 mg/mL), pre-filled syringes for subcutaneous or intravenous injection 80 mg in 0.8 mL solution (100 mg/mL), pre-filled syringes for subcutaneous or intravenous injection 100 mg in 1 mL solution (100 mg/mL), pre-filled syringes for subcutaneous or intravenous injection 300 mg in 3 mL solution (100 mg/mL), multidose vials for subcutaneous or intravenous injection PrLOVENOX® HP Enoxaparin sodium (High Potency) solution for injection 120 mg in 0.8 mL solution (150 mg/mL), pre-filled syringes for subcutaneous or intravenous injection 150 mg in 1 mL solution (150 mg/mL), pre-filled syringes for subcutaneous or intravenous injection Manufacturer’s standard Anticoagulant/Antithrombotic Agent ATC Code: B01AB05 Product Monograph – LOVENOX (enoxaparin) Page 1 of 113 sanofi-aventis Canada Inc. Date of Initial Approval: 2905 Place Louis-R.-Renaud February 9, 1993 Laval, Quebec H7V 0A3 Date of Revision September 7, 2021 Submission Control Number: 252514 s-a version 15.0 dated September 7, 2021 Product Monograph – LOVENOX (enoxaparin) Page 2 of 113 TABLE OF CONTENTS Sections or subsections that are not applicable at the time of authorization are not listed. TABLE OF CONTENTS ..............................................................................................................
    [Show full text]
  • Rivaroxaban Versus Warfarin for Treatment and Prevention Of
    Costa et al. Thrombosis Journal (2020) 18:6 https://doi.org/10.1186/s12959-020-00219-w RESEARCH Open Access Rivaroxaban versus warfarin for treatment and prevention of recurrence of venous thromboembolism in African American patients: a retrospective cohort analysis Olivia S. Costa1,2, Stanley Thompson3, Veronica Ashton4, Michael Palladino5, Thomas J. Bunz6 and Craig I. Coleman1,2* Abstract Background: African Americans are under-represented in trials evaluating oral anticoagulants for the treatment of acute venous thromboembolism (VTE). The aim of this study was to evaluate the effectiveness and safety of rivaroxaban versus warfarin for the treatment of VTE in African Americans. Methods: We utilized Optum® De-Identified Electronic Health Record data from 11/1/2012–9/30/2018. We included African Americans experiencing an acute VTE during a hospital or emergency department visit, who received rivaroxaban or warfarin as their first oral anticoagulant within 7-days of the acute VTE event and had ≥1 provider visit in the prior 12-months. Differences in baseline characteristics between cohorts were adjusted using inverse probability-of-treatment weighting based on propensity scores (standard differences < 0.10 were achieved for all covariates). Our primary endpoint was the composite of recurrent VTE or major bleeding at 6-months. Three- and 12-month timepoints were also assessed. Secondary endpoints included recurrent VTE and major bleeding as individual endpoints. Cohort risk was compared using Cox regression and reported as hazard ratios (HRs) with 95% confidence intervals (CIs). Results: We identified 2097 rivaroxaban and 2842 warfarin users with incident VTE. At 6-months, no significant differences in the composite endpoint (HR = 0.96, 95%CI = 0.75–1.24), recurrent VTE (HR = 1.02, 95%CI = 0.76–1.36) or major bleeding alone (HR = 0.93, 95%CI = 0.59–1.47) were observed between cohorts.
    [Show full text]
  • Pharmacokinetics of Anticoagulant Rodenticides in Target and Non-Target Organisms Katherine Horak U.S
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Plant Publications Health Inspection Service 2018 Pharmacokinetics of Anticoagulant Rodenticides in Target and Non-target Organisms Katherine Horak U.S. Department of Agriculture, [email protected] Penny M. Fisher Landcare Research Brian M. Hopkins Landcare Research Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Life Sciences Commons Horak, Katherine; Fisher, Penny M.; and Hopkins, Brian M., "Pharmacokinetics of Anticoagulant Rodenticides in Target and Non- target Organisms" (2018). USDA National Wildlife Research Center - Staff Publications. 2091. https://digitalcommons.unl.edu/icwdm_usdanwrc/2091 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff ubP lications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Chapter 4 Pharmacokinetics of Anticoagulant Rodenticides in Target and Non-target Organisms Katherine E. Horak, Penny M. Fisher, and Brian Hopkins 1 Introduction The concentration of a compound at the site of action is a determinant of its toxicity. This principle is affected by a variety of factors including the chemical properties of the compound (pKa, lipophilicity, molecular size), receptor binding affinity, route of exposure, and physiological properties of the organism. Many compounds have to undergo chemical changes, biotransformation, into more toxic or less toxic forms. Because of all of these variables, predicting toxic effects and performing risk assess- ments of compounds based solely on dose are less accurate than those that include data on absorption, distribution, metabolism (biotransformation), and excretion of the compound.
