<<

Stark,A., A. Nyska,A. Zuckerman, and Z. MadarChanges in intestinal Vincken,J,-P., H. A. Schols, R. J. F. J. )omen,K. Beldnan, R. G. F. Visser, Tunicamuscularis following dietary liber feeding inrats. A morphometric andA. G. J. Voragen'.Pectin - the hairy thing. ln. Voragen, E,H. Schools, studyusing image analysis. Dig Dis Sci 40, 960-966 (1995). andB. t4sser(Eds.): Advances inPectin and Pectinase Research, 4Z-5g. Stark,A., A. Nyska, and Z. Madar. I\4etabolic and morphometric changes KlumerAcademic Publishers, Dortrecht, Niederlande (2003). insmall and inrats fed high-fiber diets. Toxicol pathol 24, Yoo,S.-H., M. Marshall, A.Hotchkiss, and H. G. Lee: Viscosimetric beha- 166-171(1996). vioursof high-methoxy andlow-methoxy pectin solutions. Food Hydro- Sugawa-Katayama,Y.,and A. ltuza.Morphological changes of smallin- coll20, 62-67 (2005). testinalmucosa inthe rats fed high pectin diets. Oyo Toshitsu Kagaku 3, Zhang,J., and J. fr. Lupton: Dielary fibers stimulate colonic cell prolifera- 335-341(1994) (in Japanisch). tionby different mechanisms atdifferent sites. Nutr Cancer ZZ.26l-276 Tamura,M., and H. SuzukiEffects of pectinon jejunaland ileal mor- (1 994) phologyand ultrastructurein adultmice. Ann Nutr Metab 41, 2SS-259 (1997)

Flavonols,Phenolic Acids and Activity of Some Red Fruits

LidijaJakobek#, Marijan Seruga, lvana Novak and MailinaMedvidovi6-Kosanovi6 DepartmentofApplied Chemistry and Ecology, Faculty of Food Technology,J J StrossmayerUniversity of0sijek, Kuhaceva 18, HR-31000 0sijek, Croatia

Summary schwarzeund rote Johannisbeere) wurde mittelsHPlC-Methode be- Redfruits (blueberry, blackberry, chokeberry, strawberry, red raspberry, stimmt.Die Verbindungen wurden als Aglykon nach der Hydrolyse mit sweetcherry, sour cherry, elderberry, black currant and red currant) were 1,2mol dm 3 HCI analysiert. Injeder Frucht wurden auch die Gesamtpo- analyzedfor (, , and ), hydroxy- lyphenole(TP) und Gesamtanthocyane (TA)bestimmt TP variierte von cinnamicacids (caffeic, ferulic, p-coumaric acid) and hydroxybenzoic ac- 1763in der Himbeere bis 7194 mg kg r (FW)in der Aronia. TA variierte ids(phydroxybenzoic, ellagic acid) by using HPLC method. Compounds von169 (Erdbeere) bis4069 mg kgr FW (Blaubeere). DieKonzentration 3 wereanalyzed asaglycons after acid hydrolysis with 1.2 mol dm HCl. derFlavonole variierte von 4 mgkgr in der Himbeere bis 183 mg kg r in Eachfruit sample was analyzed for total (TP) and total an- derBlaubeere. Die hochsten Konzentrationen anHydroxyzimtsaure wur- thocyanins(TA). TP ranged from 1763 to 7194mg kglfresh weight denin der Blaubeere (92 mg kg 1) und in der schwarzen Johannisbeere (FW)rn red raspberries and chokeberries, respectively. TAranged from (70mg kgr) gefunden und stellten einen bedeutenden Anteil der phe- 169to 4069mg kg, FWin strawberriesand blueberries, respectively. nolein denSuB- und Sauerkirschen dar.Die Ellagsaure-Konzentrati0n Flavonolsvaried from 4 mgkgr in redraspberries to 183 mg kg1 in betrugin der Brombeere 121 mg kgr, in der Erdbeere 4l mg kgrund in blueberries.Hydroxycinnamic acidswere found in relatively high concen- derHimbeere 32 mg kgI. Die starkste antioxidative Aktivitat, die mittels trationsin blueberries(92mg kg1) and in (70 mg kgr) DPPH.und ABTS*-Methoden bestimmt wurde, zeigten Aronia, schwarze andrepresented significant portion in sour and sweet cherry phenolics. The Johannisbeereund Holunderbeere. Dieantioxidative Aktivitat korreliert 1), amountofellagic acid was hrgh in blackberry (121 mg kg strawberry(41 mg bessermit TP als mit TA, mit den Gesamtflavonolen (TF)oder mit der l) kg andred raspberry (32mg kgr) Thestrongest antioxidant activity de- Gesamthydroxyzimtsaure.Eswurde eine lineare Korrelation zwischen terminedby DPPH'and ABTS'- assays showed chokeberry, followed by derantioxidativen Aktivitat der Fr0chte und der Kaffeesaure-, 0uercetin- blueberry,black currant and elderberry. Antioxidant activity correlated undp-Cumarsaure-Konzentration festgestellt. Alle Ergebnisse weisen betterwith TP than with TA, total flavonols (TF), or total hydroxycinnamic daraufhin, dass die Beerenfrlichte undKirschen als eine reiche Ouelle acids.Additionally, linear relationship was observed between antioxidant bioaktiverPolyphenole in der menschlichen Erndhrung dienen konnen. activityof fruitsand c0ntent 0f caffeicacid, quercetin and p-coumaric Aronia,Blaubeere, Holunderbeere undschwarze Johannisbeere haben acid.Overallresults showed that red fruits can serve as good source of diehdchste Anthocyan-, Flavonol-, und Phenolsaure-Konzentration. Sie bioactivepolyphenols inhuman diet, but due to highconcentrations of zeigenauch die stdrkste antioxidative Aktivitiit und k0nnen aus diesem anthocyanins,flavonols, phenolic acids and strong antioxidant activity, Grundeals gute Rohstoff-Kandidaten inder Produktion von funktionellen chokeberry,blueberry, elderberry and black currant can be regarded as Lebensmittelneingesetzt werden. goodcandidates fornutritional supplement formulations.

