Symmetry by Dilation Reduction

Total Page:16

File Type:pdf, Size:1020Kb

Symmetry by Dilation Reduction Symmetry 2000, edited by I. Hargittai the title having already been mentioned (at least and T.C. Laurent, I, 2002, 133-141 fleetingly) and italicized, the etymologies of two of those words are worth recalling. In ancient Greek, the scope of summetria went beyond a reference to Symmetry by self-examination in a mirror. A close synonym was in just proportion, and it was mostly used to dilation/reduction, describe a work of art or music as being fractals, and roughness harmonious. In time, most words' meanings multiply and diversify. In developed sciences, groups of invariances-symmetries are abstract and abstruse, but those which underlie fractals are – to Benoit Mandelbrot the contrary – intuitive and highly visual. This paper will show typical ones to be closely related to the simplest mirror symmetry. Roughly speaking, fractals are shapes that look the As to the word fractal, I coined it on some same from close by and far away. Fractal geometry precisely datable evening in the winter of 1975, is famed (or notorious, depending on the source) from a very concrete Latin adjective, fractus, which for the number and apparent diversity of its claims. denoted a stone's shape after it was hit very hard. They range from mathematics, finance, and the Lacking time to evolve, fractal rarely strayed far sciences, all the way to art. from the notion of roughness. Such diversity is always a source of surprise, but this article will argue that it can be phrased so as to become perfectly natural. Indeed, the ubiquity of The Ubiquity of Roughness fractals is intrinsically related to their intimate connection with a phenomenon that is itself The following list combines, in an intentionally ubiquitous. That phenomenon is roughness. It has haphazard fashion, many questions that led to long resisted analysis, and fractals provide the first ideas underlying fractals, and other questions that widely applicable key to some degree of mastery the new ideas found it easy to handle. over some of its mysteries. • How to measure the volatility of the financial A self-explanatory term for looking the same charts, for example to evaluate and compare from close by and far away is self-similar• Of financial risks realistically? course, self-similarity also holds for the straight line • How long is the coast of Britain? and the plane. These familiar shapes are the • How to distinguish proper music (old or new, indispensable starting point in the many sciences good or bad) from plain awful noise? that have perfected a mastery of smoothness. The • How to characterize the course of a river point is that the property of looking the same from untamed by civil engineers? close by and far away happens to extend beyond • How to define wind speed during a storm? the line and the plane. It also holds for diverse • How to measure and compare the surface shapes called fractals. I named them, tamed them structure of ordinary objects, such as a broken into primary models of roughness, and made them stone, a mountain slope, or a piece of rusted iron? multiply. • What is the shape of a cloud, a flame, or a The learned term to denote them is forms welding? invariant under dilation or reduction. In the • What is the density of galaxies in the Universe? professional jargon of some thoroughly developed • How to measure the variation of the load on fields of science, such invariances are called the Internet? symmetries, which would suffice as an excuse for The word, rough, appears in none of those this paper to be included in this book. But there is questions, but the underlying concept appears in another far more direct reason: it will be shown that every one. Irregular is more polite, but rough is more suitable combinations of very ordinary-looking telling. symmetries hold a surprise for the beholder: they An inverse question will provide contrast. produce self-similarity, meaning that they yield • For which shapes do examples of the simplest fractals. smooth shapes of Euclid's geometry provide a The theme having been embedded in the order of sensible approximation? the words in this paper's title, and every word in To Early Man, Nature provided just a few sine/cosine functions. It identifies the fundamental smooth shapes: the path of a stone falling straight and a few harmonics then, in due time, builds a full down, the full Moon or the Sun hidden by a light Fourier series. The latter is periodic, that is, haze, small lakes unperturbed by current or wind. translationally invariant, which, in a broad sense, is In sharp contrast, homo faber keeps adding examples a property of symmetry. Newton's spectral analysis beyond counting. For example, Man works hard at of light is a related example, although the structure eliminating roughness from automobile pistons, of incoherent white light took until the 1930s to be flat walls and