Automated Insect Identification Through Concatenated
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download .PDF(1340
Stark, Bill P. and Stephen Green. 2011. Eggs of western Nearctic Acroneuriinae (Plecoptera: Perlidae). Illiesia, 7(17):157-166. Available online: http://www2.pms-lj.si/illiesia/Illiesia07-17.pdf EGGS OF WESTERN NEARCTIC ACRONEURIINAE (PLECOPTERA: PERLIDAE) Bill P. Stark1 and Stephen Green2 1,2 Box 4045, Department of Biology, Mississippi College, Clinton, Mississippi, U.S.A. 39058 1 E-mail: [email protected] 2 E-mail: [email protected] ABSTRACT Eggs for western Nearctic acroneuriine species of Calineuria Ricker, Doroneuria Needham & Claassen and Hesperoperla Banks are examined and redescribed based on scanning electron microscopy images taken from specimens collected from a substantial portion of each species range. Within genera, species differences in egg morphology are small and not always useful for species recognition, however eggs from one population of Calineuria are significantly different from those found in other populations and this population is given informal recognition as a possible new species. Keywords: Plecoptera, Calineuria, Doroneuria, Hesperoperla, Egg morphology, Western Nearctic INTRODUCTION occur in the region (Baumann & Olson 1984; Scanning electron microscopy (SEM) is often used Kondratieff & Baumann 2002; Stark 1989; Stark & to elucidate chorionic features for stoneflies (e.g. Gaufin 1976; Stark & Kondratieff 2004; Zuellig et al. Baumann 1973; Grubbs 2005; Isobe 1988; Kondratieff 2006). SEM images for eggs of the primary western 2004; Kondratieff & Kirchner 1996; Nelson 2000; acroneuriine genera, Calineuria Ricker, Doroneuria Sivec & Stark 2002; 2008; Stark & Nelson 1994; Stark Needham & Claassen and Hesperoperla Banks include & Szczytko 1982; 1988; Szczytko & Stewart 1979) and single images for each of these genera in Stark & Nearctic Perlidae were among the earliest stoneflies Gaufin (1976), three images of Hesperoperla hoguei to be studied with this technique (Stark & Gaufin Baumann & Stark (1980) and three images of H. -
Plecoptera: Perlidae), with an Annotated Checklist of the Subfamily in the Realm
Opusc. Zool. Budapest, 2016, 47(2): 173–196 On the identity of some Oriental Acroneuriinae taxa (Plecoptera: Perlidae), with an annotated checklist of the subfamily in the realm D. MURÁNYI1 & W.H. LI2 1Dávid Murányi, Department of Civil and Environmental Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, 790-8577 Japan, and Department of Zoology, Hungarian Natural History Museum, H-1088 Budapest, Baross u. 13, Hungary. E-mail: [email protected], [email protected] 2Weihai Li, Department of Plant Protection, Henan Institute of Science and Technology, Xinxiang, Henan, 453003 China. E-mail: [email protected] Abstract. The monotypic Taiwanese genus Mesoperla Klapálek, 1913 is redescribed on the basis of a male syntype specimen, and its affinities are re-evaluated. The single female type specimen of further two Oriental monotypic genera, Kalidasia Klapálek, 1914 and Nirvania Klapálek, 1914, are confirmed to be lost or destroyed respectively; both genera are considered as nomina dubia. The Sichuan endemic Acroneuria grahami Wu & Claassen, 1934 is redescribed on the basis of male holotype. Distinctive characters of the genus Brahmana Klapálek, 1914 consisting of five, inadequately known Oriental species are discussed. Flavoperla needhami (Klapálek, 1916) and Sinacroneuria sinica (Yang & Yang, 1998) comb. novae are suggested for an Indian species originally described in Gibosia Okamoto, 1912 and a Chinese species originally described in Acroneuria Pictet, 1841. At present, 62 species of Acroneuriinae, classified in 10 valid genera are reported from the Oriental Realm but 29 species are inadequately known. A key is presented to distinguish males of the Asian Acroneuriinae genera. Asian distribution of each genera are detailed and depicted on a map. -
Aquatic Insect Ecophysiological Traits Reveal Phylogenetically Based Differences in Dissolved Cadmium Susceptibility
Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility David B. Buchwalter*†, Daniel J. Cain‡, Caitrin A. Martin*, Lingtian Xie*, Samuel N. Luoma‡, and Theodore Garland, Jr.