The Microbial Loop Oceanography

Total Page:16

File Type:pdf, Size:1020Kb

The Microbial Loop Oceanography or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The approval Oceanography portionthe ofwith any permitted articleonly photocopy by is of machine, reposting, this means or collective or other redistirbution This article has This been published in A S ea of M icrobe S > SecTion II. IdeaS, ConcepTS, and ParadiGMS > CHapTer 2. THE Microbial Loop Oceanography The Microbial Loop journal of The 20, NumberOceanography 2, a quarterly , Volume BY L AWrence R . PomeroY, PETer J. leB. WilliamS, FarooQ AZam, and JOHN E. Hobbie I presume that the numerous lower pelagic animals persist on the infusoria, which are known to abound in the open ocean: but on what, in the clear blue water, do these infusoria subsist? – Charles Darwin (1845) Answering Charles Darwin’s prescient in the vast oligotrophic blue water where solved organic molecules from seawater question has taken us nearly two cen- they are the dominant autotrophs. as well as organic particles that they turies. Only in recent decades have We now know that every liter of “clear “digest” with enzymes. Some bacteria S ociety. Copyright 2007 by The 2007 by Oceanography Copyright ociety. methods and concepts been developed blue water” is teeming with a billion and archaea oxidize inorganic chemicals to explore the significance of microbes microbes—bacteria, viruses, and pro- for energy, and the carbon they fix into in the ocean’s web of life. Bacteria in tists—far exceeding all multi-cellular organic matter serves as basis for food aquatic ecosystems were first recognized metazoa in abundance, biomass, meta- webs in diverse ecosystems, including for their role in the decomposition of bolic activity, and genetic and biochemi- some in seemingly uninhabitable envi- organic material and the remineraliza- cal diversity. Their struggle for survival ronments. The “smoke” coming from tion of inorganic nutrients, a role that is manifest in a web of microbial life, hot vents on the seafloor may even con- S only became fully accepted in the 1980s. the microbial loop, which is function- tain some bacteria and archaea (Box 1). reproduction, systemmatic Republication, article use for research. and this copy in teaching to granted rights All reserved. is ociety. Permission S Their importance as photosynthetic pro- ally intertwined with the more familiar Earth’s ocean is most certainly a sea of ociety. ducers of organic matter became evident food web of plants, herbivores, and car- microbes; without them it would be a S end all correspondence to: [email protected] or Th e [email protected] Oceanography to: correspondence all end when so-called blue-green algae were nivores. It channels energy and carbon very different place, less hospitable to all acknowledged as being bacteria, and via bacteria to protozoa (Darwin’s infu- life. Indeed, without the activity of these the microscopic cyanobacterium of the soria), to larger zooplankton such as organisms, the cycles of Nature would genus Synechococcus was discovered to copepods and krill, and on to fishes and very quickly come to a halt. This is not be abundant in the oceans—particularly cetaceans. Indeed, when we eat mahi- the case for higher organisms: whereas mahi, we are the top predator in a food the near extinction of the great whales by LAWrence R. PomeroY (lpomeroy@ web that has some of its beginnings in fishing undoubtedly modified the ecol- uga.edu) is Alumni Foundation Professor the microbial loop. ogy of the Antarctic, it certainly did not Emeritus, Institute of Ecology, University About one-half of the oxygen in every bring it to a stop. of Georgia, Athens, GA, USA. PETer breath we take derives from photosyn- S J. leB. WilliamS is Professor Emeritus, thetic bacteria within the marine micro- MICROBIAL DOMINANCE PO Box 1931, Rockville,ociety, MD 20849-1931, U School of Ocean Sciences, University of bial loop. Bacteria manage to populate Earth’s ocean is estimated to contain Wales, Bangor, UK. FarooQ AZam all parts of the ocean by capturing nutri- 1029 bacteria (Whitman et al., 1998), is Distinguished Professor, Scripps ents and energy from diverse sources. a number larger than the estimated Institution of Oceanography, La Jolla, CA, Photosynthetic bacteria carry out much 1021 stars in the universe. Their great USA. JOHN E. Hobbie is Senior Scholar, of the primary production of organic numerical abundance makes up for their The Ecosystems Center, Marine Biological matter in the central ocean basins. size, typically 0.2–0.6 µm in diameter. Laboratory, Woods Hole, MA, USA. Heterotrophic bacteria capture dis- The total mass of bacteria in the ocean S A. 28 Oceanography Vol. 20, No. 2 exceeds the combined mass of zoo- plankton and fishes. Fish biomass is too BOX 1. THE KindS of MicroorGaniSMS Domain Eukarya small even to show relative to others in Animals Figure 1. The entire microbial