Zusammenfassung Keywords:Red fruits, berries, flavonols, phenolic acids, antioxidant ac- tivity DieKonzentration derFlavonole (Quercetin, Myricetin, und Kaempferol), / roteFrLichte, BeerenfrLichte, Flavonole, Phenolcarbonsauren, anti- der Hydroxyzimtsaure(Kaffeesdure, Ferulasdure und p-Cumarsdure)oxidativeAktivitat undder Hydroxybenzoesaure (p-Hydroxybenzoesaure undEllagsaure) ausroten Fruchten (StlB-und Sauerkirschen), sowie aus Beerenfrlrch- ten(Blaubeere, * Brombeere,Aronja, Erdbeere, Himbeere, Holunderbeere, E-mail:[email protected], Tel.:+385-31 -224-300, Fax: +385-31-207-l l5

DeulscheLebensmittel-Rundschau r 103.Jahrgang, HeftB, 2007 0riginalarbeitenr369 rotenoids,are responsiblefor beneficialeffects of diet rich in fruits and vegetableson human healthl2'rer. R2 Becauseof the positiveeffects of fruits polyphenolson hu- man health,the interestin consumingfruits and their prod- R3 ucts is growing. In order to fully understandthe roles of fruit'spolyphenols, further studies are needed. As a first step o it is importantto determinethe distributionof polyphenols in fruits rich in polyphenols,and to investigateantioxidant Flavonols Hydroxycinnamic acids data will enableevaluation of MyricetinR,=R.=R,-OH p-Coumaric acid R=H activityof thosefruits. These =R,=OH, QuercetinR R.=H R=OH fruits as a sourceof polyphenolsin diet. Furthermore,they R=OCH, KacmpferolR,= OH. R,=R,= H can be the basisfor further studiesof effectsof individual polyphenolson fruit's antioxidantactivity. Epidemiological OH studieswill help in understandingthe relationbetween the A," intakeof fruit'spolyphenols and the risk of developingvari- ll-l H ous diseases.lVith that kind of knowledgeit will be pos- Y sibleto chooseraw materialsfor preparationof functional o4ott foodsrvith betterbiological activity. the contentof in- p-Hydroxybenzoicacid Ellagic acid The aim of this study was to determine llydroxybenzoic acids dividual flavonols (quercetin,myricetin, kaempferol) and phenolicacids (p-coumaric, caffeic, ferulic, p-hydroxyben- Fig1 Structuresofaglycons offlavonols and phenolic acids zoic, ellagicacid) presentin various red fruits (blueberry, blackberry',chokeberry, strawberry, rerl raspberry' sweet ^herry, Introduction sour ,.\erry,elderberry, bl:ck c,,,rai:t and rcd cur- rant) by using high performanceliquid chromatography Flavonols(Fig. 1) belongto the largegroup of polyphenolic (HPLC) equippedwith a photodiodearray detector(PDA) con'rpounds.They contain a common molecularstructure in order to examinethe distributionof thesepolyphenols in that consistsof the tricyclicCo-C,-Co "flavon skeleton"and red fruits. Additionall.v,a concentrationof total polyphe- are widespreadin plants where they occur r'rsuallyas O- nols and total anthocyaninswas measured'Antioxidant glvcosides.Although over 200 flavonolaglycons have been :lctivity of red fruits was determinedby using DPPH and identifiedin plants,only four of these'quercetin, kaemp- ABTS assays.The existenceof possiblecorrelation between ferol, myricetinand ,are common in fruitsl'. total or individualpolyphenols and antioxidantactivity of Phenolicacids (Fig. 1) (hydroxycinnamicand hydroxvben- fruits was examinedas well. zoic acids)belong to the group of pol,vphenoliccompounds aswell, and occurin fruits as esters,glycosides and amides. The most common hydroxycinnamicacids are p-coumaric, Materialsand methods caffeicand ferulic acid, while the correspondinghydroxy- benzoicacids are p-hydroxybenzoic,gallic, ellagic,3,4-di- Chemicals hydroxybenzoic,vanillic, and syringicacidr-1). 4-hydroxybenzoicacid, ellagic acid, caffeic acid, ferulic acid, In the last few decadesflavonols and phenolic acids,are p-coumaricacid, myricetin, quercetin dihydrate, kaempferol, -azino- studiedintensively because of their potent positiverole in 2,2-diphenyl-1-picrylhydrazylradical (DPPH'), 2,2' humanhealth. Flavonols, phenolic acids and otherpolyphe- bis(3 -ethyl benzothiazoline-6-sulfonic acid)diammonium salt - -2, -tetramethylchro- nois are potent antioridants,free scavengers'jrand (ABTS ) and Trolox (( = ) 6-hydroxy 5,7,8 metal chelators;they exhibit various physiologicalactivi- mane-2-carboxylicacid) rvere purchasedfrom Sigma-Al- tiesincluding anti-inflammatory, anti-allergic, anti-carcino- dricb (St. Louis, MO, USA). Methanol (HPLC grade)was gcr.ric,anti-arthritic activitiesr'6-n). They may havea positive obtainedfrom Merck (Darmstadt,Germany); o-phosphoric role in clecreasingthe risk of somechronic diseases such as acid (85%, HPLC grade)and ammonium peroxodisulfate canceror heartdiseasese-'r'. Most of thesebiological effects were purchasedfrom F/zka (Buchs,Switzerland). Hydro- of polyphenolsare believedto come from their antioxidant chloric acid (36.2%), L-(+)-ascorbicacid, potassiumchlo- properties12r.One of themost importantsources of polyphe- ride, sodium acetatetrihydrate, sodium carbonateand Fo- nolic compoundsamong dietary plants is smallred fruitsrr'. lin-Ciocalteaureagent were obtained from Kemika (Zagreb, Stronglycoloured berries contain high levelsof polyphenols Croatia). such as anthocyanins,flavonol glycosidesand hydroxy- cinnamicacidsrars'. Some berries like strawberrvand red Fruit sampLes raspberrycontain high levelsof ellagicacidru'r8'. All these Fruits fblack currant (Ribesnigrum), red currant (Ribes polyphenolicantioxidants, together with vitaminsand ca- sdtiuum\, red raspberry(Rttbus idaeus\,blackberry (Rz-