tops, Roman-Chinese-American clarified. street grids, and – last but not least – from most More generally, the harmonies that Kepler saw parts of mathematics (contributing to the in the planets' motions have largely been widespread view that geometry is “cold and dry.”) discredited, yet it remains very broadly the case Forgetting this last question, the others set a that the starting point of every science is to identify pattern one may extend forever. The simple reason harmonies in a raw mess of evidence. is that roughness is ubiquitous in Nature. In the works of Man, it may not be welcome, but is not Scale Invariance Perceived as Playing for always avoided, and may sometimes be Roughness the Role That Harmonious unavoidable. Examples are found in some parts of mathematics, where they were at one time Sound Played in Acoustics described as pathological or monstrous, and, once again, in the above list of questions. By contrast to acoustics, the study of roughness Needless to say, each of these questions belongs could not, until very recently, even begin tackling to some specific part of knowledge (science or the elementary questions this paper listed earlier. engineering) and the practical attitude is not to My contribution to science can be viewed as waste time studying roughness but instead to get centered on the notion that, like acoustics, the study rid of it. Fractal geometry, to the contrary, has of roughness could not seriously become a science embraced roughness in all its forms and studies it without beginning by the following step: it had to for its intrinsic interest. first identify a basic invariance/symmetry, that is, a deep source of harmony common to many Roughness Lagged Far Behind Other structures one can call rough. Until the day before yesterday, roughness and Senses, for Example, Sounds, in Being harmony seemed antithetic. An ordering of deep Mastered by a Science human concerns, from exalted to base, would have surely placed them at opposite ends. But change By customary count, a human's number of sense has a way of scrambling up all rankings of this sort. receptors is five. This may well be true but the As candidates for the role of harmonious actual number of distinct sense messages is roughness, I proposed the shapes whose roughness certainly much higher. is invariant under dilation/reduction. Take sound. Even today, concert hall acoustics In the most glaring irony of my scientific life, this are mired in controversy, recording of speech or first-ever systematic approach to roughness arose song is comfortable with vowels but not from a thoroughly unexpected source in extreme consonants, and drums are filled with mysteries. mathematical esoterica. This may account for the Altogether, the science of sound remains delay science experienced in mastering roughness. incomplete. Nevertheless, it boasts great achievements. Meek Symmetries Let us learn some lessons from its success. Typical of every science, it went far by exerting In the form known to everyone, the concept of healthy opportunism. Side-stepping the hard symmetry tends to provoke love or loathing. My questions, it first identified the idealized sound of own feelings depend on the context. I dislike string instruments as an icon that is at the same symmetric faces and rooms but devote all my time reasonably realistic and mathematically scientific life to fractals. Let us now move manageable even simple. It clarifies even facts it indirectly, step by step, towards examples of does not characterize or explain. It builds on the fractals. harmonic analysis of pendular motions and the Among symmetries, the most widely known and of Henri Poincaré. But it did not develop in any best understood involves the relation between an way that mattered outside of esoteric pure object and its reflection in a perfectly flat mirror. To mathematics. Outside mathematics, it remained obtain an object that is invariant – unchanged – dormant until the advent of computer graphics and under reflection, it suffices to “symmetrize” a my work, as exemplified in what follows. Because completely arbitrary object by combining it with its of fractal geometry, Poincaré's idea now matters mirror reflection. As a result, there is an infinity of broadly and will provide us with a nice transition such objects. from the simplest symmetry to self-similar A fairgrounds carousel helps explain symmetry roughness. In the next section, the meaning of with respect to a vertical axis. Symmetry with roughness is a bit stretched; in the section after the respect to a point is not much harder. next, almost natural. Now, replace the symmetry with respect to one mirror by symmetries with respect to two parallel The Self-Similar "Thrice-Invariant Dust mirrors. Any object can be symmetrized D," With Three Part Generator Symmetry “dynamically,” by being reflected in the first mirror then the second, then again the first, again the second, and so on ad infinitum.
