Myricetin: a Dietary Molecule with Diverse Biological Activities

Total Page:16

File Type:pdf, Size:1020Kb

Load more

nutrients Review Myricetin: A Dietary Molecule with Diverse Biological Activities Deepak Kumar Semwal 1, Ruchi Badoni Semwal 1, Sandra Combrinck 1,2 and Alvaro Viljoen 1,2,* 1 Department of Pharmaceutical Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; [email protected] (D.K.S.); [email protected] (R.B.S.); [email protected] (S.C.) 2 SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa * Correspondence: [email protected]; Tel.: +27-12-382-6360; Fax: +27-12-382-6243 Received: 9 November 2015; Accepted: 23 December 2015; Published: 16 February 2016 Abstract: Myricetin is a common plant-derived flavonoid and is well recognised for its nutraceuticals value. It is one of the key ingredients of various foods and beverages. The compound exhibits a wide range of activities that include strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. It displays several activities that are related to the central nervous system and numerous studies have suggested that the compound may be beneficial to protect against diseases such as Parkinson’s and Alzheimer’s. The use of myricetin as a preserving agent to extend the shelf life of foods containing oils and fats is attributed to the compound’s ability to protect lipids against oxidation. A detailed search of existing literature revealed that there is currently no comprehensive review available on this important molecule. Hence, the present work includes the history, synthesis, pharmaceutical applications and toxicity studies of myricetin. This report also highlights structure-activity relationships and mechanisms of action for various biological activities. Keywords: myricetin; anti-oxidant activity; anti-HIV activity; cytotoxicity; polyphenol; anti-alzheimer activity 1. Introduction Although myricetin occurs throughout the Plant Kingdom, it is produced mainly by members of the families Myricaceae [1,2], Anacardiaceae [3], Polygonaceae [4], Pinaceae [5] and Primulaceae [6]. This phenolic compound is very common in berries, vegetables, and in teas and wines produced from various plants. It occurs in both the free and glycosidically-bound forms, which include myricetin-3-O-(3”-acetyl)-α-L-arabinopyranoside, myricetin-3-O-(4”-acetyl)-α-L-arabinopyranoside, myricetin-3-O-α-L-rhamnopyranoside, myricetin-3-O-β-D-galactopyranoside, myricetin-3-O- (6”-galloyl) -β-D-galactopyranoside, myricetin-3-O-β-D-xylopyranoside, myricetin 3-O-α-L- arabinofuranoside [7], myricetin-3-O-(2”-O-galloyl)-α-L-rhamnoside, myricetin-3-O-(3”-O-galloyl)- α-L-rhamnoside and myricetin-3-O-α-L-rhamnoside [8]. Myricetin is poorly soluble in water, i.e., 16.6 µg/mL, but dissolves rapidly when deprotonated in basic aqueous media and in some organic solvents such as dimethylformamide, dimethylacetamide, tetrahydrofuran and acetone [9]. Moreover, degradation of this compound, which is most stable at pH 2, was reported to be both pH and temperature dependent. The history of myricetin (1) extends back to more than a hundred years. It was first isolated in the late eighteenth century from the bark of Myrica nagi Thunb. (Myricaceae), harvested in India, as light yellow-coloured crystals [10]. Isolation was primarily sparked by interest in the dyeing property of the compound. It was well characterised in a further study of Perkin [11], who established the melting point as 357 ˝C and prepared various bromo, methyl, ethyl and potassium analogues. This report also described myricitrin (2), a myricetin glycoside (myricetin-3-O-rhamnoside), for the first time. Nutrients 2016, 8, 90; doi:10.3390/nu8020090 www.mdpi.com/journal/nutrients Nutrients 2016, 8, 90 2 of 31 The history of myricetin (1) extends back to more than a hundred years. It was first isolated in the late eighteenth century from the bark of Myrica nagi Thunb. (Myricaceae), harvested in India, as light yellow-coloured crystals [10]. Isolation was primarily sparked by interest in the dyeing property of the compound. It was well characterised in a further study of Perkin [11], who Nutrientsestablished2016, 8the, 90 melting point as 357 °C and prepared various bromo, methyl, ethyl and potassium2 of 31 analogues. This report also described myricitrin (2), a myricetin glycoside (myricetin-3-O-rhamnoside), for the first time. In a subsequent study, Perkin [12] found that myricetin yields a phloroglucinol and In a subsequent study, Perkin [12] found that myricetin yields a phloroglucinol and gallic acid upon gallic acid upon hydrolysis, which served to confirm its chemical structure. hydrolysis, which served to confirm its chemical structure. Myricetin (1) is structurally related to several well-known phenolic compounds (Figure 1), Myricetin (1) is structurally related to several well-known phenolic