food web, Fungi including protozoan microzooplankton, Plants Domain Archaea is typically some five to ten times the Domain Bacteria Ciliates mass of all multicellular marine organ- Microorganisms Flagellates isms (locally, these ratios vary widely). include members The potential metabolic dominance of of many branches of the tree of life, from the microorganisms is even greater than most primitive to the most their biomass would suggest (Figure 2). advanced. What were once Progenote Heterotrophic bacteria have poten- simply called “bacteria” have been tially fierce metabolic rates. For example, separated into two distinct domains, the marine bacterium Pseudomonas Bacteria and Archaea, initially on the basis of differences in their ribosomal RNA W( oese natrigens (now renamed Beneckea natri- and Fox, 1977). Archaea look superficially much like bacteria, but their basic biochemistry gens) can, under optimum conditions, is very different, in some ways more like that of higher organisms (Domain Eukarya), while in other ways it is unique. This is reflected in their position on the Tree of Life. Some archaea divide with a frequency of < 10 min are “extremophiles,” living in very hot water and environments that are very salty, acidic, or per division, a growth potential related alkaline. Others live in extreme cold, in anaerobic mud, or in our anaerobic gut, where they to its surface-to-volume ratio. Whereas outnumber the living cells in our bodies. Protozoa (flagellates and ciliates) and fungi are in the biomass (i.e., volume) sets the ultimate Domain Eukarya along with animals and most of what we call plants. potential for metabolism and therefore growth, all organic and inorganic nutri- ents, oxygen, and waste products have a bacterium the size of a micrometer watts per gram dry weight. Put in more to pass through the cell surface. Thus, would have a metabolic rate a million understandable terms, a mass of B. natri- the metabolism per unit biomass is con- times greater than a human. Other fac- gens equal to 100 humans would have an trolled by the surface-to-volume rela- tors—for example, the rate of DNA energy throughput of about a gigawatt, tionship. In the case of a simple sphere, replication, convoluted surfaces such as much the same as a nuclear power sta- this would be 4πr2/(4/3)r3 = 3/r. In this lungs and gills, the availability of growth tion. This metabolic potential under simple instance, the metabolic rate is substrates—ameliorate the discrepancy optimal circumstances would be rarely, if inversely proportional to the linear rela- somewhat, so that in the case of a human ever, achieved in nature for a number of reasons, notably the low concentration of organic nutrients; but, in principle, it We now know that every liter of “clear blue water” gives bacteria the potential for very rapid is teeming with a billion microbes—bacteria, viruses, response to favorable conditions. This and protists—far exceeding all multi-cellular metazoa is important ecologically in the oceans, in abundance, biomass, metabolic activity, and for if the valuable inorganic nutrients present in particulate organic material genetic and biochemical diversity. produced by plankton are to remain in surface waters and not lost to the ocean tionship between size and metabolism versus this particular bacterium, the dis- depths, there must be rapid colonization that in part gives rise to the allome- crepancy is still about 100,000 fold. The and decomposition of these particles. It tric relationship known as the “mouse energy throughput of B. natrigens divid- may be significant that the bacterium to the elephant” curve. Taken literally, ing every 10 minutes would be 2 kilo- that holds the gold medal for growth rate Oceanography June 2007 29 1000 Adult zooplankton Metazoans Larval zooplankton 100 Proto zoa Bacteria Herbivorous protozoans 10 Inverteb Single-celled Mammal Bacterivorous protozoans Fishes Organisms 1 Algal autotrophs rate s s Bacterial autotrophs 0.1 Annual Production Bacterial heterotrophs 0.01 50 25 25 50 0 75 2 6 10e 10e 10e -2 10e -6 Biomass (% total) Surface area (% total) 10e -10 10e -14 Figure 1. Distribution of biomass and calculated surface area (expressed as a percentage Biomass, Grams of Carbon of total) for planktonic trophic groups in the euphotic zone of the oceans. The biomass value is a geometric mean of the data from various oceanic areas; surface area is calculated Figure 2. Comparison of the production of liv- assuming simple spherical geometry. The total biomass for the plankton is 50 mg C -3m ing organic matter per unit of biomass by dif- and the total surface area is 1.2 m2 m-3. Megaplankton, such as medusae, have not been ferent kinds and sizes of organisms showing the included, although this would not materially change the picture. Compiled from Ducklow relatively high productivity per unit weight by (1999), Pomeroy (2004), and Robinson and Williams (2005) microorganisms.