370r0riginalarbeiten DeutscheLebensmittel-Rundschau r 103.Jahrgang, Heft B, 2007 r). bus fruticctsus),sour cherry( cerasusl, sweet cherry mol-rcm'and molar rveight(M\7) (449.2g rnoJ Data (Prunusauium), strawberry(Fragaria anannassal, choke- presentedare mean * standarddeviation (SD). berry (Aronia melanocdrpa),elderberry (Sdmbucus nigral, and blueberry (Vacciniummyrtillus)l rvere harvestedin Antioxidant actiuity Slavonia (Croatia) at the commercialmaturiry stage. lnlmedi- The antioxidant activity of fruit extractswas measured atelyafter harvesting, fruits were frozen and storedat -20"C until spectrophotometricallywith a UV-Vis spectrophotometer analysis. (UV 200.i, Barcelona,Spain) by using two assays,DPPH and ABTS assay.The ability of the fruit extract to act as Samplef)repdratbn fitr determinationof total free radicalscavenger against DPPH' radicalwas testedby anthocyanins,totdl pob,phenolsdnd dntioxidantactit,ity mcasuringthe disappearanceof the irbsorbanceat .517nm For determinationof total anthocyanins,total polyphenols, after the additionof fruit extractand by comparingit with and antioxidant activity, fruit extrirctswere preparedin the disappearanccof the absorb:rnceproduced h1' the rrr.l- thrcereplicates according to the folkrwingproceclurer"). Ap- dition of a known amoulrtsof Trolor. a watcr-solr-rblcvi- proximately100 g of fruitswere mixcd irr a blerrderin order tilnrin F.analogr-rc, undcr the salncconditions. In thc ABTS to obtaina horr.rogeniz.cdfruit samplc.20 g of homogenized irssiry,the amoLlntof ABTS'- radical cation scaverrgedbv fruit was rnixed with 20 rrl of methanol/H(ll 2'2, (9-5:-5, frlrit cxtract was measuredby monitoring the decreaseof v/v) solution.After 60 min thc solutionwas filtcredundcr absorbanccof ABTS'- radicalcation at 734 nm, and by vacuumin a -50-rnlvolurnetric flask. Thc rcsiduewas ex- comparingthc dccreaseof absorbar.rcewith the decreaseof tractedag:rin in thc s;rrncway. Thc cxtractswcrc corrbined irbsorbanccproducccl lry thc aclditionof a known rnrount arrdthe solutionwas dilLrtcclto volumewith rnethanol/HC[ of Trolox. 1",,(95:5. v/v1 :olrrlion. In the DPPH nrethodroi.five dilutionsof eachfnrit extrrct wererrnalyzcd. A .t0 pl of dilLrtedfruit extractwas nrirccl I) etermindtionof tuttalltolyp h uuils with.l00 pl of rnethanolicDPPH solution(l nrmoldnrr) Total polyphenolswere deternrineclby Folin-Ciocaltcau anclbror-rght to 3 nrl with nrethanol.The solutionwas kcrpt rnicro rnethoclrr).Blueberry irncl cl'rokcbe rry cxtrirctswcrc in clark ilt r(x)m tcrnperaturcfor 1.5nrinr-rtes. Tl're irbsor- dilutccll:4 (v/v)with methrrnol/H(ll2"/,' (L)5:5,v/v) solu- bance(A,..,,.,.,) was rcad ilgainstthc prcparcclblank (.50prl tion prior to analysis.Other frLritextracts were analyzed clilr-rtcclfruit extract,2950pl nrethanol)at.5 l7 unr. A without dilution.Arr irlicluot(20 pl) of fruit extractwas I)PP[]' blank solutir)nwas prepirredeach clay (300 pl of mixedwith l-580pl of distilledwrter and 100pl of Folirr- I mmol dmt DPPH',2.7 ml of methan

DeulscheLebensmittel-Rundschau | 103. Jahrgang, Heft B, 2007 0riginalarbeitenr371 For flavonol analysis,fruits (-100 g) (random selection) U, - 260 nm were homogenisedin blender.Ascorbic acid (80 mg) was - 0. 320nrn dissolvedin 5 ml of distilledwater and 5 g of homogenized - 360nm D 0.30 fruits sample,25 ml of methanoland 10 ml of HCI (6 mol dm-3) were 0 added to ascorbicacid solution. \7ater was added to this mixture to obtain a final volume of 50 ml 0 and final concentrationof HCI 1.2 mol dm-3.This solution 0.00b l0 15 20 25 30 35 was refluxedon water bath for 2 h at 85'C. After cooling, Time/ min extractswere filtered.A 20 ml portion of the filtrate was evaporatedto drynesson a rotary evaporatorusing water Fig.2 OverlayedHPLC chromatograms ofstandards detected at260, 320 bath and temperature3-5"C. The residuewas dissolvedin and360 nm. Compounds: (1 p-hydroxybenzoic (2) ) acid, calfeicacid, 2 ml crfmethanol and filteredthrough a 0.45 pm frlter(Va- (3)p-coumaric acid, (4) ferulic acid, (5) ellagic acid, (6) myricetin, (7)quer- cetin,(8) kaempferol riSepPTFE,0.4-5 pm,25 mm-Varian)prior: to injectioninto theHPLC. For phenolicacids analysis, fruits (-1U0 g) (randomselec- rplrosphate dm buffcrpH=7.4) and rhe mixture was left ro tion) werehomogenised in blender.Ascorbic acid (tlOmg) stfurclovernicht. A 0.5 ml of AIITS'. radicalcarion stock so- was dissolvedin -5ml of distilledwater and .5g of homo- lutionrvirs rnixed with 2 ml of phosphatebuffer (pH=7.4) gcnizcdfruit sample,2.5rnl of methirnoland 10 ml of HCI in crrvettcancl tl're alrsorbance (A^r'r) was read at 734 nm. (6 rnol dmr) wereadded to ascorbicacid solution.Water Subseqr-rentlv.0. I rnl of diluted fruit extractwas addedinro was addeclto this mixture to obtaina final volun"reof -10ml thc cr.rvette,thc solutionwas mixed quickly,and the absor- and finalconcentration of HCI 1.2mol dm r. This solution bance(A,.,,) was rcad after 60 s at734 nm. The clecreasein wasrcfluxcd on waterbath for 16 h at 3.5"C.Aftercooling, rrbsorbancc(AA=A.,,,,r-A..,,) after: 60 s was cirlculirtcclf