    [Show full text]
  • Warfarin in Antiphospholipid Syndrome — Time to Explore New Horizons
    Editorial Warfarin in Antiphospholipid Syndrome — Time to Explore New Horizons Antiphospholipid syndrome (APS) constitutes vascular boembolism have significant reduction in the risk of recur- thrombosis and/or pregnancy morbidity occurring in per- rent venous thrombosis when they continue to receive war- sons with antiphospholipid antibodies (aPL), most com- farin with a target international normalized ratio (INR) of monly a positive lupus anticoagulant (LAC) test, anticardi- 1.5 to 2.019. The risk of venous thromboembolism is rough- ly 10% per year whether warfarin is stopped after 3, 6, 12, olipin antibodies (aCL), and anti-ß2-glycoprotein I antibod- 1 or 27 months in aPL-negative patients with unprovoked ies (ß2-GPI) . Given the wide spectrum of aPL-related clin- ical manifestations and significant morbidity and mortality thrombosis20. due to APS2, primary and secondary thrombosis prevention Thus, no compelling data exist about the optimal dura- is crucial. Primary thrombosis prevention lacks an evidence- tion of therapy or when anticoagulation can be discontinued based approach; controlled, prospective, and randomized in APS patients. Ideally, anticoagulation should be stopped studies are in progress3,4. For secondary thrombosis preven- when the risks of treatment outweigh the risks of thrombo- tion, the current recommendation is life-long warfarin; the sis21. Currently it is not possible to predict which patients necessity, duration, and intensity of warfarin treatment are with APS will develop recurrent thrombosis when warfarin still under debate. Further, warfarin use is cumbersome due treatment is stopped, and there is no evidence for or against to bleeding complications, frequent blood monitoring, and indefinite anticoagulation in patients with APS who devel- teratogenicity.
    [Show full text]
  • Warfarin I G Y H H O S I - L W T U A
    Read this important information before taking: Warfarin Brought to you by the Institute for Safe Medication Practices [ Extra care is needed because warfarin is a high-alert medicine. ] High-alert medicines have been proven to be safe and effective. But these medicines can cause serious injury if a mistake happens while taking them. This means that it is very important for you to know about this medicine and take it exactly as directed. When taking warfarin (blood thinner) 1 Take exactly as directed. Take your medicine at the same time each day. Do not take extra doses or skip any doses. n i When the doctor changes your dose r a 2 Keep a record of telephone calls. f When your doctor, nurse, or pharmacist calls to r change your dose: write down the dose and any other instructions; read the dose and in - a structions back to him or her to make sure you understand them; and date the instructions W so they won’t be mixed up with older instructions. r o f 3 A D M I N Know your dose. U Always tell your doctor the strength of warfarin tablets that you have on O U M A D C O I N C s hand. Then ask him or her how much warfarin to take, and how many tablets in that strength p i to take to equal the dose. If you are running low on tablets, ask for a new prescription. T y 4 t Keep instructions nearby. Keep the dated instructions near the medicine, and read RX e f them every time before taking your warfarin.