compounds (Figure1), namely namely quercetin (3), morin (4), kaempferol (5) and fisetin (6). The compound is sometimes referred quercetin (3), morin (4), kaempferol (5) and fisetin (6). The compound is sometimes referred to as to as hydroxyquercetin, resulting from its structural similarity to quercetin (3). The nutraceuticals hydroxyquercetin, resulting from its structural similarity to quercetin (3). The nutraceuticals and and anti-oxidant properties of myricetin are highly valued. Scientific evidence [13] underscores anti-oxidant properties of myricetin are highly valued. Scientific evidence [13] underscores claims that claims that the compound displays a variety of pharmacological activities, including the compound displays a variety of pharmacological activities, including anti-inflammatory, analgesic, anti-inflammatory, analgesic, antitumour, hepatoprotective and antidiabetic activities. antitumour, hepatoprotective and antidiabetic activities. R4 R 3' R 3 2' 5 4' 1' B HO 8 O 5' R 7 2 6' 6 A C 3 6 5 4 R1 R2 O Myricetin (1) [R1=R2=R4=R5=R6=OH; R3=H] Myricitrin (2) [R1=Rham; R2=R4=R5=R6=OH; R3=H] Quercetin (3) [R1=R2=R4=R5=OH; R3=R6=H] Morin (4) [R1=R2=R3=R5=OH; R4=R6=H] Kaempferol (5) [R1=R2=R5=OH; R3=R4=R6=H] Fisetin (6) [R1=R5=R6=OH; R2=R3=R4=H] FigureFigure 1.1. ChemicalChemical structuresstructures ofof myricetinmyricetin andand relatedrelated compounds.compounds. 2.2. Chemical Chemical Synthesis Synthesis TheThe synthesissynthesis ofof myricetinmyricetin isis veryvery importantimportant inin termsterms ofof itsits useuse asas aa keykey startingstarting materialmaterial forfor thethe synthesissynthesis ofof variousvarious otherother beneficialbeneficial compounds compounds including including hibiscetin hibiscetin [ 14[14,15,15].]. Dean Dean and and Nierenstein Nierenstein [ 16[16]] firstfirst attemptedattempted toto synthesisesynthesise myricetinmyricetin inin 19251925 byby applyingapplying thethe KostaneckiKostanecki andand AuwersAuwers procedureprocedure whichwhich waswas unfortunately,unfortunately, notnot successful.successful. In the same year, KalffKalff andand RobinsonRobinson [[17]17] managedmanaged toto synthesisesynthesise myricetinmyricetin fromfrom !ω-methoxyphloroacetophenone.-methoxyphloroacetophenone. ThisThis methodmethod involvedinvolved heatingheating thethe startingstarting materialmaterial togethertogether withwith trimethylgallictrimethylgallic anhydrideanhydride andand sodiumsodium trimethylgallate.trimethylgallate. FollowingFollowing hydrolysishydrolysis ofof thethe product,product, 5,7-dihydroxy-3,35,7-dihydroxy-3,31′,4,41′,5,51′-tetramethoxyflavone-tetramethoxyflavone waswas formed,formed, whichwhich finallyfinally yieldedyielded myricetinmyricetin afterafter demethylationdemethylation (Scheme(Scheme1 1).). OnOn thethe otherother hand, hand, using using an an alternative alternative route, route, Rao Rao and and Seshadri Seshadri [ [18]18] synthesisedsynthesised myricetinmyricetin from quercetinquercetin viavia anan ortho-oxidationortho-oxidation reaction (Scheme 22).). InIn thisthis procedure,procedure, 3,5,7,33,5,7,31′--tetra-tetra-OO--methylquercetinmethylquercetin was was converted converted to the correspondingcorresponding 551′-aldehyde,-aldehyde, which waswas thenthen convertedconverted to 3,5,7,3 ′1--tetra-tetra-OO-methylmyricetin-methylmyricetin to to yield yield 5- 5-methoxykanugin,methoxykanugin, following following cyclisation cyclisation at the at the4′ and 41 and 5′ 5positions.1 positions. Hydrolysis Hydrolysis of of 5 5-methoxykanugin,-methoxykanugin, with with subsequent methylation,methylation, yieldedyielded hexamethylmyricetin,hexamethylmyricetin, which finally finally produced myricetin myricetin upon upon demethylation demethylation.. Nutrients 2016, 8, 90 3 of 31 Nutrients 2016, 8, 90 3 of 31 Nutrients 2016, 8, 90 3 of 31 OH O OCH3 H CO OCH OH O 3 3 - + OCH3 H CO OCH O Na OCH 3 O O 3 - + 3 Na O O O OCH3 OCH H CO 3 3 OCH3 OCH O 3 H3CO OCH3 HO OH O O O OCH3 HO OH H CO OCH Methoxyphloroacetophenone 3 Trimethylgallic anhydride 3 Sodium trimethylgallateOCH H CO 3 Methoxyphloroacetophenone 3 Trimethylgallic anhydride OCH3 Sodium trimethylgallate 1. Heat 2.1. HydrolysisHeat 2. Hydrolysis OH OCH3 OH OCH3 OH OCH3 OH OCH3 HO O HO O OH [Demethylation] OCH3 HO O HO O OH [Demethylation] OCH3 OH OCH3 OH O OH OH O OCH3 Myricetin 5,7-Dihydroxy-3,3',4',5'-tetramethoxyflavone OH O OH O MyricetinScheme 1. Synthesis of myricetin as proposed by5,7-Dihydroxy-3,3',4',5'-tetramethoxyflavone Kalff and Robinson [17]. Scheme 1. Synthesis of myricetin as proposed by Kalff and Robinson [17]. Scheme 1. Synthesis of myricetin as proposed by Kalff and Robinson [17]. OCH3 OCH3 OH OH OCH3 OCH3 OH OH H3CO O H3CO O CHO H3CO O H3CO O CHO OCH3 OCH3 OCH3 O OCH3 O
Recommended publications
  • Opportunities and Pharmacotherapeutic Perspectives

