Thresher Shark Factsheet

Total Page:16

File Type:pdf, Size:1020Kb

Thresher Shark Factsheet T h r e s h e r S h a r k P r o j e c t I n d o n e s i a | i n f o @ t h r e s h e r s h a r k . i d THRESHER SHARKS Getting to know one of the endangered, overlooked shark species and how you can save them! M a p o f t h r e s h e r s h a r k l o c a t i o n s i n i n d o n e s i a From West to East: Aceh, Pelabuhan Ratu, Cilacap, Bali, East THRESHER SHARK CAN BE FOUND IN THE BALMY AND TROPICAL WATERS OF THE INDO-PACIFIC. Lombok, and Alor THEY ARE DISTINGUISHABLE BY THEIR LONG TAILS, WHICH ARE BEAUTIFUL AND ACT AS THEIR Life and Reproduction HUNTING TOOL, USING THEM TO WHIP AND STUN THEIR PREY. Thresher sharks are ovoviviparous (eggs hatched within the body), and give birth There are three species of Thresher Sharks: Pelagic to two pups per litter with around one Thresher Shark (Alopias pelagicus), Big-Eye Thresher year gestation. Pregnant thresher Shark (Alopias superciliosus) and CommonThresher sharks often caught by fishers. Thresher Shark (Alopias vulpinus). The most common Thresher sharks reproduce slowly, with maturity Shark species found in Indonesia is the Pelagic around 7-14 years old. Thresher Shark (Alopias pelagicus), though Big-Eye Thresher Shark (Alopias superciliosus) is also sometimes Thresher sharks considered to be seen in the Indonesian waters, commonly in the Indian extremely understudied. Most studies Ocean. mainly focus on fisheries, with limited source of information about T hresher Shark in Indonesia reproduction In Alor Island, Indonesia thresher sharks are valuable catch which are consumed locally and the fins are sold in some regions in Indonesia and for export. Thresher sharks can also be seen in the waters of Aceh, Bali and Maumere. One of very productive thresher shark fisheries can be found in big fisheries port, such as in Aceh, Cilacap, Pelabuhan Ratu, Banyuwani and Lombok, which operate mostly around Indian Ocean fishing grounds. Thresher shark caught in a fishing line in Alor Island, Indonesia. Photo by Shawn Heinrichs T h r e s h e r S h a r k P r o j e c t I n d o n e s i a | i n f o @ t h r e s h e r s h a r k . i d "Thresher sharks protected under the Indian Ocean Tuna Commission (IOTC), Resolution 12/09 and Indonesian Ministerial Decree (Kepmen-KP, 12/2012 and 30/2012)" Thresher Shark Tourism Thresher shark-specific tourism has not been established in Indonesia. However, their presence around diving tourism sites have been identified, particularly in Nusa Penida, Bali, Maratua, and Alor. One of the successful thresher shark tourism in the world is in Malapascua, which could generate revenues and contribute up to US$12million annually to the economy, and Behavior and Ecology incentivize conservation efforts. Thresher sharks often found in the blue from 20-40 meters (recreational diving limit). It can be curious at times, by What You Can do to swimming closer to diver before decided to heading out, Protect Threshers? disappear in the deep blue sea. Tuna and mackerel are their main diets, and usually hang around them to feed. Be an aware Eco-Tourist, follow the guidelines when diving with thresher Threshers use their whip-like tail to stun and kill their sharks (lucky when you found one!) prey. Sometimes it comes to cleaning station for "spa" Support conservation initiatives for days. Although generally solitary, threshers can be found thresher shark (like us! - Thresher Shark hunting in a group with 2-3 other individuals. Project Indonesia) by reporting your sighting in our citizen science program, Conservation Issues and donate or purchase our thresher shark merchandises! Thresher shark families (Alopias spp.) are classified as Spread the words about thresher shark endangered and Vulnerable by IUCN Red List. Although population are declining worldwide, information on the conservation, educate the people that presence around protected area are not not available. close to you, and make them excited to Therefore, their site-based protection has not been conserve thresher sharks! established, especially in Indonesia. Threshers also included in Appendix II CITES, meaning their international trade is regulated. However, they still being caught in bycatch and targeted in many local fisheries. Lack of conservation education and awareness also limit Follow us! the knowledge for people on the conservation status and Instagram: @threshershark.id further to promote action. Facebook/Linkedin: Thresher Shark Project Indonesia Website: http://threshershark.id.
Recommended publications
  • Forage Fish Management Plan
    Oregon Forage Fish Management Plan November 19, 2016 Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship to Other State Policies ......................................................................................................... 7 Public Process Developing this Plan .......................................................................................................... 8 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis ....................................................................................................................................