Recommended publications
  • Rendering Hypercomplex Fractals Anthony Atella [email protected]
    Rhode Island College Digital Commons @ RIC Honors Projects Overview Honors Projects 2018 Rendering Hypercomplex Fractals Anthony Atella [email protected] Follow this and additional works at: https://digitalcommons.ric.edu/honors_projects Part of the Computer Sciences Commons, and the Other Mathematics Commons Recommended Citation Atella, Anthony, "Rendering Hypercomplex Fractals" (2018). Honors Projects Overview. 136. https://digitalcommons.ric.edu/honors_projects/136 This Honors is brought to you for free and open access by the Honors Projects at Digital Commons @ RIC. It has been accepted for inclusion in Honors Projects Overview by an authorized administrator of Digital Commons @ RIC. For more information, please contact [email protected]. Rendering Hypercomplex Fractals by Anthony Atella An Honors Project Submitted in Partial Fulfillment of the Requirements for Honors in The Department of Mathematics and Computer Science The School of Arts and Sciences Rhode Island College 2018 Abstract Fractal mathematics and geometry are useful for applications in science, engineering, and art, but acquiring the tools to explore and graph fractals can be frustrating. Tools available online have limited fractals, rendering methods, and shaders. They often fail to abstract these concepts in a reusable way. This means that multiple programs and interfaces must be learned and used to fully explore the topic. Chaos is an abstract fractal geometry rendering program created to solve this problem. This application builds off previous work done by myself and others [1] to create an extensible, abstract solution to rendering fractals. This paper covers what fractals are, how they are rendered and colored, implementation, issues that were encountered, and finally planned future improvements.
    [Show full text]
  • The Age of Addiction David T. Courtwright Belknap (2019) Opioids
    The Age of Addiction David T. Courtwright Belknap (2019) Opioids, processed foods, social-media apps: we navigate an addictive environment rife with products that target neural pathways involved in emotion and appetite. In this incisive medical history, David Courtwright traces the evolution of “limbic capitalism” from prehistory. Meshing psychology, culture, socio-economics and urbanization, it’s a story deeply entangled in slavery, corruption and profiteering. Although reform has proved complex, Courtwright posits a solution: an alliance of progressives and traditionalists aimed at combating excess through policy, taxation and public education. Cosmological Koans Anthony Aguirre W. W. Norton (2019) Cosmologist Anthony Aguirre explores the nature of the physical Universe through an intriguing medium — the koan, that paradoxical riddle of Zen Buddhist teaching. Aguirre uses the approach playfully, to explore the “strange hinterland” between the realities of cosmic structure and our individual perception of them. But whereas his discussions of time, space, motion, forces and the quantum are eloquent, the addition of a second framing device — a fictional journey from Enlightenment Italy to China — often obscures rather than clarifies these chewy cosmological concepts and theories. Vanishing Fish Daniel Pauly Greystone (2019) In 1995, marine biologist Daniel Pauly coined the term ‘shifting baselines’ to describe perceptions of environmental degradation: what is viewed as pristine today would strike our ancestors as damaged. In these trenchant essays, Pauly trains that lens on fisheries, revealing a global ‘aquacalypse’. A “toxic triad” of under-reported catches, overfishing and deflected blame drives the crisis, he argues, complicated by issues such as the fishmeal industry, which absorbs a quarter of the global catch.
    [Show full text]
  • Generating Fractals Using Complex Functions
    Generating Fractals Using Complex Functions Avery Wengler and Eric Wasser What is a Fractal? ● Fractals are infinitely complex patterns that are self-similar across different scales. ● Created by repeating simple processes over and over in a feedback loop. ● Often represented on the complex plane as 2-dimensional images Where do we find fractals? Fractals in Nature Lungs Neurons from the Oak Tree human cortex Regardless of scale, these patterns are all formed by repeating a simple branching process. Geometric Fractals “A rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole.” Mandelbrot (1983) The Sierpinski Triangle Algebraic Fractals ● Fractals created by repeatedly calculating a simple equation over and over. ● Were discovered later because computers were needed to explore them ● Examples: ○ Mandelbrot Set ○ Julia Set ○ Burning Ship Fractal Mandelbrot Set ● Benoit Mandelbrot discovered this set in 1980, shortly after the invention of the personal computer 2 ● zn+1=zn + c ● That is, a complex number c is part of the Mandelbrot set if, when starting with z0 = 0 and applying the iteration repeatedly, the absolute value of zn remains bounded however large n gets. Animation based on a static number of iterations per pixel. The Mandelbrot set is the complex numbers c for which the sequence ( c, c² + c, (c²+c)² + c, ((c²+c)²+c)² + c, (((c²+c)²+c)²+c)² + c, ...) does not approach infinity. Julia Set ● Closely related to the Mandelbrot fractal ● Complementary to the Fatou Set Featherino Fractal Newton’s method for the roots of a real valued function Burning Ship Fractal z2 Mandelbrot Render Generic Mandelbrot set.