    Opportunities and Pharmacotherapeutic Perspectives

    biomolecules Review Anticoronavirus and Immunomodulatory Phenolic Compounds: Opportunities and Pharmacotherapeutic Perspectives Naiara Naiana Dejani 1 , Hatem A. Elshabrawy 2 , Carlos da Silva Maia Bezerra Filho 3,4 and Damião Pergentino de Sousa 3,4,* 1 Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa 58051-900, Brazil; [email protected] 2 Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA; [email protected] 3 Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; [email protected] 4 Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil * Correspondence: [email protected]; Tel.: +55-83-3216-7347 Abstract: In 2019, COVID-19 emerged as a severe respiratory disease that is caused by the novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The disease has been associated with high mortality rate, especially in patients with comorbidities such as diabetes, cardiovascular and kidney diseases. This could be attributed to dysregulated immune responses and severe systemic inflammation in COVID-19 patients. The use of effective antiviral drugs against SARS-CoV-2 and modulation of the immune responses could be a potential therapeutic strategy for Citation: Dejani, N.N.; Elshabrawy, COVID-19. Studies have shown that natural phenolic compounds have several pharmacological H.A.; Bezerra Filho, C.d.S.M.; properties, including anticoronavirus and immunomodulatory activities. Therefore, this review de Sousa, D.P. Anticoronavirus and discusses the dual action of these natural products from the perspective of applicability at COVID-19.
  • Anti-Inflammatory Effects of Kaempferol, Myricetin, Fisetin and Ibuprofen in Neonatal Rats

    Anti-Inflammatory Effects of Kaempferol, Myricetin, Fisetin and Ibuprofen in Neonatal Rats