    [Show full text]
  • Pharmacogenetics in Warfarin Therapy
    PHARMACOGENETICS IN WARFARIN THERAPY Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Azizah Ab Ghani December 2013 DECLARATION This thesis is the result of my own work. The material contained within this thesis has not been presented, nor is currently being presented, either wholly or in part for any other degree of qualification. Azizah Ab Ghani This research was carried out in the Department of Molecular and Clinical Pharmacology, in the Institute of Translational Medicine, at The University of Liverpool ii CONTENTS ABSTRACT iv ACKNOWLEGEMENTS v ABBREVIATIONS vi CHAPTER 1: General introduction 1 CHAPTER 2: Development and validation of a warfarin dosing algorithm 47 CHAPTER 3: Incorporating genetic factor into HAS-BLED, a bleeding risk score 75 CHAPTER 4: Pharmacogenetics of warfarin in a paediatric population 102 CHAPTER 5: Warfarin pharmacogenetic in children: A genome-wide association study 135 CHAPTER 6: Validation of a novel point of care Hybeacon® genotyping method on prototype PCR instrument Genie 1 for CYP2C9 and VKORC1 alleles 155 CHAPTER 7: Final discussion 178 BIBLIOGRAPHY 189 iii ABSTRACT Warfarin is a challenging drug to dose accurately, especially during the initiation phase because of its narrow therapeutic range and large inter-individual variability. Therefore, the aim of this thesis was to investigate the use of pharmacogenetics and clinical data to improve warfarin therapy. Genetic variants in cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) are known to influence warfarin dose. Therefore we developed a pharmacogenetic dosing algorithm to predict warfarin stable dose prospectively in a British population based on 456 patients who started warfarin in a hospital setting and validated it in 262 retrospectively recruited patients from a primary care setting.
    [Show full text]
  • Risk of Bleeding with Single, Dual, Or Triple Therapy with Warfarin, Aspirin, and Clopidogrel in Patients with Atrial Fibrillation
    ORIGINAL INVESTIGATION LESS IS MORE Risk of Bleeding With Single, Dual, or Triple Therapy With Warfarin, Aspirin, and Clopidogrel in Patients With Atrial Fibrillation Morten L. Hansen, MD, PhD; Rikke Sørensen, MD; Mette T. Clausen, MSc Pharm; Marie Louise Fog-Petersen, MSc Pharm; Jakob Raunsø, MD; Niels Gadsbøll, MD, DMSc; Gunnar H. Gislason, MD, PhD; Fredrik Folke, MD; Søren S. Andersen, MD; Tina K. Schramm, MD; Steen Z. Abildstrøm, MD, PhD; Henrik E. Poulsen, MD, DMSc; Lars Køber, MD, DMSc; Christian Torp-Pedersen, MD, DMSc Background: Patients with atrial fibrillation (AF) of- est for dual clopidogrel and warfarin therapy (13.9% per ten require anticoagulation and platelet inhibition, but patient-year) and triple therapy (15.7% per patient- data are limited on the bleeding risk of combination year). Using warfarin monotherapy as a reference, the therapy. hazard ratio (95% confidence interval) for the com- bined end point was 0.93 (0.88-0.98) for aspirin, 1.06 Methods: We performed a cohort study using nation- (0.87-1.29) for clopidogrel, 1.66 (1.34-2.04) for aspirin- wide registries to identify all Danish patients surviving clopidogrel, 1.83 (1.72-1.96) for warfarin-aspirin, 3.08 first-time hospitalization for AF between January 1, 1997, (2.32-3.91) for warfarin-clopidogrel, and 3.70 (2.89- and December 31, 2006, and their posthospital therapy 4.76) for warfarin-aspirin-clopidogrel. of warfarin, aspirin, clopidogrel, and combinations of these drugs. Cox proportional hazards models were used to es- Conclusions: In patients with AF, all combinations of timate risks of nonfatal and fatal bleeding.
    [Show full text]
  • Understanding Warfarin (Coumadin) Brochure
    Phone number Appointment date I willfollowupwith Notes Date: Warfarin (Coumadin) mg tablets INR: Sun Mon Tues Wed Thurs Fri Sat REV 7/12J14849DC14120 Tab(s) Tab(s) Tab(s) Tab(s) Tab(s) Tab(s) Tab(s) (Coumadin®) Warfarin Understanding Key Questions What is Warfarin? 1. Why am I taking warfarin (Coumadin®, Your doctor wants you to take the drug Jantoven®)? warfarin. Warfarin is the generic name – To keep from getting a blood clot for this drug. You may have also heard it called Coumadin® or Jantoven®. 2. What do I need to do to take this medication safely? Warfarin can help stop blood clots. – Take my medicine at the same time It can also keep clots from getting each day larger. Sometimes blood clots form – Watch for signs of bleeding on surfaces of blood vessels due to – Make sure everyone knows I am taking the drug warfarin damage to that blood vessel. Others form in the heart due to damage in – Keep an up-to-date medication list the heart. When blood clots form, they – Keep my diet steady can break off and move to other parts – Have my blood tested regularly of your body such as your arms, legs, 3. Why is it important to take warfarin lungs and even your brain. If a blood safely? clot blocks a blood vessel, it can stop – To keep from getting a blood clot the flow of blood, damage tissue, and and reduce side effects can even cause death. This brochure will tell you what to expect when you take the drug warfarin.