Recommended publications
  • Freshwater Ecosystems and Biodiversity
    Network of Conservation Educators & Practitioners Freshwater Ecosystems and Biodiversity Author(s): Nathaniel P. Hitt, Lisa K. Bonneau, Kunjuraman V. Jayachandran, and Michael P. Marchetti Source: Lessons in Conservation, Vol. 5, pp. 5-16 Published by: Network of Conservation Educators and Practitioners, Center for Biodiversity and Conservation, American Museum of Natural History Stable URL: ncep.amnh.org/linc/ This article is featured in Lessons in Conservation, the official journal of the Network of Conservation Educators and Practitioners (NCEP). NCEP is a collaborative project of the American Museum of Natural History’s Center for Biodiversity and Conservation (CBC) and a number of institutions and individuals around the world. Lessons in Conservation is designed to introduce NCEP teaching and learning resources (or “modules”) to a broad audience. NCEP modules are designed for undergraduate and professional level education. These modules—and many more on a variety of conservation topics—are available for free download at our website, ncep.amnh.org. To learn more about NCEP, visit our website: ncep.amnh.org. All reproduction or distribution must provide full citation of the original work and provide a copyright notice as follows: “Copyright 2015, by the authors of the material and the Center for Biodiversity and Conservation of the American Museum of Natural History. All rights reserved.” Illustrations obtained from the American Museum of Natural History’s library: images.library.amnh.org/digital/ SYNTHESIS 5 Freshwater Ecosystems and Biodiversity Nathaniel P. Hitt1, Lisa K. Bonneau2, Kunjuraman V. Jayachandran3, and Michael P. Marchetti4 1U.S. Geological Survey, Leetown Science Center, USA, 2Metropolitan Community College-Blue River, USA, 3Kerala Agricultural University, India, 4School of Science, St.
    [Show full text]
  • Response of Marine Food Webs to Climate-Induced Changes in Temperature and Inflow of Allochthonous Organic Matter
    Response of marine food webs to climate-induced changes in temperature and inflow of allochthonous organic matter Rickard Degerman Department of Ecology and Environmental Science 901 87 Umeå Umeå 2015 1 Copyright©Rickard Degerman ISBN: 978-91-7601-266-6 Front cover illustration by Mats Minnhagen Printed by: KBC Service Center, Umeå University Umeå, Sweden 2015 2 Tillägnad Maria, Emma och Isak 3 Table of Contents Abstract 5 List of papers 6 Introduction 7 Aquatic food webs – different pathways Food web efficiency – a measure of ecosystem function Top predators cause cascade effects on lower trophic levels The Baltic Sea – a semi-enclosed sea exposed to multiple stressors Varying food web structures Climate-induced changes in the marine ecosystem Food web responses to increased temperature Responses to inputs of allochthonous organic matter Objectives 14 Material and Methods 14 Paper I Paper II and III Paper IV Results and Discussion 18 Effect of temperature and nutrient availability on heterotrophic bacteria Influence of food web length and labile DOC on pelagic productivity and FWE Consequences of changes in inputs of ADOM and temperature for pelagic productivity and FWE Control of pelagic productivity, FWE and ecosystem trophic balance by colored DOC Conclusion and future perspectives 21 Author contributions 23 Acknowledgements 23 Thanks 24 References 25 4 Abstract Global records of temperature show a warming trend both in the atmosphere and in the oceans. Current climate change scenarios indicate that global temperature will continue to increase in the future. The effects will however be very different in different geographic regions. In northern Europe precipitation is projected to increase along with temperature.