    Guo & Feng Tropical Journal of Pharmaceutical Research August 2017; 16 (8): 1819-1826 ISSN: 1596-5996 (print); 1596-9827 (electronic) © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved. Available online at http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v16i8.10 Original Research Article Anti-inflammatory effects of kaempferol, myricetin, fisetin and ibuprofen in neonatal rats Peng Guo and Yun-Yun Feng* The Second Pediatric Department of Internal Medicine, Zhumadian Central Hospital, Zhumadian, No. 747 Zhonghua Road, Zhumadian, Henan Province 463000, China *For correspondence: Email: [email protected]; Tel/Fax: 0086-0396-2726840 Sent for review: 9 September 2016 Revised accepted: 14 July 2017 Abstract Purpose: To investigate the anti-inflammatory effects of kaempferol, myricetin, fisetin and ibuprofen in rat pups. Methods: The expression levels of cyclooxygenase (COX)-1, COX-2 and tumour necrosis factor-α (TNF-α) were determined by western blotting; the inhibition of these proteins by plant compounds was evaluated. In addition, a computational simulation of the molecular interactions of the compounds at the active sites of the proteins was performed using a molecular docking approach. Absorption, distribution, metabolism and excretion (ADME) and toxicity analysis of the plant compounds was also performed. Results: Kaempferol, myricetin and fisetin inhibited the activities of COX-1, COX-2 and TNF-α by 70–88 %. The computational simulation revealed the molecular interactions of these compounds at the active sites of COX-1, COX-2 and TNF-α. ADME and toxicity analysis demonstrated that the three plant compounds were safe. Conclusion: The data obtained indicate that myricetin, kaempferol and fisetin exert anti-inflammatory effects in neonatal rats, with fewer side effects than those of ibuprofen.
  • Flavonols, Phenolic Acids and Antioxidant Activity of Some Red

    Flavonols, Phenolic Acids and Antioxidant Activity of Some Red

    Stark,A., A. Nyska,A. Zuckerman, and Z. MadarChanges in intestinal Vincken,J,-P., H. A. Schols, R. J. F. J. )omen,K. Beldnan, R. G. F. Visser, Tunicamuscularis following dietary liber feeding inrats. A morphometric andA. G. J. Voragen'.Pectin - the hairy thing. ln. Voragen, E,H. Schools, studyusing image analysis. Dig Dis Sci 40, 960-966 (1995). andB. t4sser(Eds.): Advances inPectin and Pectinase Research, 4Z-5g. Stark,A., A. Nyska, and Z. Madar. I\4etabolic and morphometric changes KlumerAcademic Publishers, Dortrecht, Niederlande (2003). insmall and large intestine inrats fed high-fiber diets. Toxicol pathol 24, Yoo,S.-H., M. Marshall, A.Hotchkiss, and H. G. Lee: Viscosimetric beha- 166-171(1996). vioursof high-methoxy andlow-methoxy pectin solutions. Food Hydro- Sugawa-Katayama,Y.,and A. ltuza.Morphological changes of smallin- coll20, 62-67 (2005). testinalmucosa inthe rats fed high pectin diets. Oyo Toshitsu Kagaku 3, Zhang,J., and J. fr. Lupton: Dielary fibers stimulate colonic cell prolifera- 335-341(1994) (in Japanisch). tionby different mechanisms atdifferent sites. Nutr Cancer ZZ.26l-276 Tamura,M., and H. SuzukiEffects of pectinon jejunaland ileal mor- (1 994) phologyand ultrastructurein adultmice. Ann Nutr Metab 41, 2SS-259 (1997) Flavonols,Phenolic Acids and Antioxidant Activity of Some Red Fruits LidijaJakobek#, Marijan Seruga, lvana Novak and MailinaMedvidovi6-Kosanovi6 DepartmentofApplied Chemistry and Ecology, Faculty of Food Technology,J J StrossmayerUniversity of0sijek, Kuhaceva 18, HR-31000 0sijek, Croatia Summary schwarzeund rote Johannisbeere) wurde mittelsHPlC-Methode be- Redfruits (blueberry, blackberry, chokeberry, strawberry, red raspberry, stimmt.Die Verbindungen wurden als Aglykon nach der Hydrolyse mit sweetcherry, sour cherry, elderberry, black currant and red currant) were 1,2mol dm 3 HCI analysiert.
  • Inhibition of Cell Proliferation and Metastasis by Scutellarein Regulating PI3K/Akt/NF-Κb Signaling Through PTEN Activation in Hepatocellular Carcinoma