    [Show full text]
  • Drug Interactions with Warfarin Med Cart Reference Guide Risk of Increased INR (Overcoagulation)
    Drug Interactions with Warfarin Med Cart Reference Guide Risk of Increased INR (Overcoagulation) The following list contains common medications that interact with warfarin (Coumadin), that may lead to increased INR readings and thus, increased risk of bleeding (i.e., blood is “too thin”). When starting or changing these drugs, INRs should be monitored closely; decreased doses of warfarin may be required. This list is not all-inclusive. Medications Acetaminophen (Tylenol) Clopidogrel (Plavix) Amiodarone (Cordarone) Direct Oral Anticoagulants Antifungal Agents (‐azoles) Ropinirole (Requip) Severe Aspirin Sulfamethoxazole‐TMP (Bactrim) Celecoxib (Celebrex) Tamoxifen (Nolvadex) Acarbose (Precose) Isoniazid Allopurinol (Zyloprim) Lactulose (Enulose) Alprazolam (Xanax) Lansoprazole (Prevacid) Amlodipine (Norvasc) Levofloxacin (Levaquin) Azithromycin (Zithromax) Levothyroxine (Synthroid) Cimetidine (Tagamet) Methyl salicylate (topical) Ciprofloxacin (Cipro) Metronidazole (Flagyl) Clarithromycin (Biaxin) Moxifloxacin (Avelox) Colchicine Omeprazole (Prilosec) Doxycycline (Vibratab) Phenytoin (Dilantin) Moderate Efavirenz (Sustiva) Protease Inhibitors Ethanol Quetiapine (Seroquel) Erythromycin (E.E.S.) Ranitidine (Zantac) Fenofibrate (Tricor, Trilipix) SSRI Antidepressants Gemfibrozil (Lopid) Statins Glyburide (Diabeta) Tramadol (Ultram) Indomethacin (Indocin) Tricyclic Antidepressants Influenza vaccine Vitamin E 1. Bungard TJ, et al. Drug interactions involving warfarin: practice tool and practical management tips. CPJ/RPC. 2011 Jan/Feb. 144(1). 2. Interactions with Coumadin [package insert]. Princeton, NJ: Bristol‐Myers Squibb; 2013. Drug Interactions with Warfarin Med Cart Reference Guide Risk of Decreased INR (Undercoagulation) The following list contains common medications that interact with warfarin (Coumadin), which may lead to decreased INR readings and thus, increased risk of clotting, strokes, and DVTs (i.e., blood is “not thin enough”). When starting or changing these drugs, INRs should be monitored closely; increased doses of warfarin may be required.
    [Show full text]
  • Potential Risks of Nine Rodenticides to Birds and Nontarget Mammals: a Comparative Approach
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES Potential Risks of Nine Rodenticides to Birds and Nontarget Mammals: a Comparative Approach July 2004 Office of Pesticides Programs Environmental Fate and Effects Division Prepared by: William Erickson, Biologist Environmental Risk Branch 2 Douglas Urban, Senior Biologist Environmental Risk Branch 3 Executive Summary This document presents the Agency’s assessment of potential risks to birds and nontarget mammals from 9 rodenticides, including 3 second-generation anticoagulants (brodifacoum, difethialone, bromadiolone), 3 first-generation anticoagulants (diphacinone, chlorophacinone, warfarin), and 3 non-anticoagulant compounds (zinc phosphide, bromethalin, cholecalciferol). These rodenticides are predominantly used to control commensal rats and mice in and around buildings, transport vehicles, and in sewers. Some, mainly zinc phosphide, chlorophacinone, and diphacinone, also have products registered for other outdoor uses against other rodent and small mammalian pests. A major concern in using rodenticides is that they are not selective to the target species; birds and nontarget mammals that feed on grain-based baits (pellets, meal, treated grains, wax blocks) or meat-based, vegetable, or fruit baits are potentially at risk. The available information from laboratory and pen studies, field studies, control programs, reported incidents, and toxicokinetics also indicates that a variety of avian and mammalian predators and scavengers are potentially at risk from consuming animals poisoned with some of these rodenticides. The assessment focuses on the potential primary and secondary risks to birds and nontarget mammals posed by applications of these 9 rodenticides (11 baits) to control rats and mice in and around buildings (commensal use) and in field and other outdoor settings to control various rodent and other small mammalian pests.
