Shark Species Profiles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Whale Shark Rhincodon Typus Populations Along the West Coast of the Gulf of California and Implications for Management
Vol. 18: 115–128, 2012 ENDANGERED SPECIES RESEARCH Published online August 16 doi: 10.3354/esr00437 Endang Species Res Whale shark Rhincodon typus populations along the west coast of the Gulf of California and implications for management Dení Ramírez-Macías1,2,*, Abraham Vázquez-Haikin3, Ricardo Vázquez-Juárez1 1Centro de Investigaciones Biológicas del Noroeste, Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur 23096, Mexico 2Tiburón Ballena México de Conciencia México, Manatí 4802, Col. Esperanza III, La Paz, Baja California Sur 23090, Mexico 3Asociación de Pesca Deportiva y Ecoturismo de Bahía de los Ángeles, Domicilio conocido Bahía de los Ángeles, Baja California 22980, Mexico ABSTRACT: We used photo-identification data collected from 2003 through 2009 to estimate pop- ulation structure, site fidelity, abundance, and movements of this species along the west coast of the Gulf of California to make recommendations for effective conservation and management. Of 251 whale sharks identified from 1784 photographs, 129 sharks were identified in Bahía de Los Ángeles and 125 in Bahía de La Paz. Only juveniles (mostly small) were found in these 2 bays. At Isla Espíritu Santo, we identified adult females; at Gorda Banks we identified 15 pregnant females. High re-sighting rates within and across years provided evidence of site fidelity among juvenile sharks in the 2 bays. Though the juveniles were not permanent residents, they used the areas regularly from year to year. A proportion of the juveniles spent days to a month or more in the coastal waters of the 2 bays before leaving, and periods of over a month outside the study areas before entering the bays again. -
Research and Conservation at Georgia Aquarium, Inc
RESEARCH AND CONSERVATION AT GEORGIA AQUARIUM, INC. Georgia Aquarium is committed to the research and conservation of aquatic animals around the world. As a leader in marine research, Georgia Aquarium contributes to the advancement of knowledge of our blue planet by studying animals here at the Aquarium and in their natural environments. Since opening, members of the Aquarium’s research team have participated in nearly 100 funded research projects and authored more than 130 peer-reviewed publications and conference appearances. Our researchers collaborate with scientists around the world to understand our aquatic world so that we may conserve it for generations to come. Conservation Field Station The Georgia Aquarium Conservation Field Station (GACFS) in Marineland, Fla., is dedicated to the research and rescue of dolphins and whales in northeast Florida. The GACFS team responds to marine mammal strandings and distress calls, and researchers contribute to a recurring photo identification survey that documents the resident bottlenose dolphin population in northern Florida. The GACFS is also committed to community outreach, with school outreach courses, camps and stranding awareness programs to educate the public. ONGOING AND MILESTONE RESEARCH & CONSERVATION EFFORTS Whale Sharks Georgia Aquarium is a worldwide leader in whale shark research and conservation. We’ve sent teams to learn more about these gentle giants off the coast of Mexico, Taiwan, the Galapagos Islands and Saint Helena, an island in the middle of the South Atlantic Ocean. In 2009, our joint studies with the Project Domino consortium led to the Mexican government’s creation of the Whale Shark Biosphere Reserve, a protected area for this vulnerable species in Yucatan, Mexico. -
Thomas Jefferson Meg Tooth
The ECPHORA The Newsletter of the Calvert Marine Museum Fossil Club Volume 30 Number 3 September 2015 Thomas Jefferson Meg Tooth Features Thomas Jefferson Meg The catalogue number Review; Walking is: ANSP 959 Whales Inside The tooth came from Ricehope Estate, Snaggletooth Shark Cooper River, Exhibit South Carolina. Tiktaalik Clavatulidae In 1806, it was Juvenile Bald Eagle originally collected or Sculpting Whale Shark owned by Dr. William Moroccan Fossils Reid. Prints in the Sahara Volunteer Outing to Miocene-Pliocene National Geographic coastal plain sediments. Dolphins in the Chesapeake Sloth Tooth Found SharkFest Shark Iconography in Pre-Columbian Panama Hippo Skulls CT- Scanned Squalus sp. Teeth Sperm Whale Teeth On a recent trip to the Academy of Natural Sciences of Drexel University (Philadelphia), Collections Manager Ned Gilmore gave John Nance and me a behind -the-scenes highlights tour. Among the fossils that belonged to Thomas☼ Jefferson (left; American Founding Father, principal author of the Declaration of Independence, and third President of the United States) was this Carcharocles megalodon tooth. Jefferson’s