    [Show full text]
  • A New Type of Plankton Food Web Functioning in Coastal Waters Revealed by Coupling Monte Carlo Markov Chain Linear Inverse Metho
    A new type of plankton food web functioning in coastal waters revealed by coupling Monte Carlo Markov Chain Linear Inverse method and Ecological Network Analysis Marouan Meddeb, Nathalie Niquil, Boutheina Grami, Kaouther Mejri, Matilda Haraldsson, Aurélie Chaalali, Olivier Pringault, Asma Sakka Hlaili To cite this version: Marouan Meddeb, Nathalie Niquil, Boutheina Grami, Kaouther Mejri, Matilda Haraldsson, et al.. A new type of plankton food web functioning in coastal waters revealed by coupling Monte Carlo Markov Chain Linear Inverse method and Ecological Network Analysis. Ecological Indicators, Elsevier, 2019, 104, pp.67-85. 10.1016/j.ecolind.2019.04.077. hal-02146355 HAL Id: hal-02146355 https://hal.archives-ouvertes.fr/hal-02146355 Submitted on 3 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 A new type of plankton food web functioning in coastal waters revealed by coupling 2 Monte Carlo Markov Chain Linear Inverse method and Ecological Network Analysis 3 4 5 Marouan Meddeba,b*, Nathalie Niquilc, Boutheïna Gramia,d, Kaouther Mejria,b, Matilda 6 Haraldssonc, Aurélie Chaalalic,e,f, Olivier Pringaultg, Asma Sakka Hlailia,b 7 8 aUniversité de Carthage, Faculté des Sciences de Bizerte, Laboratoire de phytoplanctonologie 9 7021 Zarzouna, Bizerte, Tunisie.
    [Show full text]
  • Modeling Vitamin B1 Transfer to Consumers in the Aquatic Food Web M
    www.nature.com/scientificreports OPEN Modeling vitamin B1 transfer to consumers in the aquatic food web M. J. Ejsmond 1,2, N. Blackburn3, E. Fridolfsson 2, P. Haecky3, A. Andersson4,5, M. Casini 6, A. Belgrano6,7 & S. Hylander2 Received: 10 January 2019 Vitamin B1 is an essential exogenous micronutrient for animals. Mass death and reproductive failure in Accepted: 26 June 2019 top aquatic consumers caused by vitamin B1 defciency is an emerging conservation issue in Northern Published: xx xx xxxx hemisphere aquatic ecosystems. We present for the frst time a model that identifes conditions responsible for the constrained fow of vitamin B1 from unicellular organisms to planktivorous fshes. The fow of vitamin B1 through the food web is constrained under anthropogenic pressures of increased nutrient input and, driven by climatic change, increased light attenuation by dissolved substances transported to marine coastal systems. Fishing pressure on piscivorous fsh, through increased abundance of planktivorous fsh that overexploit mesozooplankton, may further constrain vitamin B1 fow from producers to consumers. We also found that key ecological contributors to the constrained fow of vitamin B1 are a low mesozooplankton biomass, picoalgae prevailing among primary producers and low fuctuations of population numbers of planktonic organisms. Vitamin B1 (thiamin) is necessary for the proper functioning of the majority of organisms because it serves as a cofactor that associates with a number of enzymes involved in primary carbohydrate and amino acid metabo- 1 2 lism . Vitamin B1 defciency compromises mitochondrial functioning and causes nerve signaling malfunction 3 in animals . On a systemic level, low vitamin B1 levels translate into impaired health, immunosuppression and 4 reproductive failures .