    [Show full text]
  • Feeding Habits of the Common Thresher Shark (Alopias Vulpinus) Sampled from the California-Based Drift Gill Net Fishery, 1998-1 999
    PRETI ET AL.: FEEDING HABITS OF COMMON THRESHER SHARK CalCOFl Rep., Vol. 42, 2001 FEEDING HABITS OF THE COMMON THRESHER SHARK (ALOPIAS VULPINUS) SAMPLED FROM THE CALIFORNIA-BASED DRIFT GILL NET FISHERY, 1998-1 999 ANTONELLA PRETI SUSAN E. SMITH AND DARLENE A. RAMON California Department of Fish and Game National Marine Fisheries Service, NOM 8604 La Jolla Shores Dnve Southwest Fisheries Science Center La Jolla, California 92037 P.O. Box 271 sharksharkshark@hotniail coni La Jolla, California 92038 ABSTRACT (Compagno 1984). It is epipelagic, gregarious, and cos- The diet of common thresher shark (Alopius vulpinus) mopolitan, and in the northeastern Pacific seems to be from US. Pacific Coast waters was investigated by means most abundant within 40 miles of shore (Strasburg 1958). of frequency of occurrence, gravimetric and numerical Its known range extends from Clarion Island, Mexico, methods, and calculating the geometric index of im- north to British Columbia; it is common seasonally from portance (GII) of prey taxa taken from stoniachs col- mid-Baja California, Mexico, to Washington state.' It lected by fishery observers from the California-based is the leading commercial shark taken in California, drift gill net fishery. Sampling was done from 16 August where it is highly valued in the fresh fish trade (Holts et 1998 to 24 January 1999, a time when the California al. 1998). It is also sought by recreational anglers for its Current was undergoing rapid change from El Niiio to fighting ability as well as food value, especially in south- La Niiia conhtions. Of the 165 stomachs examined, 107 ern California.
    [Show full text]
  • 4 Thresher Shark, Alopias Vulpinus
    4 Thresher Shark, Alopias vulpinus Thresher shark, Alopias vulpinus. Photo credit: Dale Sweetnam. History of the Fishery The common thresher shark, Alopias vulpinus, is the most common commercially landed shark in California. They are primarily caught using large mesh drift gill nets and hook and line gear, but are also caught incidentally with small mesh gill nets and harpoon. Prior to 1977, all sharks were reported in one market category and not separated by species, and it is assumed threshers were caught as bycatch in gears at levels similar or greater than today. The first significant fishery for thresher sharks began the late 1970s to early 1980s when drift gill net fishers began to target them close to the southern California coastline. The fishery expanded rapidly and, because of overfishing concerns, the California Department of Fish and Game (Department) as mandated by the State Legislature began an observer program, monitored landings and implemented a logbook program. A limited entry permit program for drift gill net gear was initiated in 1982, with permits issued to fishers rather than boats to prevent false inflation in value. The drift gill net fishery for thresher sharks peaked in 1981 when 113 Status of the Fisheries Report 2008 4-1 drift gill net boats landed nearly 600 tons (544 metric tons). However, total landings using all gears were highest the following year with a total of more than 1700 tons (1542 metric tons) taken by all gears (Figure 4-1). 2000 1500 1000 Landings (short tons) (short Landings 500 0 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 Year Figure 4-1.
    [Show full text]
  • The Denticle Surface of Thresher Shark Tails: Three-Dimensional Structure and Comparison to Other Pelagic Species
    Received: 3 April 2020 Revised: 14 May 2020 Accepted: 21 May 2020 DOI: 10.1002/jmor.21222 RESEARCH ARTICLE The denticle surface of thresher shark tails: Three-dimensional structure and comparison to other pelagic species Meagan Popp1 | Connor F. White1 | Diego Bernal2 | Dylan K. Wainwright1 | George V. Lauder1 1Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Abstract Massachusetts Shark skin denticles (scales) are diverse in morphology both among species and 2 Department of Biology, University of across the body of single individuals, although the function of this diversity is poorly Massachusetts Dartmouth, Dartmouth, Massachusetts understood. The extremely elongate and highly flexible tail of thresher sharks pro- vides an opportunity to characterize gradients in denticle surface characteristics Correspondence George V. Lauder, Museum of Comparative along the length of the tail and assess correlations between denticle morphology and Zoology, 26 Oxford Street, Cambridge, MA tail kinematics. We measured denticle morphology on the caudal fin of three mature 02138. Email: [email protected] and two embryo common thresher sharks (Alopias vulpinus), and we compared thresher tail denticles to those of eleven other shark species. Using surface Funding information National Oceanic and Atmospheric profilometry, we quantified 3D-denticle patterning and texture along the tail of Administration, Grant/Award Number: threshers (27 regions in adults, and 16 regions in embryos). We report that tails of NA16NMF4270231; National Science Foundation, Grant/Award Numbers: IOS- thresher embryos have a membrane that covers the denticles and reduces surface 1354593, GRF DGE-1144152; Office of Naval roughness. In mature thresher tails, surfaces have an average roughness of 5.6 μm Research, Grant/Award Numbers: N00014-09-1-0352, N000141410533 which is smoother than some other pelagic shark species, but similar in roughness to blacktip, porbeagle, and bonnethead shark tails.