interests and knowledge were encyclopedic; a delight to know that they included paleontology. Hand by J. Nance. Photo by S. Godfrey. Jefferson portrait from: http://www.biography.com/people/thomas-jefferson-9353715 ☼ CALVERT MARINE MUSEUM www.calvertmarinemuseum.com 2 The Ecphora September 2015 Book Review: The Walking 41 million years ago and has worldwide distribution. It was fully aquatic, although it did have residual Whales hind limbs. In later chapters, Professor Thewissen George F. Klein discusses limb development and various genetic factors that make whales, whales. This is a The full title of this book is The Walking complicated topic, but I found these chapters very Whales — From Land to Water in Eight Million clear and readable. -
Feeding Habits of the Common Thresher Shark (Alopias Vulpinus) Sampled from the California-Based Drift Gill Net Fishery, 1998-1 999
PRETI ET AL.: FEEDING HABITS OF COMMON THRESHER SHARK CalCOFl Rep., Vol. 42, 2001 FEEDING HABITS OF THE COMMON THRESHER SHARK (ALOPIAS VULPINUS) SAMPLED FROM THE CALIFORNIA-BASED DRIFT GILL NET FISHERY, 1998-1 999 ANTONELLA PRETI SUSAN E. SMITH AND DARLENE A. RAMON California Department of Fish and Game National Marine Fisheries Service, NOM 8604 La Jolla Shores Dnve Southwest Fisheries Science Center La Jolla, California 92037 P.O. Box 271 sharksharkshark@hotniail coni La Jolla, California 92038 ABSTRACT (Compagno 1984). It is epipelagic, gregarious, and cos- The diet of common thresher shark (Alopius vulpinus) mopolitan, and in the northeastern Pacific seems to be from US. Pacific Coast waters was investigated by means most abundant within 40 miles of shore (Strasburg 1958). of frequency of occurrence, gravimetric and numerical Its known range extends from Clarion Island, Mexico, methods, and calculating the geometric index of im- north to British Columbia; it is common seasonally from portance (GII) of prey taxa taken from stoniachs col- mid-Baja California, Mexico, to Washington state.' It lected by fishery observers from the California-based is the leading commercial shark taken in California, drift gill net fishery. Sampling was done from 16 August where it is highly valued in the fresh fish trade (Holts et 1998 to 24 January 1999, a time when the California al. 1998). It is also sought by recreational anglers for its Current was undergoing rapid change from El Niiio to fighting ability as well as food value, especially in south- La Niiia conhtions. Of the 165 stomachs examined, 107 ern California. -
4 Thresher Shark, Alopias Vulpinus
4 Thresher Shark, Alopias vulpinus Thresher shark, Alopias vulpinus. Photo credit: Dale Sweetnam. History of the Fishery The common thresher shark, Alopias vulpinus, is the most common commercially landed shark in California. They are primarily caught using large mesh drift gill nets and hook and line gear, but are also caught incidentally with small mesh gill nets and harpoon. Prior to 1977, all sharks were reported in one market category and not separated by species, and it is assumed threshers were caught as bycatch in gears at levels similar or greater than today. The first significant fishery for thresher sharks began the late 1970s to early 1980s when drift gill net fishers began to target them close to the southern California coastline. The fishery expanded rapidly and, because of overfishing concerns, the California Department of Fish and Game (Department) as mandated by the State Legislature began an observer program, monitored landings and implemented a logbook program. A limited entry permit program for drift gill net gear was initiated in 1982, with permits issued to fishers rather than boats to prevent false inflation in value. The drift gill net fishery for thresher sharks peaked in 1981 when 113 Status of the Fisheries Report 2008 4-1 drift gill net boats landed nearly 600 tons (544 metric tons). However, total landings using all gears were highest the following year with a total of more than 1700 tons (1542 metric tons) taken by all gears (Figure 4-1). 2000 1500 1000 Landings (short tons) (short Landings 500 0 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 Year Figure 4-1. -
Malaysia National Plan of Action for the Conservation and Management of Shark (Plan2)