    Inhibition of Cell Proliferation and Metastasis by Scutellarein Regulating PI3K/Akt/NF-Κb Signaling Through PTEN Activation in Hepatocellular Carcinoma

    International Journal of Molecular Sciences Article Inhibition of Cell Proliferation and Metastasis by Scutellarein Regulating PI3K/Akt/NF-κB Signaling through PTEN Activation in Hepatocellular Carcinoma Sang Eun Ha 1, Seong Min Kim 1, Preethi Vetrivel 1, Hun Hwan Kim 1, Pritam Bhagwan Bhosale 1 , Jeong Doo Heo 2, Ho Jeong Lee 2 and Gon Sup Kim 1,* 1 Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa Campus, 501 Jinju-daero, Jinju 52828, Korea; [email protected] (S.E.H.); [email protected] (S.M.K.); [email protected] (P.V.); [email protected] (H.H.K.); [email protected] (P.B.B.) 2 Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Korea; [email protected] (J.D.H.); [email protected] (H.J.L.) * Correspondence: [email protected] Abstract: Scutellarein (SCU) is a well-known flavone with a broad range of biological activities against several cancers. Human hepatocellular carcinoma (HCC) is major cancer type due to its poor prognosis even after treatment with chemotherapeutic drugs, which causes a variety of side effects in patients. Therefore, efforts have been made to develop effective biomarkers in the treatment of HCC in order to improve therapeutic outcomes using natural based agents. The current study used SCU as Citation: Ha, S.E.; Kim, S.M.; a treatment approach against HCC using the HepG2 cell line. Based on the cell viability assessment Vetrivel, P.; Kim, H.H.; Bhosale, P.B.; up to a 200 µM concentration of SCU, three low-toxic concentrations of (25, 50, and 100) µM were Heo, J.D.; Lee, H.J.; Kim, G.S.
  • Invasive Trees of Georgia Pub10-14

    Invasive Trees of Georgia Pub10-14

    Pub. No. 39 October 2016 Invasive Trees of Georgia by Dr. Kim D. Coder, Professor of Tree Biology & Health Care Warnell School of Forestry & Natural Resources, University of Georgia Georgia has many species of trees. Some are native trees and some have been introduced from outside the state, nation, or continent. Most of Georgia’s trees are well- behaved and easily develop into sustainable shade and street trees. A few tree species have an extrodinary ability to upsurp resources and take over sites from other plants. These trees are called invasive because they effectively invade sites, many times eliminat- ing other species of plants. There are a few tree species native to Georgia which are considered invasive in other parts of the country. These native invasives, may be well-behaved in Georgia, but reproduce and take over sites elsewhere, and so have gained an invasive status from at least one other invasive species list. Table 1. There are hundreds of trees which have been introduced to Georgia landscapes. Some of these exotic / naturalized trees are considered invasive. The selected list of Georgia invasive trees listed here are notorious for growing rampantly and being difficult to eradicate. Table 2. Table 1: Native trees considered invasive in other parts of the country. scientific name common name scientific name common name Acacia farnesiana sweet acacia Myrica cerifera Southern bayberry Acer negundo boxelder Pinus taeda loblolly pine Acer rubrum red maple Populus deltoides Eastern cottonwood Fraxinus americana white ash Prunus serotina black cherry Fraxinus pennsylvanica green ash Robinia pseudoacacia black locust Gleditsia triacanthos honeylocust Toxicodendron vernix poison sumac Juniperus virginiana eastern redcedar The University of Georgia is committed to principles of equal opportunity and affirmative action.
  • Flavonoids: an Overview