372r0riginalarbeiten DeutscheLebensmillel-Rundschau | 103. Jahrgang, Heft B, 2007 l-t (p-hydroxybenzoicacid, caffeic acid, 0. 0. BIack currant myricetinand kaempferol);1-250 mg I I 0.1 (ellagicacid, ferulic acid and quercetin); I f,^ 2-240 mg I (p-coumaricacid). rfe- rulic acid in blackcurrant; 4.8'/" for quercetin,7.5o/, for Resultsand Discussion p-hydroxybenzoicacid, 7.2%" for ellagic acid, 71,.6"/"lor caffeic acid, 2.3 "/o for p-coumaricacid, 5.5"/" for ferulic Flavonolsand phenolic acids were determinedby using acid in red raspberry.Recoveries were measlrredby adding HPLC methodin order to examinethe distributionof these known amountsof standards(10--50 mg l-') to fruit extracts compoundsin fruits. HPLC chromatogramsof red rasp- prior to HPI-C ar.ralysis.The recoveriesranged from 88 to berry and black currant samplesrepresenting separated o% 103"/" for quercetin,from 86 to 102 for myricetin,from phenolicacids detectedat 260 and 320 nm are shown in 85 to 997" for p-hydroxybenzoicacid, from 93 to 101%" Figure 3. Figure 4 shows HPLC chromatogramsof sepa- for ellagicacid, from 84 do 100 "h for caffeicacid, from 93 rated flavonolsin blueberryand black currant extractsre- to 100 "/ofor p-coumaricacid, and from 85 do 103 % for cordedat 360 nm. The concentrationsof individual flavo- ferulicacid. In the calculationof final results,no correction nols and phenolicacids are reportedin Table1. for recovervwas applied to dara. The following limits of The highestconcentrations of flavonois(183 mg kg r) and detectionwere estimatedusing a signal-to-noiseratio of 3: phenolicacids (92 mg kg-t) were found in blueberries.The 1 0.76 mg I by p-hydroxybenzoicacid, 1.12 mg l-1by ellagic dominant flavonol in blueberrieswas quercetin(137 mg I r), acid, 0.32 mg I by caffeicacid, 0.49 mg l-r by lr-coumanc kg followed by myricetin (43 mg kg-') whereaskaemp- acid,0.44mg lr by ferulicacid,0.15 mg lr by miricetin, ferol was found at considerablylower concentration(3 mg 0.07mg l-r by quercetin,0.13mg l-1by kaempferol. kg r). Data presentedby other authorsalso confirmedthat the major flavonolsin blueberry(Vaccinium myrtillus) are Statisticalandlysis quercetin and myricetin whereas kaempferol was pres- Correlationand regressionanalyses were performedusing ent at significantlylower concentrationljl.Phenolic acids Statistica7.1 (Statsoft,Tulsa, USA). Differencesar p<0.05 found in our sample of blueberry were p-coumarlc as a were consideredsignificant. dominantone (55 mg kg-'),caffeic (27 mg kg r) and ferulic

DeutscheLebensmillel-Bundschau r 103. Jahrgang, Heft B, 2007 0riginalarbeitenr373 ' Tab.1 Concentrationsofhydroxybenzoic acids,hydroxycinnamic acids,and flavonols inred fruits (mg kg offresh weight); determined byHPLC method: valuesare means r SD (n=2)

Redlruits Hydroxybenzoicacids lmg kgi] Hydroxycinnamicacids [mg kgil Flavonols[mg kgi] p-HBA EA t CA p-CouA FA t M 0 K I Ericaceae BI uebe rry 27.29x0.6 5490t3.9 9.57+0.391.7643.02t1.1 136.97t3.22.88t0.1182.87 Rosaceae Blackbe rry 121.07t0.2 121.07 5.65t0.4 5.94t0.0 5,11t0.016.7 55.42t0.52.13t0.5 57.55 Choke berry 3.97t0.1 3.97 38.39r0.5 38.39 92.15t0.5 6.86t0.3 99.01 Strawberry 41.40t0.2 41.40 16.8610.3 16.86 6.24t0.2 7.71103 13.95 Redraspberry 4.95r0.1 31.74x2.1 36.69 3.23t0.1 4.24t0.1 4.29t0,1 11.76 3.85t0.2 3.85 Sweetcherry 11.47 +0.2 5.40t0.2 16.87 0,17t0.1 8,58t0.1 5.97r0.3 1472 Sourcherry 9.05t05 19.12r0.9 28,17 5.05t0.3 2.38t0.1 7.43 Carrifoliaceae Elde rbe rry 15.84t0.2 10.80t0.2 26.64 145.71 Saxifragaceae

Blackcu rrant 3.15t0.1 J. IJ 21.31 t0.1 3'1.6910.3 17.48t0.170.48 7319 Redcurrant 12.54x0.1 1254 12.76t0.3 8.26x0.2 21.02 1.72t0.3 8.87t0.2 0.34r0.0 10.93

p-HBA:p-Hydroxybenzoic acid;EA: Ellagic acid;CA: Caffeic acid; p-CouA: p-Coumaric acid; FA: Ferulic acid; M: Myricetin; 0: Ouercetin; K:Kaempferol

acid (10 mg kg-r).These phenolic acids were identifiedin berry containedthe highestconcentration of caffeic acid blueberriesin previousstudies as wellr5'r7'26).p-Coumaric amongthe fruits studied. acid dominatedover caffeicand ferulicacidl-r which agrees ln strawbeny, the concentrationof phenolicacid was higher with our results.According to other investigationthe con- than concentrationof flavonols.The main centrationof caffeicacid in blueberry(Vaccinium myrtil- found in strawberrywas ellagicacid (41 mB kg-'), followed /zs) can be higher than the concentrationsof p-coumaric by p-coumaricacid (17 mg kg-r). According to previous and ferulicacid26r. studS the main representativeof phenolicacids in straw- The main characteristic