    [Show full text]
  • 7.014 Handout PRODUCTIVITY: the “METABOLISM” of ECOSYSTEMS
    7.014 Handout PRODUCTIVITY: THE “METABOLISM” OF ECOSYSTEMS Ecologists use the term “productivity” to refer to the process through which an assemblage of organisms (e.g. a trophic level or ecosystem assimilates carbon. Primary producers (autotrophs) do this through photosynthesis; Secondary producers (heterotrophs) do it through the assimilation of the organic carbon in their food. Remember that all organic carbon in the food web is ultimately derived from primary production. DEFINITIONS Primary Productivity: Rate of conversion of CO2 to organic carbon (photosynthesis) per unit surface area of the earth, expressed either in terns of weight of carbon, or the equivalent calories e.g., g C m-2 year-1 Kcal m-2 year-1 Primary Production: Same as primary productivity, but usually expressed for a whole ecosystem e.g., tons year-1 for a lake, cornfield, forest, etc. NET vs. GROSS: For plants: Some of the organic carbon generated in plants through photosynthesis (using solar energy) is oxidized back to CO2 (releasing energy) through the respiration of the plants – RA. Gross Primary Production: (GPP) = Total amount of CO2 reduced to organic carbon by the plants per unit time Autotrophic Respiration: (RA) = Total amount of organic carbon that is respired (oxidized to CO2) by plants per unit time Net Primary Production (NPP) = GPP – RA The amount of organic carbon produced by plants that is not consumed by their own respiration. It is the increase in the plant biomass in the absence of herbivores. For an entire ecosystem: Some of the NPP of the plants is consumed (and respired) by herbivores and decomposers and oxidized back to CO2 (RH).
    [Show full text]
  • Meadow Pond Final Report 1-28-10
    Comparison of Restoration Techniques to Reduce Dominance of Phragmites australis at Meadow Pond, Hampton New Hampshire FINAL REPORT January 28, 2010 David M. Burdick1,2 Christopher R. Peter1 Gregg E. Moore1,3 Geoff Wilson4 1 - Jackson Estuarine Laboratory, University of New Hampshire, Durham, NH 03824 2 – Natural Resources and the Environment, UNH 3 – Department of Biological Sciences, UNH 4 – Northeast Wetland Restoration, Berwick ME 03901 Submitted to: New Hampshire Coastal Program New Hampshire Department of Environmental Services 50 International Drive Pease Tradeport Portsmouth, NH 03801 UNH Burdick et al. 2010 Executive Summary The northern portion of Meadow Pond Marsh remained choked with an invasive exotic variety of Phragmites australis (common reed) in 2002, despite tidal restoration in 1995. Our project goal was to implement several construction techniques to reduce the dominance of Phragmites and then examine the ecological responses of the system (as a whole as well as each experimental treatment) to inform future restoration actions at Meadow Pond. The construction treatments were: creeks, creeks and pools, sediment excavation with a large pool including native marsh plantings. Creek construction increased tides at all treatments so that more tides flooded the marsh and the highest spring tides increased to 30 cm. Soil salinity increased at all treatment areas following restoration, but also increased at control areas, so greater soil salinity could not be attributed to the treatments. Decreases in Phragmites cover were not statistically significant, but treatment areas did show significant increases in native vegetation following restoration. Fish habitat was also increased by creek and pool construction and excavation, so that pool fish density increased from 1 to 40 m-2.