    [Show full text]
  • Music: Broken Symmetry, Geometry, and Complexity Gary W
    Music: Broken Symmetry, Geometry, and Complexity Gary W. Don, Karyn K. Muir, Gordon B. Volk, James S. Walker he relation between mathematics and Melody contains both pitch and rhythm. Is • music has a long and rich history, in- it possible to objectively describe their con- cluding: Pythagorean harmonic theory, nection? fundamentals and overtones, frequency Is it possible to objectively describe the com- • Tand pitch, and mathematical group the- plexity of musical rhythm? ory in musical scores [7, 47, 56, 15]. This article In discussing these and other questions, we shall is part of a special issue on the theme of math- outline the mathematical methods we use and ematics, creativity, and the arts. We shall explore provide some illustrative examples from a wide some of the ways that mathematics can aid in variety of music. creativity and understanding artistic expression The paper is organized as follows. We first sum- in the realm of the musical arts. In particular, we marize the mathematical method of Gabor trans- hope to provide some intriguing new insights on forms (also known as short-time Fourier trans- such questions as: forms, or spectrograms). This summary empha- sizes the use of a discrete Gabor frame to perform Does Louis Armstrong’s voice sound like his • the analysis. The section that follows illustrates trumpet? the value of spectrograms in providing objec- What do Ludwig van Beethoven, Ben- • tive descriptions of musical performance and the ny Goodman, and Jimi Hendrix have in geometric time-frequency structure of recorded common? musical sound. Our examples cover a wide range How does the brain fool us sometimes • of musical genres and interpretation styles, in- when listening to music? And how have cluding: Pavarotti singing an aria by Puccini [17], composers used such illusions? the 1982 Atlanta Symphony Orchestra recording How can mathematics help us create new of Copland’s Appalachian Spring symphony [5], • music? the 1950 Louis Armstrong recording of “La Vie en Rose” [64], the 1970 rock music introduction to Gary W.
    [Show full text]
  • Decagonal and Quasi-Crystalline Tilings in Medieval Islamic Architecture
    REPORTS 21. Materials and methods are available as supporting 27. N. Panagia et al., Astrophys. J. 459, L17 (1996). Supporting Online Material material on Science Online. 28. The authors would like to thank L. Nelson for providing www.sciencemag.org/cgi/content/full/315/5815/1103/DC1 22. A. Heger, N. Langer, Astron. Astrophys. 334, 210 (1998). access to the Bishop/Sherbrooke Beowulf cluster (Elix3) Materials and Methods 23. A. P. Crotts, S. R. Heathcote, Nature 350, 683 (1991). which was used to perform the interacting winds SOM Text 24. J. Xu, A. Crotts, W. Kunkel, Astrophys. J. 451, 806 (1995). calculations. The binary merger calculations were Tables S1 and S2 25. B. Sugerman, A. Crotts, W. Kunkel, S. Heathcote, performed on the UK Astrophysical Fluids Facility. References S. Lawrence, Astrophys. J. 627, 888 (2005). T.M. acknowledges support from the Research Training Movies S1 and S2 26. N. Soker, Astrophys. J., in press; preprint available online Network “Gamma-Ray Bursts: An Enigma and a Tool” 16 October 2006; accepted 15 January 2007 (http://xxx.lanl.gov/abs/astro-ph/0610655) during part of this work. 10.1126/science.1136351 be drawn using the direct strapwork method Decagonal and Quasi-Crystalline (Fig. 1, A to D). However, an alternative geometric construction can generate the same pattern (Fig. 1E, right). At the intersections Tilings in Medieval Islamic Architecture between all pairs of line segments not within a 10/3 star, bisecting the larger 108° angle yields 1 2 Peter J. Lu * and Paul J. Steinhardt line segments (dotted red in the figure) that, when extended until they intersect, form three distinct The conventional view holds that girih (geometric star-and-polygon, or strapwork) patterns in polygons: the decagon decorated with a 10/3 star medieval Islamic architecture were conceived by their designers as a network of zigzagging lines, line pattern, an elongated hexagon decorated where the lines were drafted directly with a straightedge and a compass.