374r0riginalarberten DeutscheLebensmittel-Rundschau | 103.Jahrgang, Heft B,2007 1], (5 mg kg-t) were identifiedin our sampie Tab.2 Concentrationsoftotal polyphenols (TP)[mg GAE kgi], total anthocyanins (TA)[mg CGE kg n (n=3) of sweet cherry. According to the litera- TMPratio and antioxidant activitv ofred lruits, values are means r SD ture data, sweetcherry containsderiva- Redfruits t Polyphenolst AnthocyaninsTA/TP OPPH ABTS tivesof caffeicand p-coumaricacidsr2). lmgkg'l lImolTE/gl Sour cherry contains flavonols quercetin Ericaceae (5 mg kg-') and kaempferol(2 mg kg-l). 6180.23r1 57 4069.03t129 0.66 12552 53.28 These results are in accordancewith Blueberry thosereported by Kim et a1.32).Phenolic Bosaceae acids identified in sour cherry were p- Blackberry 3657,57+167 1055.70t31 0.29 41.89 23.94 coumaric(19 mg kgl) and caffeicacid Chokeberry 7194.40x78 3571.96t48 0,50 181,07 i8.90 phe- (9 mg kg-r).The derivativesof these Strawberry 1999.24t88 169.17x2 0.08 o. | | 12.08 nolic acidswere found in sour cherry in Redraspberry 1763.1 9r7 1 231.72x1 0.13 18.61 12.10 previousstudy as well32). Sweetcherry 2010.67t50 192.52=13 0,10 4.22 IJ.OZ Elderberry contains high concentrations 11 45 89137 0.39 29.49 2374 of flavonols(146 mg kg-r).The dominant Sourcherry 2904.54r101 flavonolwas quercetin(I44 mg kg r),and Capriloliaceae its concentrationin elderberrywas the Elde rbe rry 4415.33x124 3175.14t34 0.72 100.16 37 91 highest in comparisonto other red fruits Saxilragaeeae The studied. concentratiorof kaempferol Bf.tkr;; 5435.06r31 2189.26t20 0.40 109.89 44.67 was low (2 mg kg{). Previousstudyrs) Redcurranl 1947.94x23 197.76t2 010 1373 1315 confirmed that elderberry is character- ized by high concentration of quercetin and low concentrationof kaempferol. Phenolicacids identified in elderberrywere caffeic(16 mg presenceof quercetinwhereas myricetin and kaempferol kg-') and p-coumaricacid (11 mg kg tl. MAAftii-Riihinen werenot identified30'. et a1.15)found p-coumaricand caffeicacid in elderberryas The concentrationsof flavonolsand phenolicacids of red well along with ferulic acid which was not identified in our fruits examinedin this study are comparableto the results 16'25-28'-10-'rr). sampleof elderberry. of earlierstudiesla Somedifferences in flavonol Black currant contained high concentrationsof flavonols and phenolicacid contentcan be explainedby differences (73 mg kg-l) and phenolic acids(74 mg kg-t). The main in fruit cultivars,growing conditions,degree of ripeness, flavonol was myricetin (44 mg kg'), followed by querce- handlingafter storage, sample preparation treatlnents, etc. tin (21 rng kg-') and kaempferol(8 mg kgr). Somestud- Red fruits were analyzedusing a pH-differentialand Folin- iesr5,r0rconfirmed that myricetinwas the dominantflavonol Ciocalteaumethod in order to examinetheir total antho- in black currant as it was found in our study, while others cyanin (TA) and total (TP) content.The por- reportedquercetin as the main flavonolla'18),Phenolic acids tion of anthocyaninsin total polyphenolconcentration was found in our sampleof black currantwere p-coumaric acid evaluated by calculating TA/TP ratio and the results are (32 mg kgr) as a main phenolicacid, caffeic acid (21 mg presentedin Table2. Polyphenolswere found in the high- kg-'), ferulic acrd(I7 mg kg-') and ellagicacid (3 mg kg-'). est concentrationsin chokeberrnblueberry, black currant ', Theseresults are in accordancewith those alreadv pub- and elderberry17194 m8 kB-', 6180 mg kg-', 5435 mB kB lished14.15.r1|. 4415 mg kg 1,respectively). High concentrationsof polyphe- In red currant) the concentration of phenolic acids was nolswere found in blackberryand sourcherry as well (3658mg higher than the concentrationof flavonols.Phenolic acids kg t, 2905mg kg t, respectively),while sweetcherrS straw- found in our sampleof red currant were caffeic (13 mg berry, red currant and red raspberryhad relativelylower kg r), p-coumaric(8 mg kg r) and p-hydroxybenzoicacid concentrationsof polyphenols(2011 mB k8-', 7999 mg (13 rng kg-l). Thesephenolic acids (p-coumaric, caffeic, p- kg-t, 1948 mg kg-t, 1763 mg kg 1,respectively). The con- hydroxybenzoicacid)r8' or derivativesof p-coumaricand centrationsof total polyphenolsfound in our study are in caffeicacidsrl'1'tr were found in red currantin previousstudy accordancewith previousstudies20' 27'32'33). as well, along with lower concentrationsof ellagicand fe- Anthocyaninswere found in the highestconcentrations in rulic acidl8r.The dominant flavonol was quercetin(9 mg blueberry,chokeberry, elderberry black currant,sour cherry ', kg-'), while myricetin(2 mg kg-l) and kaempferol(0.34 mg and blackberry$069 mB kg 3572 mg kg', 3175 mB kB-', kg-l) were presentat lower concentrations.According to 2189 mgkga,11.46 mB kg-', 1056 mg kg-l, respectively) someprevious studies, flavonols present in red currant were whereasthe concentrationof anthocyaninsin red raspberrS quercetin, myricetin and kaempferol, among which quer- red currant, sweetcherry and strawberrywere considerably cetin was the dominant one14,15'i8)which is consistentwith lower(232 mB kB-', 198 mg kg-l,193 mB kB ', 169mg kg 1, the resultsof presentstudy. Some authors reported only the respectively).The concentrationsof total anthocyaninsare