MALAYSIA NATIONAL PLAN OF ACTION FOR THE CONSERVATION AND MANAGEMENT OF SHARK (PLAN2) DEPARTMENT OF FISHERIES MINISTRY OF AGRICULTURE AND AGRO-BASED INDUSTRY MALAYSIA 2014 First Printing, 2014 Copyright Department of Fisheries Malaysia, 2014 All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic, mechanical, including photocopy, recording, or any information storage and retrieval system, without prior permission in writing from the Department of Fisheries Malaysia. Published in Malaysia by Department of Fisheries Malaysia Ministry of Agriculture and Agro-based Industry Malaysia, Level 1-6, Wisma Tani Lot 4G2, Precinct 4, 62628 Putrajaya Malaysia Telephone No. : 603 88704000 Fax No. : 603 88891233 E-mail : [email protected] Website : http://dof.gov.my Perpustakaan Negara Malaysia Cataloguing-in-Publication Data ISBN 978-983-9819-99-1 This publication should be cited as follows: Department of Fisheries Malaysia, 2014. Malaysia National Plan of Action for the Conservation and Management of Shark (Plan 2), Ministry of Agriculture and Agro- based Industry Malaysia, Putrajaya, Malaysia. 50pp SUMMARY Malaysia has been very supportive of the International Plan of Action for Sharks (IPOA-SHARKS) developed by FAO that is to be implemented voluntarily by countries concerned. This led to the development of Malaysia’s own National Plan of Action for the Conservation and Management of Shark or NPOA-Shark (Plan 1) in 2006. The successful development of Malaysia’s second National Plan of Action for the Conservation and Management of Shark (Plan 2) is a manifestation of her renewed commitment to the continuous improvement of shark conservation and management measures in Malaysia. -
The Denticle Surface of Thresher Shark Tails: Three-Dimensional Structure and Comparison to Other Pelagic Species
Received: 3 April 2020 Revised: 14 May 2020 Accepted: 21 May 2020 DOI: 10.1002/jmor.21222 RESEARCH ARTICLE The denticle surface of thresher shark tails: Three-dimensional structure and comparison to other pelagic species Meagan Popp1 | Connor F. White1 | Diego Bernal2 | Dylan K. Wainwright1 | George V. Lauder1 1Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Abstract Massachusetts Shark skin denticles (scales) are diverse in morphology both among species and 2 Department of Biology, University of across the body of single individuals, although the function of this diversity is poorly Massachusetts Dartmouth, Dartmouth, Massachusetts understood. The extremely elongate and highly flexible tail of thresher sharks pro- vides an opportunity to characterize gradients in denticle surface characteristics Correspondence George V. Lauder, Museum of Comparative along the length of the tail and assess correlations between denticle morphology and Zoology, 26 Oxford Street, Cambridge, MA tail kinematics. We measured denticle morphology on the caudal fin of three mature 02138. Email: [email protected] and two embryo common thresher sharks (Alopias vulpinus), and we compared thresher tail denticles to those of eleven other shark species. Using surface Funding information National Oceanic and Atmospheric profilometry, we quantified 3D-denticle patterning and texture along the tail of Administration, Grant/Award Number: threshers (27 regions in adults, and 16 regions in embryos). We report that tails of NA16NMF4270231; National Science Foundation, Grant/Award Numbers: IOS- thresher embryos have a membrane that covers the denticles and reduces surface 1354593, GRF DGE-1144152; Office of Naval roughness. In mature thresher tails, surfaces have an average roughness of 5.6 μm Research, Grant/Award Numbers: N00014-09-1-0352, N000141410533 which is smoother than some other pelagic shark species, but similar in roughness to blacktip, porbeagle, and bonnethead shark tails. -
International Shark Conservation & Management
16. Futerman Final - DELPF Spring 2018 (Do Not Delete) 6/5/2018 7:21 PM AT THE INTERSECTION OF SCIENCE & POLICY: INTERNATIONAL SHARK CONSERVATION & MANAGEMENT ∗ ANDREW M. FUTERMAN I. Introduction ......................................................................................... 259 II. Global Declines in Shark Populations Driven Largely by Negative Interactions with the World’s Fisheries .................................... 263 A. The Declining Conservation Status of Sharks .................... 264 B. The Global Tuna Fishery ....................................................... 265 III. Regional Fisheries Management Organization Conservation and Management Measures Concerning Global Key Shark Species .......................................................................................... 267 A. Regional Fisheries Management Organizations (RFMOs) ............................................................................... 268 B. Current Conservation Measures ........................................... 269 i. Western and Central Pacific Fisheries Commission (WCPFC)......................................................................... 271 ii. International Commission for the Conservation of Atlantic Tunas (ICCAT) ............................................... 274 iii. Inter-American Tropical Tuna Commission (IATTC) .......................................................................... 276 iv. Indian Ocean Tuna Commission (IOTC) .................... 278 v. Northwest Atlantic Fisheries Organization (NAFO) .. 281 vi. Commission -
Body Markings of the Whale Shark: Vestigial Or Functional?