§ *Department of Environmental and Molecular Toxicology, Campus Box 7633, North Carolina State University, Raleigh, NC 27604; ‡Water Resources Division, U.S. Geological Survey, 345 Middlefield Road, MS 465, Menlo Park, CA 94025; and §Department of Biology, University of California, Riverside, CA 92521 Edited by George N. Somero, Stanford University, Pacific Grove, CA, and approved April 28, 2008 (received for review February 20, 2008) We used a phylogenetically based comparative approach to evaluate ecosystems today (e.g., trace metals) (6). This variation in the potential for physiological studies to reveal patterns of diversity susceptibility has practical implications, because the ecological in traits related to susceptibility to an environmental stressor, the structure of aquatic insect communities is often used to indicate trace metal cadmium (Cd). Physiological traits related to Cd bioaccu- the ecological conditions in freshwater systems (7–9). Differ- mulation, compartmentalization, and ultimately susceptibility were ences among species’ responses to environmental stressors can measured in 21 aquatic insect species representing the orders be profound, but it is uncertain whether the cause is related to Ephemeroptera, Plecoptera, and Trichoptera. We mapped these ex- functional ecology [usually the assumption (10, 11)] or physio- perimentally derived physiological traits onto a phylogeny and quan- logical traits (5, 12–14), which have received considerably less tified the tendency for related species to be similar (phylogenetic attention. To the degree that either is involved, their link to signal). -
Stark Et Al Stonefliy Common Names 1998.Pmd
Ohio Biological Survey Notes 1: 1-18, 1998. © Ohio Biological Survey Common Names of Stoneflies (Plecoptera) from the United States and Canada BILL P. S TARK1, KENNETH W. STEWART2, STANLEY W. SZCZYTKO3, AND RICHARD W. BAUMANN4 1 Dept. of Biology, Mississippi College, Clinton, MS 39058. 2 Dept. of Biological Sciences, Univ. of North Texas, Denton, TX 76203. 3 College of Natural Resources, Univ. of Wisconsin, Stevens Point, WI 54481. 4 Dept. of Zoology, Brigham Young Univ., Provo, UT 84602 Introduction Stoneflies are one of the important and often dominant orders of insects in North American stream ecosystems. They have remained generally poorly known to nonspecialists because of their cryptic habits, and often nocturnal activity. Larger species, or those that are colorful or important to flyfishers, have acquired regional or local names that vary from place to place. Names such as blacks, browns, greens, yellows, rollwings, needleflies, broadbacks, sallies, olives, stones, willowflies, or the generic names Acroneuria, Isoperla, Pteronarcys and others have become firmly established in fly fishing literature, and are used by flyfishers. The following list of recommended common names of Plecoptera species from the United States and Canada was originally formulated by us, acting as a subcommittee of the North American Benthological Society Scientific and Common Names Committee. This committee was charged with producing comprehensive species checklists of North American aquatic invertebrates, including insects with assigned common names. The first of the intended series of special publications by the American Fisheries Society of scientific and common names of U.S. aquatic invertebrates was of mollusks (Turgeon et al., 1988); the volumes on Insecta never followed. -
Automated Taxonomic Identification of Insects with Expert-Level
Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology Syst. Biol. 68(6):876–895, 2019 © The Author(s) 2019. Published by Oxford University Press on behalf of the Society of Systematic Biologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. DOI:10.1093/sysbio/syz014 Advance Access publication March 2, 2019 Automated Taxonomic Identification of Insects with Expert-Level Accuracy Using Effective Feature Transfer from Convolutional Networks , , ,∗ , , MIROSLAV VALAN1 2 3 ,KAROLY MAKONYI1 4,ATSUTO MAKI5,DOMINIK VONDRÁCEKˇ 6 7, AND FREDRIK RONQUIST2 1Savantic AB, Rosenlundsgatan 52, 118 63 Stockholm, Sweden; 2Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Frescativagen 40, 114 18 Stockholm, Sweden; 3Department of Zoology, Stockholm University, Universitetsvagen 10, 114 18 Stockholm, Sweden; 4Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics, Uppsala University, 751 20 Uppsala, Sweden; 5School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, SE-10044 Sweden; 6Department of Zoology, Faculty of Science, Charles University in Prague, Viniˇcná 7, CZ-128 43 Praha 2, Czech Republic; 7Department of Entomology, National Museum, Cirkusová 1740, CZ-193 00 Praha 9 - Horní Poˇcernice, Czech -
Microsoft Outlook
Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA). -
Automated Processing and Identification of Benthic Invertebrate Samples