    Flavonoids: an Overview

    Vidya V. Gawande et al. / Journal of Pharmacy Research 2012,5(11),5099-5101 Review Article Available online through ISSN: 0974-6943 http://jprsolutions.info Flavonoids: An Overview Vidya V. Gawande* and S. V. Kalikar Department of Pharmacy,Government Polytechnic, Gadgenagar, VMV Road, Amravati(MS), India 444603 Received on:14-07-2012; Revised on: 19-08-2012; Accepted on:23-09-2012 ABSTRACT Flavonoids belong to a group of polyphenolic compounds, which are classified as flavonols, flavonones, flavones, flavan-3-ols and isoflavones, anthocynidins according to the positions of the substitutes present on the parent molecule. Flavonoids occur as aglycones, glycosides and methylated derivatives in plants. Flavonoids occur naturally in fruit, vegetables, and beverages such as tea and wine and over 4000 structurally unique flavonoids have been identified in plant sources. These are primarily recognized as the pigments responsible for the many shades of yellow, orange, and red in flowers, fruits, and leaves. The major actions of flavonoids are those against cardiovascular diseases, ulcers, viruses, inflammation, osteoporosis, diarrhea and arthritis. Flavonoids have also been known to possess biochemical effects, which inhibit a number of enzymes such as aldosereductase, xanthine oxidase, phosphodiesterase, Ca+2-ATPase, lipoxygenase, cycloxygenase, etc. They also have a regulatory role on different hormones like estrogens, androgens and thyroid hormones. Flavonoids like quercetin are shown to produce anti-inflammatory effect. The flavonoids in tea are found to be responsible for the prevention of osteoporosis. Quercetin is now found to show inhibiting effects against herpes simplex virus. Antidiarrheal effect is found to be shown by the flavonoids present in cocoa.
  • Effect of Phenolic Aldehydes and Flavonoids on Growth And

    Effect of Phenolic Aldehydes and Flavonoids on Growth And

    ARTICLE IN PRESS Effect of phenolic aldehydes and flavonoids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii Ana Rita Figueiredoa, Francisco Camposa,Vı´ctor de Freitasb, Tim Hogga, Jose´Anto´nio Coutoa,Ã aEscola Superior de Biotecnologia, Universidade Cato´lica Portuguesa, Rua Dr. Anto´nio Bernardino de Almeida, 4200-072 Porto, Portugal bFaculdade de Cieˆncias do Porto, Departamento de Quı´mica, Centro de Investigac-a˜o em Quı´mica, Rua do Campo Alegre 687, 4169-007 Porto, Portugal Keywords: Lactic acid bacteria; Phenolic aldehydes; Flavonoids; Tannins; Wine The aim of this work was to investigate the effect of wine phenolic aldehydes, flavonoids and tannins on growth and viability of strains of Oenococcus oeni and Lactobacillus hilgardii. Cultures were grown in ethanol-containing MRS/TJ medium supplemented with different concentrations of phenolic aldehydes or flavonoids and monitored spectrophotometrically. The effect of tannins was evaluated by monitoring the progressive inactivation of cells in ethanol-containing phosphate buffer supplemented with grape seed extracts with different molecular weight tannins. Of the phenolic aldehydes tested, sinapaldehyde, coniferaldehyde, p-hydroxybenzaldehyde, 3,4- dihydroxybenzaldehyde and 3,4,5-trihydroxybenzaldehyde significantly inhibited the growth of O. oeni VF, while vanillin and syringaldehyde had no effect at the concentrations tested. Lact. hilgardii 5 was only inhibited by sinapaldehyde and coniferaldehyde. Among the flavonoids, quercetin and kaempferol exerted an inhibitory effect especially on O. oeni VF. Myricetin and the flavan-3-ols studied (catechin and epicatechin) did not affect considerably the growth of both strains. Condensed tannins (particularly tetramers and pentamers) were found to strongly affect cell viability, especially in the case of O.
  • Sephadex® LH-20, Isolation, and Purification of Flavonoids from Plant