BODY MARKINGS OF THE WHALE SHARK: VESTIGIAL OR FUNCTIONAL? By STEVEN G. WILSON Department of Zoology, The University of Western Australia, Nedlands, WA 6907, Australia *Current address: Department of Zoology, University of New Hampshire, Durham, NH 03824, USA and R. AIDAN MARTIN ReefQuest Centre for Shark Research, P.O. Box 48561, 595 Burrard Street, Vancouver, BC V7X 1A3, Canada ABSTRACT The whale shark’s distinctive body markings are similar to those of other orectolobiform sharks. These markings likely conceal their sluggish, bottom-dwelling relatives through disruptive colouration. It is argued here that the whale shark’s body markings similarly function to camouflage them in their pelagic environment. The whale shark’s countershaded colouration eliminates the optical appearance of relief against its visual background. Disruptive patterns resembling elements common in its environmental background break up the whale shark’s outline. Other possible functions for the whale shark’s markings are considered, including: radiation shielding, intraspecific communication (species recognition, sex recognition, postural displays, schooling coordination), and interspecific communication (aggressive mimicry). However, they are either discounted or evidence substantiating these functions is found to be lacking. INTRODUCTION globe (Compagno 1984; Colman 1997; Eckert and Stewart 2001), Prior to 1986, there had been including Ningaloo Reef, Western only 320 reported sightings of Australia. Consequently, there is the whale shark, Rhincodon increasing research interest into typus (Orectolobiformes, the biology of whale sharks. In Rhincodontidae), worldwide addition to being the world’s (Wolfson 1986). Today they can be largest living fish and possessing a reliably encountered and studied distinctly unique body form, one in several locations around the 118 of the whale shark’s most striking relevance (Myrberg 1991). -
Classifying Sharks Using a Dichotomous Key
Name:____________________________________________ Date:_______________ Period:_____ Classifying Sharks using a Dichotomous Key A classification system is a way of separating a large group of closely related organisms into smaller subgroups. With such a system, identification of an organism is easy. The scientific names of organisms are based on the classification systems of living organisms. To classify an organism, scientists often use a dichotomous key. A dichotomous key is a listing of specific characteristics, such as structure and behavior, in such a way that an organism can be identified through a process of elimination. In this investigation, it is expected that you: 1) Use a key to identify 14 shark families. 2) Study the method used in phrasing statements in a key. Procedure 1. Read sentences 1A and 1B of the key. Then study shark 1 in figure A for the characteristics referred to in 1A and 1B. Follow the directions in these sentences and continue with this process until a family name for Shark 1 is determined. For example, if the shark has an anal fin, and its body is not kite shaped, following the directions of 1A and go directly to sentence 2. If the shark lacks and anal fin or has a kite shaped body, follow the directions of 1B and go to sentence 10. 2. Continue this process with each shark until all animals have been identified. Write the family name on the line below each animal. 3. Use figure 1 as a guide to the anatomical features used in the key. Figure 1 – Anatomy of a Shark Name:____________________________________________ Date:_______________ Period:_____ Key to Shark Identification Name:____________________________________________ Date:_______________ Period:_____ Name:____________________________________________ Date:_______________ Period:_____ Shark Answer Key 1. -