J. N. Am. Benthol. Soc., 2010, 29(3):867–874 ’ 2010 by The North American Benthological Society DOI: 10.1899/09-080.1 Published online: 8 June 2010 Automated processing and identification of benthic invertebrate samples David A. Lytle1,7, Gonzalo Martı´nez-Mun˜ oz2,8, Wei Zhang2,9, Natalia Larios3,10, Linda Shapiro3,4,11, Robert Paasch5,12, 6,13 2,14 2,15 Andrew Moldenke , Eric N. Mortensen , Sinisa Todorovic , AND Thomas G. Dietterich2,16 1 Department of Zoology, Oregon State University, Corvallis, Oregon 97331 USA 2 School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331 USA 3 Department of Electrical Engineering, University of Washington, Seattle, Washington 98195 USA 4 Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195 USA 5 Department of Mechanical Engineering, Oregon State University, Corvallis, Oregon 97331 USA 6 Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 USA Abstract. We present a visually based method for the taxonomic identification of benthic invertebrates that automates image capture, image processing, and specimen classification. The BugID system automatically positions and images specimens with minimal user input. Images are then processed with interest operators (machine-learning algorithms for locating informative visual regions) to identify informative pattern features, and this information is used to train a classifier algorithm. Naı¨ve Bayes modeling of stacked decision trees is used to determine whether a specimen is an unknown distractor (taxon not in the training data set) or one of the species in the training set. When tested on images from 9 larval stonefly taxa, BugID correctly identified 94.5% of images, even though small or damaged specimens were included in testing. -
Predator Technical Report
Report DEQ08-LAB-0048-TR PREDATOR: Development and use of RIVPACS-type macroinvertebrate models to assess the biotic condition of wadeable Oregon streams (November 2005 models) By: Shannon Hubler July 2008 Last Update 07/14/2008 DEQ08-LAB-0048-TR Version 1.1 Web pub#: 10-LAB-004 This report prepared by: Oregon Department of Environmental Quality Laboratory and Environmental Assessment Division Watershed Assessment Section 3150 NW 229th, Suite 150, Hillsboro, Oregon 97124 U.S.A. 1-800-452-4011 www.oregon.gov/deq Contact: Shannon Hubler (503) 693-5728 1 List of Tables ...................................................................................................................... 3 List of Figures ..................................................................................................................... 3 Rationale ............................................................................................................................. 4 What is a Predictive Model? ............................................................................................... 4 Why Macroinvertebrates? ................................................................................................... 4 The PREDictive Assessment Tool for Oregon (PREDATOR) .......................................... 5 How does a predictive model differ from a Multi-metric approach? ................................. 5 Developing the Models ....................................................................................................... 5 Macroinvertebrate -
An Annotated List of Insects and Other Arthropods
This file was created by scanning the printed publication. Text errors identified by the software have been corrected; however, some errors may remain. Invertebrates of the H.J. Andrews Experimental Forest, Western Cascade Range, Oregon. V: An Annotated List of Insects and Other Arthropods Gary L Parsons Gerasimos Cassis Andrew R. Moldenke John D. Lattin Norman H. Anderson Jeffrey C. Miller Paul Hammond Timothy D. Schowalter U.S. Department of Agriculture Forest Service Pacific Northwest Research Station Portland, Oregon November 1991 Parson, Gary L.; Cassis, Gerasimos; Moldenke, Andrew R.; Lattin, John D.; Anderson, Norman H.; Miller, Jeffrey C; Hammond, Paul; Schowalter, Timothy D. 1991. Invertebrates of the H.J. Andrews Experimental Forest, western Cascade Range, Oregon. V: An annotated list of insects and other arthropods. Gen. Tech. Rep. PNW-GTR-290. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 168 p. An annotated list of species of insects and other arthropods that have been col- lected and studies on the H.J. Andrews Experimental forest, western Cascade Range, Oregon. The list includes 459 families, 2,096 genera, and 3,402 species. All species have been authoritatively identified by more than 100 specialists. In- formation is included on habitat type, functional group, plant or animal host, relative abundances, collection information, and literature references where available. There is a brief discussion of the Andrews Forest as habitat for arthropods with photo- graphs of representative habitats within the Forest. Illustrations of selected ar- thropods are included as is a bibliography. Keywords: Invertebrates, insects, H.J. Andrews Experimental forest, arthropods, annotated list, forest ecosystem, old-growth forests. -
Composition and Abundance of Periphyton and Aquatic Insects in a Sierra Nevada, California, Stream