    Sephadex® LH-20, Isolation, and Purification of Flavonoids from Plant

    molecules Review Sephadex® LH-20, Isolation, and Purification of Flavonoids from Plant Species: A Comprehensive Review Javad Mottaghipisheh 1,* and Marcello Iriti 2,* 1 Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary 2 Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy * Correspondence: [email protected] (J.M.); [email protected] (M.I.); Tel.: +36-60702756066 (J.M.); +39-0250316766 (M.I.) Academic Editor: Francesco Cacciola Received: 20 August 2020; Accepted: 8 September 2020; Published: 10 September 2020 Abstract: Flavonoids are considered one of the most diverse phenolic compounds possessing several valuable health benefits. The present study aimed at gathering all correlated reports, in which Sephadex® LH-20 (SLH) has been utilized as the final step to isolate or purify of flavonoid derivatives among all plant families. Overall, 189 flavonoids have been documented, while the majority were identified from the Asteraceae, Moraceae, and Poaceae families. Application of SLH has led to isolate 79 flavonols, 63 flavones, and 18 flavanones. Homoisoflavanoids, and proanthocyanidins have only been isolated from the Asparagaceae and Lauraceae families, respectively, while the Asteraceae was the richest in flavones possessing 22 derivatives. Six flavones, four flavonols, three homoisoflavonoids, one flavanone, a flavanol, and an isoflavanol have been isolated as the new secondary metabolites. This technique has been able to isolate quercetin from 19 plant species, along with its 31 derivatives. Pure methanol and in combination with water, chloroform, and dichloromethane have generally been used as eluents. This comprehensive review provides significant information regarding to remarkably use of SLH in isolation and purification of flavonoids from all the plant families; thus, it might be considered an appreciable guideline for further phytochemical investigation of these compounds.
  • Mechanisms of Toxic Action of the Flavonoid Quercetin and Its Phase II Metabolites

    Mechanisms of Toxic Action of the Flavonoid Quercetin and Its Phase II Metabolites

    Mechanisms of toxic action of the flavonoid quercetin and its phase II metabolites Hester van der Woude Promotor: Prof. Dr. Ir. I.M.C.M. Rietjens Hoogleraar in de Toxicologie Wageningen Universiteit Co-promotor: Dr. G.M. Alink Universitair Hoofddocent, Sectie Toxicologie Wageningen Universiteit. Promotiecommissie: Prof. Dr. A. Bast Universiteit Maastricht Dr. Ir. P.C.H. Hollman RIKILT Instituut voor Voedselveiligheid, Wageningen Prof. Dr. Ir. F.J. Kok Wageningen Universiteit Prof. Dr. T. Walle Medical University of South Carolina, Charleston, SC, USA Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG Mechanisms of toxic action of the flavonoid quercetin and its phase II metabolites Hester van der Woude Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. Dr. M.J. Kropff, in het openbaar te verdedigen op vrijdag 7 april 2006 des namiddags te half twee in de Aula Title Mechanisms of toxic action of the flavonoid quercetin and its phase II metabolites Author Hester van der Woude Thesis Wageningen University, Wageningen, the Netherlands (2006) with abstract, with references, with summary in Dutch. ISBN 90-8504-349-2 Abstract During and after absorption in the intestine, quercetin is extensively metabolised by the phase II biotransformation system. Because the biological activity of flavonoids is dependent on the number and position of free hydroxyl groups, a first objective of this thesis was to investigate the consequences of phase II metabolism of quercetin for its biological activity. For this purpose, a set of analysis methods comprising HPLC-DAD, LC-MS and 1H NMR proved to be a useful tool in the identification of the phase II metabolite pattern of quercetin in various biological systems.
  • Waxmyrtle-- a Shrub for a Natural Riparian Buffer

    Waxmyrtle-- a Shrub for a Natural Riparian Buffer

    Waxmyrtle-- A Shrub for a Natural Riparian Buffer By Susan Camp When you live on a tidal creek or river, as do many of us on the Middle Peninsula, you bear a special responsibility to maintain a healthy interface between land and water. The plants that grow along a shoreline help to protect the adjacent waterway from erosion and pollutants, and they provide valuable habitat for the wildlife that live and feed along the banks. Jim and I are fortunate to live on property that was left in a natural state by the previous owners, and we have maintained the banks for 25 years with a minimum amount of labor and no expense. The native trees, shrubs, and grasses along the water’s edge maintain themselves with minor pruning of dead wood, trimming of greenbriers, and eradication of poison ivy. One of my favorite native shrubs is waxmyrtle (Myrica cerifera or Morella cerifera), also called southern waxmyrtle or southern bayberry. Waxmyrtle is a small tree or large, multi-trunked, fast- growing shrub, depending on how it is pruned. Waxmyrtle produces numerous suckers that lend the shrub an irregular, leggy appearance, but it can be maintained with a single trunk. Waxmyrtle is found from New Jersey south to Mexico, Central America and the Caribbean, and west to Texas and Oklahoma, surviving in a wide range of environments from wet swamps to elevated forestland, although it is most often found in marshes and along tidal creeks and stream banks. The shrub grows well in USDA Hardiness Zones 6b to 11. It is evergreen where winters are mild, but is classified as semi-evergreen in colder environments, which means it will lose its leaves when the temperature drops below 0 F.
  • Shilin Yang Doctor of Philosophy