Thresher Sharks Common Thresher Alopias Vulpinus Bigeye Thresher Alopias Superciliosus Pelagic Thresher Alopias Pelagicus
Fact sheet for the 11th Meeting of the Conference of the Parties (CoP11) to the Convention on Migratory Species (CMS) Thresher Sharks Common Thresher Alopias vulpinus Bigeye Thresher Alopias superciliosus Pelagic Thresher Alopias pelagicus Proposed action Inclusion on CMS Appendix II Proponents European Union NAOO/SWFSC Overview Thresher Sharks, wide-ranging, largely oceanic species found in warm and temperate seas, make up one of the world’s most vulnerable and threatened shark families. These highly migratory, low-productivity species are at risk in many regions due to demand for their valuable meat and fins, as well as incidental take in a variety of fisheries. Despite some regional prohibitions, global Thresher Shark mortality is under-reported and largely unmanaged. Including the genus (Alopias) in CMS Appendix II could bolster compliance with existing protections and facilitate international cooperation toward more comprehensive national and regional conservation measures, thereby enhancing the chances for sustainable use. SHARK ADVOCATES INTERNATIONAL Fact sheet for the 11th Meeting of the Conference of the Parties (CoP11) to the Convention on Migratory Species (CMS) Biology and Distribution common in the global trade driven by Asian demand for Thresher Sharks are characterized by long, scythe-like tails shark fin soup. Threshers are fished by recreational anglers in that account for half their body length. High-order predators, many countries, including the US, Canada, United Kingdom, they use their tails to corral, disorient, and stun schooling fishes Italy, South Africa, Australia, and New Zealand. In a few and pelagic invertebrates. The largest species – Common places, like Philippines, Thresher Sharks are key attractions for Threshers – can grow to six meters in length (nearly 20 feet). -
The Smalltooth Sawfish, Giant Manta Ray, Oceanic Protected Whitetip Shark, and Scalloped Hammerhead Shark Are Elasmobranchs—Cartilaginous Fish—Protected by the U.S
The smalltooth sawfish, giant manta ray, oceanic Protected whitetip shark, and scalloped hammerhead shark are elasmobranchs—cartilaginous fish—protected by the U.S. Endangered Species Act. These species are particularly vulnerable because they grow slow, mature late, and have few young. Sawfish and sharks are top predators that help keep ecosystems in balance. Manta rays are planktivores that are important indicators of of the Southeast United States ocean health. Giant Manta Ray (Mobula/Manta birostris) u Status: Threatened Size: World’s largest ray, up to 29 ft wide (8.8 m); at birth 6–8 ft (1.8–2.4 m) Habitat: Open waters and productive coastal areas Diet: Zooplankton Fun Fact: Manta rays have the biggest brains of any fish, with developed areas for learning, individual recognition, and problem solving t Scalloped Hammerhead (Sphyrna lewini) Status: Threatened (Central and Southwest Atlantic population) Size: Up to 11 ft (3.3 m) Habitat: Open ocean and coastal waters Diet: Fish, cephalopods, crustaceans Fun Fact: Their hammers contain sensory receptors to help detect prey Oceanic Whitetip (Carcharhinus longimanus) t Status: Threatened Size: Up to 11.25 ft (3.4 m) Habitat: Open ocean—strong preference for surface waters Diet: Cephalopods, fish, sea birds, and marine mammals Fun Fact: The tips of their fins are rounded which is atypical for sharks u Smalltooth Sawfish (Pristis pectinata) Status: Endangered Size: Up to 16 ft (4.8 m) Habitat: Estuaries and coastal waters Diet: Fish Fun Facts: Smalltooth sawfish are rays, not sharks. The 22–29 teeth on each side of a sawfish’s snout (rostrum) are not true teeth, but rather modified scales that are used to attack prey Threats How You Can Help Commercial fishing is the Buy sustainable seafood: The U.S.