DeulscheLebensmittel-Rundschau r 103.Jahrgang, Heft B, 2007 0riginalarbeitenr375 In the evaluation of Tab.3 Correlationcoefficients (r)between antioxidant activity offruits (DPPH and ABTS) and con- and cranberrytn). centrationsoftotal polyphen0ls, totalanthocyanins, totalflavonols, total hydroxycinnamic acids,total commercialred fruit juice concentrates. hydroxybenzoicacids,quercetin, caffeic acid, and p-coumaric acid in red fruits the strongest antioxidant activity deter- had chokeberry t mined by DPPH method iuice concentrateas in presentstudy, and lSubstance/mgkgrFWI OPPH[Umol TE/gl ABTStlmot TE/gl was followed by black currant and elder- 0.98 0.98 tPolyphenols berry, while other fruit concentrateslike tAnthocyanins 0.93 0.90 red currant, strawberry, red raspberry tFlavonols 079 0.73 lower tHydroxycinnamicacids 0.66 0.64 and cherry concentrate showed 0uercetin 0.74 0.68 antioxidantactivity35). The strongestanti- Calfeicacid 0.91 094 oxidant activityevaluated by ABTS assay 0.74 0.82 p-Coumaricacid showed black currant, chokeberry and juice the designatesignilicance atP < 0.05,P < 0.01'P <0 001'respectively elderberry concentrate,whereas antioxidant activity of red currant, straw- berry.raspberry and cherryiuice concen- in the range of, or similar to those reported in previous trate were significantlylower3't). activity and total studies2o'2r'r2'3rr.As it can be seenfrom TAITP ratio, antho- The correlation between antioxidant total hydroxycinnamicac- cyaninsrepresented important part of polyphenolsin inves- polyphenols,total anthocyanins, presentedin Table3. Total poly- tigatedfruits. They are the predominantpolyphenoiic com- ids and total flavonolsare activi- ponentsin elderberry(72%) and blueberry(66%) which phenolswere found to correlatewith the antioxidant (DPPH, r=0.98).Total antho- indicatesa lower proportion of other polyphenolsin these tiesof fruits r=0.98; ABTS, as well (DPPH' fruits. In chokeberries(50%)' black currant (407") and cyanins correlatewith antioxidant activity coefficientwas sourcherries (39 % %) anthocyaninsrepresented significant r=0.93; ABTS, r=0.90) but the correlation activity proportion in total polyphenolconcentration but the pro- lower for total anthocyanins versus antioxidant activity. portion of anthocyaninswere considerablylower in black- than for the total polyphenolsversus antioxidant (DPPH, ABTS,r=0.731 and total berry (29"/ol,red raspberryft3%), sweetcherry (I0%), Total flavonols 1=0.79; (DPPH, ABTS, t=0.641 redcurrant (I0%l andstrawberty (8%) indicatinga higher hydroxycinnamicacids r=0.66; well. Ac- proportionof other polyphenolsin thesefruits. correlate with antioxidant activities of fruits as polyphenols In order to evaluateantioxidant activity of red fruits stud- cording to the data presentedby others,total antioxidantac- ied, DPPH' and ABTS'-assays were appliedand the results of varioussmall fruits correlatebetter with which agreeswith the are presentedin Table2.The valuesof antioxidantactivity tivity than total anthocyaninsdo3a), polyphenolsof fruits of fruits obtainedby DPPH' and ABTS'. assaydiffer due to results of our study. Moreover, total speciescorrelate differencesin methodsused, in free radical that was applied belongingto Vaccinium,Rubus and Ribes and in reactiontime. By far,the strongestantioxidant activ- betterwith antioxidantactivity than total anthocyaninss3'36). with an- ity againstboth radicalsshowed chokeberry (181 pmol TE/ Total flavonols of red fruit concentratescorrelate our findings. g, DPPH method; 79 pmol TE/g ABTS method), followed tioxidant activityr's)which is consistentwith of various blue- by blueberry,black currant and elderberry(126,1'10, In the investigationof antioxidant activity total poly- 100 pmolTE/g respectivelnDPPH method), (53, 45, 38 berries,linear correlationwas found between hydroxy- pmol TE/g respectively ABTS method). The fruits with ,totai anthocyanins,total flavonols,total correlation higher concentrationsof polyphenols (Table 1 and 2) cinnamicacids and antioxidantactivityr-). The was better showedalso the strongestantioxidant activity. Other exam- betweentotal flavonols and antioxidant activity acids ined fruits like blackberry, sour cherry, red raspberry,red than the correlation betweentotal hydroxycinnamic with our re- currant,strawberry and sweetcherry posses relatively lower and antioxidant activity3T)which is consistent polyphe- antioxidantactivity (42,30, 1.9,14,6,4 pmol TE/grespec- sults.Good linearcorrelations between mentioned polyphenols tively; DPPH method), (24,24, L2, 13, 1,2,1'4 pmol TE/g nol groupsindicate possible influence of these respectively;ABTS method).There are alreadya number on antioxidant activity of fruits. anti- of reports on the antioxidant activity of fruit extracts de- Moreover, linear relationship was observedbetween individ- terminedby severalmethods such as oxygenradical absor- oxidant activity of fruits and concentrationof some bancecapacity (ORAC), ABTS or DPPH methodindicating ual phenolics(Tab. 3). Quercetincorrelates with the antioxi- r=0.68)' that chokeberry, blueberry, black currant and elderberry dant activity of red fruits (DPPH,r=0.74i ABTS, possessstrong antiradical activities20'2e''r3-ri) as it was found In previous studiess)quercetin showed higher antioxidant I in this study.Chokeberry exhibited the highestantioxidant activity againstABTS'. radical than other flavonol aglycons activity determinedby ORAC procedure,foilowed by elder- like myricetinand kaempferol.Considering antioxidant ac- be- berry and black currant3a'.Chokeberry also showedhigher tivity of quercetin,the existenceof linear relationship antioxidant activity than fruits like lingonberrS biueberry tween antioxidantactivitv of fruits and the concentrations