    [Show full text]
  • Use of Productivity and Susceptibility Indices to Determine the Vulnerability of a Stock: with Example Applications to Six U.S
    Use of productivity and susceptibility indices to determine the vulnerability of a stock: with example applications to six U.S. fisheries. Wesley S. Patrick1, Paul Spencer2, Olav Ormseth2, Jason Cope3, John Field4, Donald Kobayashi5, Todd Gedamke6, Enric Cortés7, Keith Bigelow5, William Overholtz8, Jason Link8, and Peter Lawson9. 1NOAA, National Marine Fisheries Service, Office of Sustainable Fisheries, 1315 East- West Highway, Silver Spring, MD 20910; 2 NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, 7600 Sand Point Way, Seattle, WA 98115; 3NOAA, National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, WA 98112; 4NOAA, National Marine Fisheries Service, Southwest Fisheries Science Center, 110 Shaffer Road, Santa Cruz, CA 95060; 5NOAA, National Marine Fisheries Service, Pacific Islands Fisheries Science Center, 2570 Dole Street, Honolulu, HI 96822; 6NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, FL 33149; 7NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, 3500 Delwood Beach Road, Panama City, FL 32408; 8NOAA, National Marine Fisheries Service, Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543; 9NOAA, National Marine Fisheries Service, Northwest Fisheries Science Center, 2030 South Marine Science Drive, Newport, OR 97365. CORRESPONDING AUTHOR: Wesley S. Patrick, NOAA, National Marine Fisheries Service, Office of Sustainable Fisheries, 1315 East-West
    [Show full text]
  • Thresher Sharks (Alopias Spp.) in Subareas 10 and 12, Divisions 7.C–K and 8.D–E, and in Subdivisions 5.B.1, 9.B.1, and 14.B.1 (Northeast Atlantic)
    ICES Advice on fishing opportunities, catch, and effort Oceanic Northeast Atlantic ecoregion Published 4 October 2019 Thresher sharks (Alopias spp.) in subareas 10 and 12, divisions 7.c–k and 8.d–e, and in subdivisions 5.b.1, 9.b.1, and 14.b.1 (Northeast Atlantic) ICES advice on fishing opportunities ICES advises that when the precautionary approach is applied, there should be zero catch in each of the years 2020–2023. Stock development over time No information is available to inform on the current stock status of either common thresher shark (Alopias vulpinus) or bigeye thresher shark (A. superciliosus). Landings data for the entire stock area are uncertain for both species. Stock and exploitation status ICES cannot assess the stock and exploitation status relative to maximum sustainable yield (MSY) and precautionary approach (PA) reference points, because the reference points are undefined. Thresher sharks (Alopias spp.) in the Northeast Atlantic. State of the stocks and fishery relative to reference points. Table 1 Catch scenarios The ICES framework for category 6 stocks (ICES, 2012) was applied. For stocks without information on abundance or exploitation, ICES considers that a precautionary reduction of catches should be implemented unless there is ancillary information clearly indicating that the current level of exploitation is appropriate for the stock. Discarding is known to take place, but ICES cannot quantify the corresponding catch. Discard survival, which may occur, has also not been fully estimated. Table 2 Thresher sharks (Alopias spp.) in the Northeast Atlantic. Basis for the catch scenario. Recent advised catch 0 Discard rate Unknown Precautionary buffer Not applied - Catch advice 0 % Advice change * 0% * Advice value for 2020–2023 relative to the advice for 2016–2019 issued in 2015.