    [Show full text]
  • Bacterial Production and Respiration
    Organic matter production % 0 Dissolved Particulate 5 > Organic Organic Matter Matter Heterotrophic Bacterial Grazing Growth ~1-10% of net organic DOM does not matter What happens to the 90-99% of sink, but can be production is physically exported to organic matter production that does deep sea not get exported as particles? transported Export •Labile DOC turnover over time scales of hours to days. •Semi-labile DOC turnover on time scales of weeks to months. •Refractory DOC cycles over on time scales ranging from decadal to multi- decadal…perhaps longer •So what consumes labile and semi-labile DOC? How much carbon passes through the microbial loop? Phytoplankton Heterotrophic bacteria ?? Dissolved organic Herbivores ?? matter Higher trophic levels Protozoa (zooplankton, fish, etc.) ?? • Very difficult to directly measure the flux of carbon from primary producers into the microbial loop. – The microbial loop is mostly run on labile (recently produced organic matter) - - very low concentrations (nM) turning over rapidly against a high background pool (µM). – Unclear exactly which types of organic compounds support bacterial growth. Bacterial Production •Step 1: Determine how much carbon is consumed by bacteria for production of new biomass. •Bacterial production (BP) is the rate that bacterial biomass is created. It represents the amount of Heterotrophic material that is transformed from a nonliving pool bacteria (DOC) to a living pool (bacterial biomass). •Mathematically P = µB ?? µ = specific growth rate (time-1) B = bacterial biomass (mg C L-1) P= bacterial production (mg C L-1 d-1) Dissolved organic •Note that µ = P/B matter •Thus, P has units of mg C L-1 d-1 Bacterial production provides one measurement of carbon flow into the microbial loop How doe we measure bacterial production? Production (∆ biomass/time) (mg C L-1 d-1) • 3H-thymidine • 3H or 14C-leucine Note: these are NOT direct measures of biomass production (i.e.
    [Show full text]
  • GLOBAL PRIMARY PRODUCTION and EVAPOTRANSPIRATION by Steven W
    15 GLOBAL PRIMARY PRODUCTION AND EVAPOTRANSPIRATION by Steven W. Running and Maosheng Zhao DATA PRODUCTS Moderate Resolution Imaging Spectroradiometer Terrestrial primary production provides the energy to (MODIS) sensor, these variables are calculated maintain the structure and functions of ecosystems, every eight days in near real time at 1 km resolution. and supplies goods (e.g. food, fuel, wood and fi bre) MODIS GPP, NPP and ET data are available at the for human society. Gross primary production (GPP) EOS data gateway (see link below). is the amount of carbon fi xed by photosynthesis, To correct for contamination in the global and net primary production (NPP) is the amount of refl ectance data due to severe cloudiness or aerosols carbon converted into biomass after subtracting in the near real time products, these datasets are the cost of plant respiration. The water loss through reprocessed at the end of each year to build more exchange of trace gas CO2 by leaf stomata during stable, permanent datasets. These end-of-year photosynthesis plus evaporation from soil and versions of MODIS GPP, NPP and ET are available at plants is evapotranspiration (ET). ET computes the NTSG, University of Montana (see link below). water lost by a land surface, so it is consequently a component of the water balance in a region, and RESULTS FOR 2000–2006 is therefore relevant for drought monitoring and Figure 1 shows the seven-year average MODIS water management, providing an assessment of NPP for vegetated land on earth at 1 km spatial the water potentially available for human society.
    [Show full text]
  • Microbial Loop' in Stratified Systems
    MARINE ECOLOGY PROGRESS SERIES Vol. 59: 1-17, 1990 Published January 11 Mar. Ecol. Prog. Ser. 1 A steady-state analysis of the 'microbial loop' in stratified systems Arnold H. Taylor, Ian Joint Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PLl 3DH, United Kingdom ABSTRACT. Steady state solutions are presented for a simple model of the surface mixed layer, which contains the components of the 'microbial loop', namely phytoplankton, picophytoplankton, bacterio- plankton, microzooplankton, dissolved organic carbon, detritus, nitrate and ammonia. This system is assumed to be in equilibrium with the larger grazers present at any time, which are represented as an external mortality function. The model also allows for dissolved organic nitrogen consumption by bacteria, and self-grazing and mixotrophy of the microzooplankton. The model steady states are always stable. The solution shows a number of general properties; for example, biomass of each individual component depends only on total nitrogen concentration below the mixed layer, not whether the nitrogen is in the form of nitrate or ammonia. Standing stocks and production rates from the model are compared with summer observations from the Celtic Sea and Porcupine Sea Bight. The agreement is good and suggests that the system is often not far from equilibrium. A sensitivity analysis of the model is included. The effect of varying the mixing across the pycnocline is investigated; more intense mixing results in the large phytoplankton population increasing at the expense of picophytoplankton, micro- zooplankton and DOC. The change from phytoplankton to picophytoplankton dominance at low mixing occurs even though the same physiological parameters are used for both size fractions.