.1 376r 0riginalarbeiten DeutscheLebensmittel-Rundschau t 03.Jahrgang, Heft B' 2007 of quercetinis possible.Among various hydroxycinnamic phenols:food source and bioavailability. AmerJ ClinNutr 79,727-747 acids,the highestantioxidant activiry determined by ORAC (2004). assayshowed caffeic acid and was followed by p-coumar- 5) Sllbratte,M. A., V.S. Neergheen,A. Luximon-Ramma, 0. l. Aruona, andT. Bahorum. Phenolics aspotential antioxidant therapeutic agents: ic > vanillic > chlorogenicacidze). Our resultsare showing Mechanismandactions. Mutat Res 579,200-213 (2005). that is there also a linear relationshipbetween the con- 6) Rotelli,A. E.,T. Guardia, A. 0. Judrez,N. E. de la Rocha, and L. E. Pelzer centrationof caffeicacid and antioxidantacivity of fruits Comparatrvestudy of flavonoidsin experimental models of inflamma- (DPPH,0.91; ABTS, r=0.94) and betweenconcentration of tion.Pharmacol Res 48, 601-606 (2003). p-coumaricacid and antioxidantacrivity of fruits (DPPH, 7) Dls Santls,M. D.,M. C.Almeida, N. P.Lopes, and G. E P.de Souza. Evaluation0fthe anti-inflammatory, analgesic and antipyretic r =0.74; ABTS,r = 0.82). Correlationcoefficient was higher activitiesof thenatural polyphenol chl0rogenic acid. Biol Pharm Bull 29,2236-2240 for caffeic acid versus antioxidant activity than for the (2006). p-coumaricacid versusantioxidant activity. B) Mamani-Matsuda,M., T. Kauss, A. A. AL-Kharrat,J. Rambert, F. Fawaz, From the resultsof this study it can be seenrhat, among D. Thiolat,D. Moynet,S. Coves,D. Malvy,andM. D. Mossalaytfhera- the red fruits studied,chokeberry, blueberry, elderberry and peuticand preventive properties of quercetin in experimental arthritis black currant standout in high concentrationsof flavonols, correlatewith decrease inflammatory medrators. Biochem Pharmacol72,1304-1310 (2006). phenolicacids, and in strongantioxidant activity. Blueberry 9) Garcia-Closas,R.,C. A. Gonzalez,A.Agudo, and E. Riboli. lntake of spe- containsthe highest concentrationsof flavonolsand phe- cificcarotenoids andflavonoids and the risk 0f gastric cancer in Spain. nolic acids,and is followed by elderberrywhich has high CancerCause Control 10, 71-75 (1999). concentrationsof flavonols, especiallyquercetin. Choke- 10)Knekt, P, J. Kumpulainen,R. Jervinen.,H. Rissanen,M. Heli1vaara, berry showed by far the highestantioxidant activiry.Fur- A.Reunanen, T.Hakulinen, and A. Aromaa: intake and risk of chronicdiseases. Amer J ClinNutr 76, 560-568 (2002). thermore,chokeberry has the highestamount of total poly- 11) Le Marchand,1., S. P Murphy,J. H. Hankin,L. R. Wilkens,and L lV. phenolsand is rich in flavonolsas well. Black currant has Kolonel.lntake of flavonoidsand lung cancer. J NatlCancer Inst 92, high concentrationsof flavonolsand phenolicacids. Other r54-1 60 (2000). red fruits haveconsiderably lower concentrationsof flavo- 12) Shi,H., N. Noguchiand E. Niki.Introducing natural . In: nols and phenolicacids, and iorverantioxidant activity, but Pokorny,J., N. Yanishlieva,andM. Gordon (eds.\. Antioxidants infood, pp. it should be emphasizedthat some fruits like blackberry, 147-158.Woodhead Publishing Limited, Cambridge (2001). 13) HalvlrsenB. 1., K. Holte, M. C.W. Myhrstad, l. Bariknq E. Hvattum, S. strawberryand red raspberrycontain relativelyhigh con- E Remberg,A. B. Wold,K. Haffner,H. Baugerod,L. F.Andersen, J.0. centrationof eliagicacid. The diversityin the polyphenolic M7skaug,D.R. Jacobs, and R. Blomhoff. Asystematic screening oftotal profiles betweendifferent fruit speciesmay relate to dif- anti0xidantsindjetary plants. J Nutr 132, 461-471 (2002\. ferent biologicalavailability and activity in human organ- 14)Mdetft, K. R.,A. Kamal-Eldin,and A. R. Tdrronen.Hrgh-performance ism. Although all examinedfruit speciescan serveas good liquidchromatography (HPLC) analysis ofphenolic compounds inber- rieswith diode array and electrospray ionization mass spectr0metric sourceof bioactivepolyphenolic compounds, chokeberry, (MS)detection: Blbes species. J Agr Food Chem 51, 6736-6744 (2003) blueberry,elderberry and black currant stand out in high 15) Meefte-Riihinen,K. R., A. Kamal-Eldin,P.H. Mattila,A. M. Gonzdlez- concentrationsof anthocyanins,flavonols and phenolic Paramds,and A. R. Torrdnen: Distribution andcontent of phenoliccom- acidsand in high antioxidantactiviry, and thereforecould poundsin eighteenscandinavian berry species. J Agr Food Chem 52, be used in nutritional supplementformulations. More- 4477-4486(20041. over, quercetin,myricetin, and caffeic acid were reported 16\ Miiiittii-Riihinen,K.R., A. Kamal-Eldin,and A. R. T1rrdnen.ldentification andquantification of phenolic compounds inberries oI Fragariaand Ru- to havestrong antiradical activity amongvarious flavonols br.rsspecies (Family Rosaceae). J Agr Food Chem 52, 61 78-61 87 (2004). phenolic (which and acidsi'2e'.Therefore, chokeberries are 17\Zadernowski, R.,M. Naczk, and J. NesterowiczPhenolic acid prof iles in abundant in quercetinand caffeicacid derivatives),elder- somesmall berries. J Agr Food Chem 53, 2118-2124 (2005\ berries(abundant in quercetinderivatives) and blueberries 1Bl Hakkinen,5., M. Heinonen,S. Karenlampi,H.Mykkdnen, J. Ruuskanen, (abundantin quercetinand myricetinderivatives) can serve andR. Tdrronen: Screening ofselected and phenolic acids in 19berries. Food Res Int (1999) as good sourceof theseindividual phenolics. 32,345-353 19) Kris-Etherton,P M., K. D. Hecker,A. Bonanome,S. M. Coval,A. E. Binkosk|K. F.Hilpert, A. E. Griel,and T. D. Ethertln.Bioactive com- Acknowledgements poundsin foods: their role in the prevention of cardiovascular disease This work was supportedbv The Ministry of Science,Edu- andcancer. Am J Med113, 71-BB (2002). cation,and Sportsof Republicof Croatia. 20) Benvenuti,5., E Pellati,M. Melegari, and D. Bertelli. Polyphenols, antho- cyanins,ascorbic acid, and radical scavenging activity oI Rubus,Ribes, andAronra. J Food Sci 69,164-169 (2004). Relerences 21\ Waterhousq4.: http://waterhouse.ucdavis.edu/phenolifolinmicro.htm 1) Robards,K., and M. Antllovich. Analytical chemistry of fruitbioflavo- (May,10'h2006) noids.Analyst 122, 1 1 R-34R (1 997). 22\ Giusti,M. M.,and R. E. Wrolstad.Anthocyanins. Characterization and 2) Clifford,M. rV.: Chlorogenic acids and other cinnamates-nature, 0ccur measurementwith UV-visible spectroscopy. ln Wrolstad, R.E (ed.): renceand dietary burden. J Sci Food Agr 79, 362-372 (1999). Currentprotocols in food analytical chemistry, pp. Fl .2.1.-Fl .2.13. 3) Tomds-Barberdn,F.A., and M. N. Clifford:Dietary hydroxybenzoic acid Wiley,New York (2001). derivatives-nature,occurrenceanddietary burden. J Sci Food Agr 80, 23\ lvekovic,D., S. Milardovii,M. Roboz,and L S. Grabaric,Evaluation of 1024-1 032 (2000) theantioxidant activity by flow injection analysis method with electro- 4) Manach,C., A. Scalbert,C. Morand, C. Remdsy, and L. JimdnezPoly- chemicallygenerated ABTS radical cation. Analyst 130, 708-714 (2005).