    [Show full text]
  • Classifying Sharks Using a Dichotomous Key
    Name:____________________________________________ Date:_______________ Period:_____ Classifying Sharks using a Dichotomous Key A classification system is a way of separating a large group of closely related organisms into smaller subgroups. With such a system, identification of an organism is easy. The scientific names of organisms are based on the classification systems of living organisms. To classify an organism, scientists often use a dichotomous key. A dichotomous key is a listing of specific characteristics, such as structure and behavior, in such a way that an organism can be identified through a process of elimination. In this investigation, it is expected that you: 1) Use a key to identify 14 shark families. 2) Study the method used in phrasing statements in a key. Procedure 1. Read sentences 1A and 1B of the key. Then study shark 1 in figure A for the characteristics referred to in 1A and 1B. Follow the directions in these sentences and continue with this process until a family name for Shark 1 is determined. For example, if the shark has an anal fin, and its body is not kite shaped, following the directions of 1A and go directly to sentence 2. If the shark lacks and anal fin or has a kite shaped body, follow the directions of 1B and go to sentence 10. 2. Continue this process with each shark until all animals have been identified. Write the family name on the line below each animal. 3. Use figure 1 as a guide to the anatomical features used in the key. Figure 1 – Anatomy of a Shark Name:____________________________________________ Date:_______________ Period:_____ Key to Shark Identification Name:____________________________________________ Date:_______________ Period:_____ Name:____________________________________________ Date:_______________ Period:_____ Shark Answer Key 1.
    [Show full text]
  • Atlantic Sharks at Risk
    RESEARCH SERIES JUNE 2008 Risk Assessment Prompts No-Take Recommendations for Shark Species ATLANTIC SHARKS AT RISK SummARY OF AN EXPERT WORKING GROup REPORT: Simpfendorfer, C., Heupel M., Babcock, E., Baum, J.K., Dudley, S.F.J., Stevens, J.D., Fordham, S., and A. Soldo. 2008. Management Recommendations Based on Integrated Risk Assessment of Data-Poor Pelagic Atlantic Sharks. POpuLATIONS OF MANY of the world’s pelagic, or open ocean, shark and ray species are declining. Like most sharks, these species are known to be susceptible to overfishing due to low reproductive rates. Pelagic longline fisheries for tuna and swordfish catch significant numbers of pelagic sharks and rays and shark fisheries are also growing due to declines in traditional target species and the rising value of shark fins and meat. Yet, a lack of data has prevented scientists from conducting reliable population assessments for most pelagic shark and ray species, hindering effective management actions. Dr. Colin Simpfendorfer and the Lenfest Ocean Program convened an international expert working group to estimate the risk of overfishing for twelve species caught in Atlantic pelagic longline fisheries under the jurisdiction of the International Commission for the Conserva- tion of Atlantic Tunas (ICCAT). The scientists conducted an integrated risk assessment designed for data-poor situations for these sharks and rays. Their analysis indicated that bigeye thresher, shortfin mako and longfin mako sharks had the highest risk of overfishing while many of the other species had at least moderately high levels of risk. Based on these results, the scientists developed recommendations for limiting or prohibiting catch for the main pelagic shark and ray species taken in ICCAT fisheries.
    [Show full text]
  • Thresher Sharks Common Thresher Alopias Vulpinus Bigeye Thresher Alopias Superciliosus Pelagic Thresher Alopias Pelagicus
    Fact sheet for the 11th Meeting of the Conference of the Parties (CoP11) to the Convention on Migratory Species (CMS) Thresher Sharks Common Thresher Alopias vulpinus Bigeye Thresher Alopias superciliosus Pelagic Thresher Alopias pelagicus Proposed action Inclusion on CMS Appendix II Proponents European Union NAOO/SWFSC Overview Thresher Sharks, wide-ranging, largely oceanic species found in warm and temperate seas, make up one of the world’s most vulnerable and threatened shark families. These highly migratory, low-productivity species are at risk in many regions due to demand for their valuable meat and fins, as well as incidental take in a variety of fisheries. Despite some regional prohibitions, global Thresher Shark mortality is under-reported and largely unmanaged. Including the genus (Alopias) in CMS Appendix II could bolster compliance with existing protections and facilitate international cooperation toward more comprehensive national and regional conservation measures, thereby enhancing the chances for sustainable use. SHARK ADVOCATES INTERNATIONAL Fact sheet for the 11th Meeting of the Conference of the Parties (CoP11) to the Convention on Migratory Species (CMS) Biology and Distribution common in the global trade driven by Asian demand for Thresher Sharks are characterized by long, scythe-like tails shark fin soup. Threshers are fished by recreational anglers in that account for half their body length. High-order predators, many countries, including the US, Canada, United Kingdom, they use their tails to corral, disorient, and stun schooling fishes Italy, South Africa, Australia, and New Zealand. In a few and pelagic invertebrates. The largest species – Common places, like Philippines, Thresher Sharks are key attractions for Threshers – can grow to six meters in length (nearly 20 feet).