    [Show full text]
  • Sphere Tracing, Distance Fields, and Fractals Alexander Simes
    Sphere Tracing, Distance Fields, and Fractals Alexander Simes Advisor: Angus Forbes Secondary: Andrew Johnson Fall 2014 - 654108177 Figure 1: Sphere Traced images of Menger Cubes and Mandelboxes shaded by ambient occlusion approximation on the left and Blinn-Phong with shadows on the right Abstract Methods to realistically display complex surfaces which are not practical to visualize using traditional techniques are presented. Additionally an application is presented which is capable of utilizing some of these techniques in real time. Properties of these surfaces and their implications to a real time application are discussed. Table of Contents 1 Introduction 3 2 Minimal CPU Sphere Tracing Model 4 2.1 Camera Model 4 2.2 Marching with Distance Fields Introduction 5 2.3 Ambient Occlusion Approximation 6 3 Distance Fields 9 3.1 Signed Sphere 9 3.2 Unsigned Box 9 3.3 Distance Field Operations 10 4 Blinn-Phong Shadow Sphere Tracing Model 11 4.1 Scene Composition 11 4.2 Maximum Marching Iteration Limitation 12 4.3 Surface Normals 12 4.4 Blinn-Phong Shading 13 4.5 Hard Shadows 14 4.6 Translation to GPU 14 5 Menger Cube 15 5.1 Introduction 15 5.2 Iterative Definition 16 6 Mandelbox 18 6.1 Introduction 18 6.2 boxFold() 19 6.3 sphereFold() 19 6.4 Scale and Translate 20 6.5 Distance Function 20 6.6 Computational Efficiency 20 7 Conclusion 2 1 Introduction Sphere Tracing is a rendering technique for visualizing surfaces using geometric distance. Typically surfaces applicable to Sphere Tracing have no explicit geometry and are implicitly defined by a distance field.
    [Show full text]
  • Computer-Generated Music Through Fractals and Genetic Theory
    Ouachita Baptist University Scholarly Commons @ Ouachita Honors Theses Carl Goodson Honors Program 2000 MasterPiece: Computer-generated Music through Fractals and Genetic Theory Amanda Broyles Ouachita Baptist University Follow this and additional works at: https://scholarlycommons.obu.edu/honors_theses Part of the Artificial Intelligence and Robotics Commons, Music Commons, and the Programming Languages and Compilers Commons Recommended Citation Broyles, Amanda, "MasterPiece: Computer-generated Music through Fractals and Genetic Theory" (2000). Honors Theses. 91. https://scholarlycommons.obu.edu/honors_theses/91 This Thesis is brought to you for free and open access by the Carl Goodson Honors Program at Scholarly Commons @ Ouachita. It has been accepted for inclusion in Honors Theses by an authorized administrator of Scholarly Commons @ Ouachita. For more information, please contact [email protected]. D MasterPiece: Computer-generated ~1usic through Fractals and Genetic Theory Amanda Broyles 15 April 2000 Contents 1 Introduction 3 2 Previous Examples of Computer-generated Music 3 3 Genetic Theory 4 3.1 Genetic Algorithms . 4 3.2 Ylodified Genetic Theory . 5 4 Fractals 6 4.1 Cantor's Dust and Fractal Dimensions 6 4.2 Koch Curve . 7 4.3 The Classic Example and Evrrvday Life 7 5 MasterPiece 8 5.1 Introduction . 8 5.2 In Detail . 9 6 Analysis 14 6.1 Analysis of Purpose . 14 6.2 Analysis of a Piece 14 7 Improvements 15 8 Conclusion 16 1 A Prelude2.txt 17 B Read.cc 21 c MasterPiece.cc 24 D Write.cc 32 E Temp.txt 35 F Ternpout. txt 36 G Tempoutmid. txt 37 H Untitledl 39 2 Abstract A wide variety of computer-generated music exists.