    [Show full text]
  • Relationships Between Net Primary Production, Water Transparency, Chlorophyll A, and Total Phosphorus in Oak Lake, Brookings County, South Dakota
    Proceedings of the South Dakota Academy of Science, Vol. 92 (2013) 67 RELATIONSHIPS BETWEEN NET PRIMARY PRODUCTION, WATER TRANSPARENCY, CHLOROPHYLL A, AND TOTAL PHOSPHORUS IN OAK LAKE, BROOKINGS COUNTY, SOUTH DAKOTA Lyntausha C. Kuehl and Nels H. Troelstrup, Jr.* Department of Natural Resource Management South Dakota State University Brookings, SD 57007 *Corresponding author email: [email protected] ABSTRACT Lake trophic state is of primary concern for water resource managers and is used as a measure of water quality and classification for beneficial uses. Secchi transparency, total phosphorus and chlorophyll a are surrogate measurements used in the calculation of trophic state indices (TSI) which classify waters as oligotrophic, mesotrophic, eutrophic or hypereutrophic. Yet the relationships between these surrogate measurements and direct measures of lake productivity vary regionally and may be influenced by external factors such as non-algal tur- bidity. Prairie pothole basins, common throughout eastern South Dakota and southwestern Minnesota, are shallow glacial lakes subject to frequent winds and sediment resuspension. Light-dark oxygen bottle methodology was employed to evaluate vertical planktonic production within an eastern South Dakota pothole basin. Secchi transparency, total phosphorus and planktonic chlorophyll a were also measured from each of three basin sites at biweekly intervals throughout the 2012 growing season. Secchi transparencies ranged between 0.13 and 0.25 meters, corresponding to an average TSISD value of 84.4 (hypereutrophy). Total phosphorus concentrations ranged between 178 and 858 ug/L, corresponding to an average TSITP of 86.7 (hypereutrophy). Chlorophyll a values corresponded to an average TSIChla value of 69.4 (transitional between eutrophy and hypereutro- phy) and vertical production profiles yielded areal net primary productivity val- ues averaging 288.3 mg C∙m-2∙d-1 (mesotrophy).
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Biodiversity and Trophic Ecology of Hydrothermal Vent Fauna Associated with Tubeworm Assemblages on the Juan De Fuca Ridge
    Biogeosciences, 15, 2629–2647, 2018 https://doi.org/10.5194/bg-15-2629-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge Yann Lelièvre1,2, Jozée Sarrazin1, Julien Marticorena1, Gauthier Schaal3, Thomas Day1, Pierre Legendre2, Stéphane Hourdez4,5, and Marjolaine Matabos1 1Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France 2Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada 3Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 9 CNRS/UBO/IRD/Ifremer, BP 70, 29280, Plouzané, France 4Sorbonne Université, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France 5CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France Correspondence: Yann Lelièvre ([email protected]) Received: 3 October 2017 – Discussion started: 12 October 2017 Revised: 29 March 2018 – Accepted: 7 April 2018 – Published: 4 May 2018 Abstract. Hydrothermal vent sites along the Juan de Fuca community structuring. Vent food webs did not appear to be Ridge in the north-east Pacific host dense populations of organised through predator–prey relationships. For example, Ridgeia piscesae tubeworms that promote habitat hetero- although trophic structure complexity increased with ecolog- geneity and local diversity. A detailed description of the ical successional stages, showing a higher number of preda- biodiversity and community structure is needed to help un- tors in the last stages, the food web structure itself did not derstand the ecological processes that underlie the distribu- change across assemblages.
    [Show full text]