Great Basin Naturalist Volume 46 Number 4 Article 2 10-31-1986 Composition and abundance of periphyton and aquatic insects in a Sierra Nevada, California, stream Harry V. Leland U.S. Geological Survey, Water Resources Division, Menlo Park, California Steven V. Fend U.S. Geological Survey, Water Resources Division, Menlo Park, California James L. Carter U.S. Geological Survey, Water Resources Division, Menlo Park, California Albert D. Mahood U.S. Geological Survey, Water Resources Division, Menlo Park, California Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Leland, Harry V.; Fend, Steven V.; Carter, James L.; and Mahood, Albert D. (1986) "Composition and abundance of periphyton and aquatic insects in a Sierra Nevada, California, stream," Great Basin Naturalist: Vol. 46 : No. 4 , Article 2. Available at: https://scholarsarchive.byu.edu/gbn/vol46/iss4/2 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. , COMPOSITION AND ABUNDANCE OF PERIPHYTON AND AQUATIC INSECTS IN A SIERRA NEVADA, CALIFORNIA, STREAM Harry V. Leland', Steven V. Fend\ James L. Carter\ and Albert D. Mahood' Abstract. —The species composition ofperiphyton and benthic insect communities and abundances ofcommon taxa (>0.1% of individuals) were examined during snow-free months in Convict Creek, a permanent snowmelt- and spring-fed stream in the Sierra Nevada of California. The communities were highly diverse. The most abundant taxa in the periphyton were diatoms {Achnanthes minutissitna, Cocconeis placentula lineata, Cymbella microcephala, C. -
Qt2cd0m6cp Nosplash 6A8244
International Advances in the Ecology, Zoogeography, and Systematics of Mayflies and Stoneflies Edited by F. R. Hauer, J. A. Stanford and, R. L. Newell International Advances in the Ecology, Zoogeography, and Systematics of Mayflies and Stoneflies Edited by F. R. Hauer, J. A. Stanford, and R. L. Newell University of California Press Berkeley Los Angeles London University of California Press, one of the most distinguished university presses in the United States, enriches lives around the world by advancing scholarship in the humanities, social sciences, and natural sciences. Its activities are supported by the UC Press Foundation and by philanthropic contributions from individuals and institutions. For more information, visit www.ucpress.edu. University of California Publications in Entomology, Volume 128 Editorial Board: Rosemary Gillespie, Penny Gullan, Bradford A. Hawkins, John Heraty, Lynn S. Kimsey, Serguei V. Triapitsyn, Philip S. Ward, Kipling Will University of California Press Berkeley and Los Angeles, California University of California Press, Ltd. London, England © 2008 by The Regents of the University of California Printed in the United States of America Library of Congress Cataloging-in-Publication Data International Conference on Ephemeroptera (11th : 2004 : Flathead Lake Biological Station, The University of Montana) International advances in the ecology, zoogeography, and systematics of mayflies and stoneflies / edited by F.R. Hauer, J.A. Stanford, and R.L. Newell. p. cm. – (University of California publications in entomology ; 128) "Triennial Joint Meeting of the XI International Conference on Ephemeroptera and XV International Symposium on Plecoptera held August 22-29, 2004 at Flathead Lake Biological Station, The University of Montana, USA." – Pref. Includes bibliographical references and index. -
Surveys to Determine the Status of the Northern
SURVEYS TO DETERMINE THE STATUS OF THE NORTHERN FORESTFLY (LEDNIA BOREALIS) AND RAINIER ROACHFLY (SOLIPERLA FENDERI) ON THE OKANOGAN-WENATCHEE AND GIFFORD PINCHOT NATIONAL FORESTS OF WASHINGTON: YEAR 2 FINAL REPORT FROM THE XERCES SOCIETY TO THE INTERAGENCY SPECIAL STATUS / SENSITIVE SPECIES PROGRAM (ISSSSP) Assistance Agreement L13AC00102, Modification 4 Alpine creek near Rampart Lakes in the Alpine Lakes Wilderness, Okanogan-Wenatchee National Forest, WA BY CANDACE FALLON, MICHELE BLACKBURN, AND EMILIE BLEVINS THE XERCES SOCIETY FOR INVERTEBRATE CONSERVATION MARCH 2017 1 TABLE OF CONTENTS Abstract ......................................................................................................................................................................... 4 Introduction ................................................................................................................................................................... 5 Lednia borealis ........................................................................................................................................................... 6 Soliperla fenderi ......................................................................................................................................................... 6 Methods ........................................................................................................................................................................ 7 Site Selection ............................................................................................................................................................