    [Show full text]
  • Books in Brief Hypothesis Might Be That a New Drug Has No Effect
    BOOKS & ARTS COMMENT includes not just one correct answer, but all other possibilities. In a medical experiment, the null Books in brief hypothesis might be that a new drug has no effect. But the hypothesis will come pack- The Age of Addiction aged in a statistical model that assumes that David T. Courtwright BELKNAP (2019) there is zero systematic error. This is not Opioids, processed foods, social-media apps: we navigate an necessarily true: errors can arise even in a addictive environment rife with products that target neural pathways randomized, blinded study, for example if involved in emotion and appetite. In this incisive medical history, some participants work out which treatment David Courtwright traces the evolution of “limbic capitalism” from group they have been assigned to. This can prehistory. Meshing psychology, culture, socio-economics and lead to rejection of the null hypothesis even urbanization, it’s a story deeply entangled in slavery, corruption when the new drug has no effect — as can and profiteering. Although reform has proved complex, Courtwright other complexities, such as unmodelled posits a solution: an alliance of progressives and traditionalists aimed measurement error. at combating excess through policy, taxation and public education. To say that P = 0.05 should lead to acceptance of the alternative hypothesis is tempting — a few million scientists do it Cosmological Koans every year. But it is wrong, and has led to Anthony Aguirre W. W. NORTON (2019) replication crises in many areas of the social, Cosmologist Anthony Aguirre explores the nature of the physical behavioural and biological sciences. Universe through an intriguing medium — the koan, that paradoxical Statistics — to paraphrase Homer riddle of Zen Buddhist teaching.
    [Show full text]
  • Analysis of the Fractal Structures for the Information Encrypting Process
    INTERNATIONAL JOURNAL OF COMPUTERS Issue 4, Volume 6, 2012 Analysis of the Fractal Structures for the Information Encrypting Process Ivo Motýl, Roman Jašek, Pavel Vařacha The aim of this study was describe to using fractal geometry Abstract— This article is focused on the analysis of the fractal structures for securing information inside of the information structures for purpose of encrypting information. For this purpose system. were used principles of fractal orbits on the fractal structures. The algorithm here uses a wide range of the fractal sets and the speed of its generation. The system is based on polynomial fractal sets, II. PROBLEM SOLUTION specifically on the Mandelbrot set. In the research were used also Bird of Prey fractal, Julia sets, 4Th Degree Multibrot, Burning Ship Using of fractal geometry for the encryption is an alternative to and Water plane fractals. commonly solutions based on classical mathematical principles. For proper function of the process is necessary to Keywords—Fractal, fractal geometry, information system, ensure the following points: security, information security, authentication, protection, fractal set Generate fractal structure with appropriate parameters I. INTRODUCTION for a given application nformation systems are undoubtedly indispensable entity in Analyze the fractal structure and determine the ability Imodern society. [7] to handle a specific amount of information There are many definitions and methods for their separation use of fractal orbits to alphabet mapping and classification. These systems are located in almost all areas of human activity, such as education, health, industry, A. Principle of the Fractal Analysis in the Encryption defense and many others. Close links with the life of our Process information systems brings greater efficiency of human endeavor, which allows cooperation of man and machine.