DeulscheLebensmittel-Rundschau r 103. Jahrgang, Heft 8, 2007 0riginalarbeitenr377 24\ Hdkkinen,S. H., S. 0. Karenlampr,l. M. Heinonen,H. M. Mykkdnen,and 32) Kim,D. 0., H.J. Heo,Y J. Kim,H. S. Yang,and C. Y. Lee. Sweet and sour A. R. Torronen:HPLC method for screeningof flavonoidsand phenolic cherryphenolics and their protective effects on neuronalcells. J Agr acidsin berries..l Sci Food Agr 77, 543-551 (1998). FoodChem 53, 9921-9927 (2005) 25\ Hertog,M. G. 1., P C. H. Hollman,and D. P Tenema:0ptimization of 33) Moyer,R. 4., K. E. Hummer,C. E. Finn,B. Frei,and R. E. Wrolstad.An- a quantitativeHPLC determination 0f potentially anticarcinogenic flavo- thocyanins,phen0lics, and antioxidant capacity indiverse small fruits: noidsin vegetables and fruits, JAgr Food Chem 40, 1591-1598 (1992). Vaccinium,Rubus,and Blbes. J Agr Food Chem 50,519-525 (2002). 26) Mattila,P, J. Hellstrdn,and B. Torronen:Phenolic acids in berries, 34\ Wu,X., L. Gu,R. L. Prior,and S. McKay. Characterization 0f anthocya- fruits,and beverages. J Agr Food Chem 54,7193-7199 (2006) ninsand proanthocyanidins insome cultivars ol Ribes, Aronia, and Sam- 27) Sellappan,5., C. C.Akoh, and G. Krewer. Phenolic compounds and an- bucusand their antioxidant capacity. J Agr Food Chem 52, 7846-7856 tioxidantcapacity of Georgia-grownblueberries and blackberries. J Agr (2004). FoodChem 50,2432-2438 (2002). 35\ Bermidez-Soto,M.,and E A. Tomds-Earberin:Evaluation of commer- 28\ Bilyk,A.,and G. M. Sapers.Varietal drfferences in the quercetin, kaemp- cialred fruit juice concentrates asingredients forantioxidant functi0nal ferol,and myricetincontents of highbushblueberry, , and luices.Eur Food Res Technol 219, 133-.|41 (2004). thornlessblackberry fruits. J AgrFood Chem 34, 585-5BB (1 986). 36) Prior,R. 1., G. Cao, A. Martin,E. Sofic, J. McEwen,C. 0'Brien, N. Lisch- 29\ Zheng,f7, andS. Y Wang:Oxygenradical absorbrng capacity of phe- ner,M. Ehlenfeldt.,W. Kalt, G. Krewer, and C. M. Mainland.Antioxrdant nolicsin blueberries, , chokeberries, andlingonberries. J Agr capacityas influencedbytotal phenolic and antocyanin content, matu- FoodChem 51, 502-509 (2003) rity,and variety ol Vacciniunspecies. J Agr Food Chem 46,2686-2693 30) Hdkkinen,S. H.,5.0 Kdrenlampi,l M. Heinonen,H. M. Mykkdnen,and (1eeB). A.R. Torronen. Content of the flavonols quercetin, myricetin, and kaemp- 37.\Howard, L R.,J R.Clark, and C. Brownmiller.Antioxidant capacity and ferolin 25edible berries. J Agr Food Chem 47, 2274-2279 (19991 phenoliccontent inblueberries asaffected bygenotype and growing sea- 31) Hertog, M. G.1., P.C. H. Holl man. and M. B. Katan.ConIenI ot potentially sonJ SciFood Agr 83, 1238*1247 (2003). anticarcinogenicflavonoids of 28vegetables and I lruitscommonly con- sumedin the Netherlands. J Agr Food Chem 40, 2379-2383 (1992)

Zimtund Gumarine: bittere ,,Wahrheiten" - Beitrag zur Extrapolation vonRisiken

MathiasSchmidl, Matties und Sven-David Miiller HerbresearchGermany, Wartbergweg 15 D-86874 Tussenhausen-Mattsies

Zusammenfassung orthe derivation ofa liverrisk of Chinesecinnamon from the 0r00erties Dieaktuellen und hochgradig artifiziellen Debatten zur Sicherheit von ofan isolated coumarin. 0nly recently the suggestion was made to limit Lebensmittelndeuten auf ein grundsdtzliches Problem mit der Extrapo- furanocoumarinsinAngelica roots, because the furan0c0umarin B-me- - - lationvon Risiken aus den Eigenschaften isoliert lletrachteter sekundarer thoxyps0ralenwhich was n0t even detected inAngelica is suspected Pflanzeninhaltstoffehin.Beispiele sind die Diskussion der Morphinge- t0cause skin cancer when applied inhigh doses and combined with UV- irradiation.lt is time to critically evaluate the current mechanisms of"risk haltein Backwaren mitMohnzusatz, dieUbertragung dertoxikologischen assessment"before common sense is c0mpletelylost Theaim of risk Datenhoher Konzentrationen vonEstragol auf Gewtirze wie Estragon, assessmentis to excludeany conceivable risk as far as possible.This oderdie Ableitung eines Leberrisikos von Cassra-Zimt, basierend auf is neitherpracticable nor realistic. Cinnamon and Anglica are typical ex- gipfelte denEigenschaften ernes isolierten Cumarins. Aktuell diesim amoles. Vorschlag,Furanocumarine inEngelwurz zulimitieren, weil das Furano- cumarin8-Methoxypsoralen - selbst gar nicht in Engelwurz nachgewie- Keywords:Zimt, Angelica, Cumarine, Furocoumarine, Toxizitdt / Cinna- sen- inhohen Dosen und unter Bestrahlung mitUV-Licht im Verdacht mon,Angelica, coumarins, fur0c0umarins, toxicity steht,Hautkrebs auslosen zukonnen. Bevor die Bodenhaftung inder Ri- srkobewertunggdnzlich verloren geht, ist es an der Zeit fLir eine kritische Betrachtungderderzeitigen Mechanismen einer,,Risikobewertung". Die Einleitung ZielsetzungderRiskobewertung istder weitestmogliche Ausschluss aller auchnur denkbaren Risiken. Dies ist weder praktikabel noch realistisch. ,,Zimt: eine bittere Wahrheit" - unter dieserUberschrifr Zimtund Engelwurz sind typische Beispiele. wurde noch vor werrigenMonaten von der als wissen- schaftlichund fachlichfundiert anerkanrrten Zeitschrift fiir Summary Phytotherapie F'olgen Therecent, highly artificial debates on the safety of foodstuffpoint to a vor den des Konsumsvon Zimtster- basicproblem with the extrapolation of risks derived from the proper- nen gewarnt.Nach dieserMeldung, ftir die als Quelle die tiesof singled out secondary plant metabolites. Examples are the discus- Verbraucherministerder Ldnderangegeben wurden, konnte sionof morphinecontents in poppyseed, the transfer of toxicologicalwegendes Cumaringehaltesvon Zimt (Cinnamomumaro- datafrom high concentrations of estragol to spicessuch as estragon, maticum Nees,Lauraceae) fiir Kinder bis 15 kg Korperge-

378r0riginalarbeiten DeutscheLebensmitlel-Rundschau r 103. Jahrgang, Heft B, 2007