    [Show full text]
  • Casgy09002.Pdf
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Movement patterns, habitat preferences, and fisheries biology of the common thresher shark (Alopias vulpinus) in the Southern California Bight A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Marine Biology by Daniel Patrick Cartamil Committee in charge: Professor Jeffrey B. Graham, Chair Professor David M. Checkley Professor Philip A. Hastings Professor Cleridy E. Lennert Professor Richard H. Rosenblatt Professor David S. Woodruff 2009 i IGNATURE PAGE The dissertation of Daniel Patrick Cartamil is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ________________________________________ ________________________________________ ________________________________________ ________________________________________ ________________________________________ Chair University of California, San Diego 2009 iii EPIGRAPH “The swordfish swimmes under the whale, and pricketh him upward. The thresher keepeth above him, and with a mighty great thing like unto a flail, hee so bangeth the whale, that hee will roare as though it thundered, and doth give him such blowes with his weapon, that you would think it to be the crake of a great shot” Block Island fisherman, 1609 iv TABLE OF CONTENTS Signature Page .......................................................................................................... iii Epigraph ...................................................................................................................
    [Show full text]
  • Malapascua Philippines Thresher Shark Tourism Factsheet.Pdf
    FACTSHEET h Cornis to: Andy Pho Monad Shoal, Philippines Dive operators form a fund to protect a thresher shark site History Monad Shoal is currently the only known location where pelagic thresher sharks All fishing is (Alopias pelagicus) can be predictably found at recreational diving depths. In the early hours of morning, these sharks rise from their normal depths of up to 150 m prohibited within the to be cleaned by reef fishes at several cleaning stations at depths around 30 m. It is believed that the site was found after learning from fishers that thresher sharks Monad Shoal MPA regularly breached at Monad Shoal, and the first diving operation to offer the thresher shark dive started in the late 1990s. The Monad Shoal MPA was established in 2002, and in mid-2015 Monad Shoal and Gato Island were designated at a provincial level as the Philippines’ first shark and ray sanctuary. The Executive Order establishes a participatory Management Board, provision for additional regulations, and increased funding from local government. Furthermore in 2014 the Provincial Fisheries & Aquatic Resources Ordinance of Cebu was amended to penalize the catching, possession, and trading of all shark and ray species in Cebu. Monad Shoal is a standard municipality MPA, and 150 Pesos (US$ 3) per visitor to the island per day is collected by the municipality as a marine park fee. While some of the fees collected have been used to install mooring buoys, how the majority of the funds are used is unclear, and enforcement of the ban on all fishing within the MPA was weak.
    [Show full text]
  • Bigeye Thresher, Alopias Superciliosus
    Published Date: 1 March 2019 Bigeye Thresher, Alopias superciliosus Report Card Depleting assessment IUCN Red List IUCN Red List Australian See global assessment Global Vulnerable Assessment Assessment Amorim, A.F., Baum, J.K., Cailliet, G.M., Clò, S., Clarke, S.C., Fergusson, Assessors I., Gonzalez, M., Macias, D., Mancini, P.L., Mancusi, C., Myers, R., Reardon, M.B., Trejo, T., Vacchi, M. & Valenti, S.V. Australian fishing pressure is low; needs reassessment once regional Report Card Remarks connectivity is better understood Summary The Bigeye Thresher is a large bodied, highly migratory species globally distributed throughout pelagic and coastal waters. Life history characteristics result in low potential rate of population increase and make it highly susceptible to fishing pressure. Because of its pelagic distribution, fishing pressure from pelagic fisheries is high. Source: Australian National Fish Collection, CSIRO. License: CC By Attribution-Noncommercial. Globally, fishing pressure has caused serious depletion of Bigeye Threshers. In Australia, the species is likely stable because fishing pressure is low and strictly managed with individuals encountered often returned to the sea alive. However, this stability is dependent of levels of connectivity and migration of Bigeye Threshers across Australia’s exclusive economic zone (EEZ) with regional neighbours. Therefore, it is assessed as globally Vulnerable (IUCN) and in Australia as Declining (SAFS) given the status of the global population. The levels of connectivity within the region could affect the species stability in Australia; once connectivity is better understood the population status needs to be reassessed. This species is listed on CITES Appendix II and CMS Appendix II Distribution The Bigeye Thresher has a circumglobal distribution throughout tropical and temperate waters (Compagno 2001).
    [Show full text]