    [Show full text]
  • Fractal-Bits
    fractal-bits Claude Heiland-Allen 2012{2019 Contents 1 buddhabrot/bb.c . 3 2 buddhabrot/bbcolourizelayers.c . 10 3 buddhabrot/bbrender.c . 18 4 buddhabrot/bbrenderlayers.c . 26 5 buddhabrot/bound-2.c . 33 6 buddhabrot/bound-2.gnuplot . 34 7 buddhabrot/bound.c . 35 8 buddhabrot/bs.c . 36 9 buddhabrot/bscolourizelayers.c . 37 10 buddhabrot/bsrenderlayers.c . 45 11 buddhabrot/cusp.c . 50 12 buddhabrot/expectmu.c . 51 13 buddhabrot/histogram.c . 57 14 buddhabrot/Makefile . 58 15 buddhabrot/spectrum.ppm . 59 16 buddhabrot/tip.c . 59 17 burning-ship-series-approximation/BossaNova2.cxx . 60 18 burning-ship-series-approximation/BossaNova.hs . 81 19 burning-ship-series-approximation/.gitignore . 90 20 burning-ship-series-approximation/Makefile . 90 21 .gitignore . 90 22 julia/.gitignore . 91 23 julia-iim/julia-de.c . 91 24 julia-iim/julia-iim.c . 94 25 julia-iim/julia-iim-rainbow.c . 94 26 julia-iim/julia-lsm.c . 98 27 julia-iim/Makefile . 100 28 julia/j-render.c . 100 29 mandelbrot-delta-cl/cl-extra.cc . 110 30 mandelbrot-delta-cl/delta.cl . 111 31 mandelbrot-delta-cl/Makefile . 116 32 mandelbrot-delta-cl/mandelbrot-delta-cl.cc . 117 33 mandelbrot-delta-cl/mandelbrot-delta-cl-exp.cc . 134 34 mandelbrot-delta-cl/README . 139 35 mandelbrot-delta-cl/render-library.sh . 142 36 mandelbrot-delta-cl/sft-library.txt . 142 37 mandelbrot-laurent/DM.gnuplot . 146 38 mandelbrot-laurent/Laurent.hs . 146 39 mandelbrot-laurent/Main.hs . 147 40 mandelbrot-series-approximation/args.h . 148 41 mandelbrot-series-approximation/emscripten.cpp . 150 42 mandelbrot-series-approximation/index.html .
    [Show full text]
  • Math Morphing Proximate and Evolutionary Mechanisms
    Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 2009 Volume V: Evolutionary Medicine Math Morphing Proximate and Evolutionary Mechanisms Curriculum Unit 09.05.09 by Kenneth William Spinka Introduction Background Essential Questions Lesson Plans Website Student Resources Glossary Of Terms Bibliography Appendix Introduction An important theoretical development was Nikolaas Tinbergen's distinction made originally in ethology between evolutionary and proximate mechanisms; Randolph M. Nesse and George C. Williams summarize its relevance to medicine: All biological traits need two kinds of explanation: proximate and evolutionary. The proximate explanation for a disease describes what is wrong in the bodily mechanism of individuals affected Curriculum Unit 09.05.09 1 of 27 by it. An evolutionary explanation is completely different. Instead of explaining why people are different, it explains why we are all the same in ways that leave us vulnerable to disease. Why do we all have wisdom teeth, an appendix, and cells that if triggered can rampantly multiply out of control? [1] A fractal is generally "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole," a property called self-similarity. The term was coined by Beno?t Mandelbrot in 1975 and was derived from the Latin fractus meaning "broken" or "fractured." A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion. http://www.kwsi.com/ynhti2009/image01.html A fractal often has the following features: 1. It has a fine structure at arbitrarily small scales.
    [Show full text]
  • A Classroom Investigation Into the Catenary
    A classroom investigation into the catenary Ed Staples Erindale College, ACT <[email protected]> The Catenary is the curve that an idealised hanging chain or cable assumes when supported at its ends and acted on only by its own weight… The word catenary is derived from the Latin word catena, which means “chain”. Huygens first used the term catenaria in a letter to Leibniz in 1690… Hooke discovered that the catenary is the ideal curve for an arch of uniform density and thick- ness which supports only its own weight. (Wikipedia, catenary) he quest to find the equation of a catenary makes an ideal investigation Tfor upper secondary students. In the modelling exercise that follows, no knowledge of calculus is required to gain a fairly good understanding of the nature of the curve. This investigation1 is best described as a scientific investi- 1. I saw a similar inves- gation—a ‘hands on’ experience that examines some of the techniques used tigation conducted with students by by science to find models of natural phenomena. It was Joachim Jungius John Short at the time working at (1587–1657) who proved that the curve followed by a chain was not in fact a Rosny College in 2004. The chain parabola, (published posthumously in 1669, Wikipedia, catenary). Wolfram hung along the length of the wall MathWorld also provides relevant information and interesting interactive some four or five metres, with no demonstrations (see http://mathworld.wolfram.com/Catenary.html). more than a metre vertically from the The investigation, to be described here, is underpinned by the fact that the chain’s vertex to the catenary’s equation can be thought of as a real valued polynomial consisting horizontal line Australian Senior Mathematics Journal 25 (2) 2011 between the two of an infinite number of even-powered terms described as: anchor points.
    [Show full text]