    Shilin Yang Doctor of Philosophy

    PHYTOCHEMICAL STUDIES OF ARTEMISIA ANNUA L. THESIS Presented by SHILIN YANG For the Degree of DOCTOR OF PHILOSOPHY of the UNIVERSITY OF LONDON DEPARTMENT OF PHARMACOGNOSY THE SCHOOL OF PHARMACY THE UNIVERSITY OF LONDON BRUNSWICK SQUARE, LONDON WC1N 1AX ProQuest Number: U063742 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest U063742 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ACKNOWLEDGEMENT I wish to express my sincere gratitude to Professor J.D. Phillipson and Dr. M.J.O’Neill for their supervision throughout the course of studies. I would especially like to thank Dr. M.F.Roberts for her great help. I like to thank Dr. K.C.S.C.Liu and B.C.Homeyer for their great help. My sincere thanks to Mrs.J.B.Hallsworth for her help. I am very grateful to the staff of the MS Spectroscopy Unit and NMR Unit of the School of Pharmacy, and the staff of the NMR Unit, King’s College, University of London, for running the MS and NMR spectra.
  • Texas Big Tree Registry a List of the Largest Trees in Texas Sponsored by Texas a & M Forest Service

    Texas Big Tree Registry a List of the Largest Trees in Texas Sponsored by Texas a & M Forest Service

    Texas Big Tree Registry A list of the largest trees in Texas Sponsored by Texas A & M Forest Service Native and Naturalized Species of Texas: 320 ( D indicates species naturalized to Texas) Common Name (also known as) Latin Name Remarks Cir. Threshold acacia, Berlandier (guajillo) Senegalia berlandieri Considered a shrub by B. Simpson 18'' or 1.5 ' acacia, blackbrush Vachellia rigidula Considered a shrub by Simpson 12'' or 1.0 ' acacia, Gregg (catclaw acacia, Gregg catclaw) Senegalia greggii var. greggii Was named A. greggii 55'' or 4.6 ' acacia, Roemer (roundflower catclaw) Senegalia roemeriana 18'' or 1.5 ' acacia, sweet (huisache) Vachellia farnesiana 100'' or 8.3 ' acacia, twisted (huisachillo) Vachellia bravoensis Was named 'A. tortuosa' 9'' or 0.8 ' acacia, Wright (Wright catclaw) Senegalia greggii var. wrightii Was named 'A. wrightii' 70'' or 5.8 ' D ailanthus (tree-of-heaven) Ailanthus altissima 120'' or 10.0 ' alder, hazel Alnus serrulata 18'' or 1.5 ' allthorn (crown-of-thorns) Koeberlinia spinosa Considered a shrub by Simpson 18'' or 1.5 ' anacahuita (anacahuite, Mexican olive) Cordia boissieri 60'' or 5.0 ' anacua (anaqua, knockaway) Ehretia anacua 120'' or 10.0 ' ash, Carolina Fraxinus caroliniana 90'' or 7.5 ' ash, Chihuahuan Fraxinus papillosa 12'' or 1.0 ' ash, fragrant Fraxinus cuspidata 18'' or 1.5 ' ash, green Fraxinus pennsylvanica 120'' or 10.0 ' ash, Gregg (littleleaf ash) Fraxinus greggii 12'' or 1.0 ' ash, Mexican (Berlandier ash) Fraxinus berlandieriana Was named 'F. berlandierana' 120'' or 10.0 ' ash, Texas Fraxinus texensis 60'' or 5.0 ' ash, velvet (Arizona ash) Fraxinus velutina 120'' or 10.0 ' ash, white Fraxinus americana 100'' or 8.3 ' aspen, quaking Populus tremuloides 25'' or 2.1 ' baccharis, eastern (groundseltree) Baccharis halimifolia Considered a shrub by Simpson 12'' or 1.0 ' baldcypress (bald cypress) Taxodium distichum Was named 'T.