    [Show full text]
  • Clexane (Enoxaparin) Information for Patients Clexane (Enoxoparin) Information for Patients
    Clexane (enoxaparin) Information for patients Clexane (enoxoparin) Information for patients Clexane (enoxaparin) is a type of anticoagulant (blood thinner) that can be used in place of, or in addition to warfarin in certain circumstances. It is given as an injection under the skin, similar to insulin for diabetes. This brochure outlines some things you might need to know about Clexane. How does it work? Clexane is very different to warfarin in the way it works, although it does a similar job. Clexane stops your blood from clotting by deactivating one of the proteins in your blood that your body uses to form a clot. The blood test you would normally use to monitor warfarin (the INR) is not affected by Clexane. The required dose is not based on blood levels, but rather on your size and kidney function. The major advantage of Clexane is that it acts quickly and leaves your body quickly compared to warfarin which acts slowly and leaves your body slowly. When do I need Clexane? Clexane is used when the risk of having a blood clot is very high and the INR is below the therapeutic (target) range. Temporarily using Clexane as treatment in place of warfarin is commonly known as ‘bridging’. There are three common reasons why your doctor might use a Clexane ‘bridge’. 1. You have a high risk of clotting and you are just starting or restarting warfarin. The most common examples include a recent blood clot (Deep Vein Thrombosis (DVT) or pulmonary embolism) or you have a mechanical heart valve. In this case, Clexane is used at the same time as warfarin until the INR is within therapeutic range.
    [Show full text]
  • Anticoagulant Residues in Rats and Secondary Non-Target Risk
    Anticoagulant residues in rats and secondary non-target risk DOC SCIENCE INTERNAL SERIES 188 P. Fisher, C. O’Connor, G. Wright and C.T. Eason Published by Department of Conservation PO Box 10-420 Wellington, New Zealand DOC Science Internal Series is a published record of scientific research carried out, or advice given, by Department of Conservation staff or external contractors funded by DOC. It comprises reports and short communications that are peer-reviewed. Individual contributions to the series are first released on the departmental website in pdf form. Hardcopy is printed, bound, and distributed at regular intervals. Titles are also listed in the DOC Science Publishing catalogue on the website, refer http://www.doc.govt.nz under Publications, then Science and Research. © Copyright September 2004, New Zealand Department of Conservation ISSN 1175–6519 ISBN 0–478–22607–1 In the interest of forest conservation, DOC Science Publishing supports paperless electronic publishing. When printing, recycled paper is used wherever possible. This report was prepared for publication by DOC Science Publishing, Science & Research Unit; editing by Katrina Rainey and Helen O’Leary and layout by Geoff Gregory. Publication was approved by the Manager, Science & Research Unit, Science Technology and Information Services, Department of Conservation, Wellington. CONTENTS Abstract 5 1. Introduction 6 1.1 Objectives 6 1.2 Assessing secondary non-target risk 6 2. Methods 8 2.1 Animal husbandry 8 2.2 Feeding trials and analysis of bait samples 8 2.3 Rats offered a lethal amount of bait over 4 days (Trial 1) 10 2.4 One day’s feeding ad libitum on bait (Trial 2) 11 2.5 Ad libitum feeding on a choice of bait and non-toxic pellets until death (Trial 3) 11 2.6 Analysis of tissue samples 12 2.7 Calculation and comparison of potential secondary poisoning risk 12 3.
    [Show full text]