West Indian Vegetation

Total Page:16

File Type:pdf, Size:1020Kb

West Indian Vegetation Plant Formations in the West Indian BioProvince Peter Martin Rhind West Indian Limestone Scrub These sclerophyllous shrublands occur on the dry limestone terraces and lowland karstic ‘dog tooth’ formations. In Cuba extensive stands occur in Oriente between Puerto Padra and Gibara and in the southern terraced coast between Cabo Cruz and Maisi where the climate generally has two dry seasons totaling about 8 months per year. This formation rarely exceeds 3 m in height but is very rich in species. Characteristic small trees are Colubrina elliptica, Erithalis fruticosa and several endemics like Auerodendron cubense (Rhamnaceae), Cordia leucosebestena (Boraginaceae), Diospyros grisebachii (Ebenaceae), Picrodendron macrocarpum (Picrodendraceae), Pseudocarpidium multidens (Verbenaceae) and Spirotecoma spiralis (Bignoniaceae). Elements of the sub shrub layer include various species of Cordia such as the endemic Cordia lucidus (Euphorbiaceae), together with Eugenia cowellii, Polygala guantanamana and many endemic species such as Bellonia spinosa (Acanthaceae), Coccothrinax munizii (Arecaceae), Grimmeodendron eglandulosum (Euphorbiaceae), Jacquinia berteroi (Theophrastaceae) and Randia spinifex (Rubiaceae). Of the succulents, several Melocactus species occur together with the endemic Dendrocereus nudiflorus (Cactaceae), but herbs and epiphytes are few in number. Lianas are more conspicuous with about 30 species including the endemic Distictis lactiflora (Bignoniaceae), Jacquemontia jamaicensis (Convolvulaceae) and Passiflora santiagana (Passifloraceae). West Indian Serpentine Scrub In Cuba these formations occur on the red ferrallitic soils derived from serpentine in several places from the Cajabana Hills to the Holguin serpentine areas in the Oriente. The area is subject to one dry season lasting up to 6 months. Characteristically the vegetation forms a dense, 2-4 m high, closed scrub with sporadic emergent palms up to 6 m, but apart from Melocactus species cacti are absent. Many of the common species, such as Annona bullata (Annonaceae), Coccothrinax miraguama (Areaceae), Eugenia camaricoa (Myrtaceae), Malpighia nummulariifolia (Malpighiaceae), Neobracea valenzuelana (Apocynaceae), Passiflora cubensis (Passifloraceae), Phyllanthus orbicularis (Euphorbiaceae), Rondeletia camarioca (Rubiaceae) and Tabebuia lepidota (Bignoniaceae) are endemic. In the dryer areas north of the Moa Mountains a different assemblage of species can be found. This ancient endemic flora is thought to have originated from Moa and then moved along the coast in both directions. In places 85 % of the species are endemic - common examples include Acrosynanthus minor (Rubiaceae), Ceuthocarpus involucratus (Rubiaceae), Coccoloba nipensis (Polygonaceae), Hemithrinax savannarum (Arecaceae), Kodalyodendron cubensis (Rutaceae), Moacroton leonis (Euphorbiaceae), Phyllanthus comosus (Euphorbiaceae), Shaferocharis multiflora (Rubiaceae) and Tabebuia linearis (Bignoniaceae). In the herb layer Rhynchospora species, Paepalanthus brittonii and the endemic Machaerina cubensis (Cyperaceae) are found. A different formation is associated with the serpentine semi-arid upland areas in Cristal, Moa and Nipe mountains of Cuba and unlike the sclerophyllous shrub forest or thickets on the slopes of the Blue Mountains in Jamaica; these scrublands are regarded as edaphic climax communities. In the Moa the formation consists of a dense bush of shrubs and stunted trees up to about 6 m tall and reaches its best development between altitudes of about 600-1000 m. The vast majority of species is endemic and typically includes Acrosynanthus trachyphyllus (Rubiaceae), Clusia moaënsis (Hypericaceae), Ilex hypaneura (Aquifoliaceae), Illicium cubensis (Illiciaceae), Jacaranda arborea (Bignoniaceae) and Laplaca moaënsis (Theaceae). Epiphytes are rare, but sclerophyllous Copyright © 2010 Peter Martin Rhind lianas abound including various endemics like Feddea cubensis (Asteraceae) and Morinda moaensis (Rubiaceae). The herb layer is poorly developed but may include several species such as the endemic grass Ekmanochloa aristata (Poaceae). West Indian Cactus Scrub Scrub dominated by cacti is an integral part of the coastal semi-desert formation of the Caribbean. On Cuba cactus scrub forms an unbroken belt along the coast from Guantánamo Bay to Imias. Succulents, mainly cacti, are dominant in both the shrub and sub-shrub layers, but the constituent species depend on whether the soil is rocky or sandy. On the latter Opuntia dillenii, Cylindropuntia histrix, Rithereocereus histrix and the endemic Opuntia militaris and Rhodocactus cubensis (Cactaceae) are dominant. Most of the associated trees and shrubs belong to the families Caesalpiniaceae, such as the endemic Caesalpinia pinnata, and Capparidaceae, such as Capparis flexuosa. The sparse herb layer is mainly composed of grasses. Dominant cacti of more rocky conditions are mainly endemic species such as Consolea macrantha, Dendrocereus nudiflorus and Pilosocereus brooksianus (Cactaceae). The shrub layer also includes a variety of other endemic species including several emergent palms such as Coccothrinax hiorami and C. alexandri (Arecaceae). The herb layer includes other succulents such as the endemic Agave albescens (Agavaceae) and Melocactus acunae (Cactaceae). West Indian Sclerophyll Thicket On the leeward St Andrews slopes of the Blue Mountains the vegetation changes abruptly to sclerphyllous thicket at about 700 m and then continues up to the mist forest at about 1200 m. This zone appears to be unique to the West Indies. Two characteristic shrubs confined to this zone on Jamaica are Dodonea viscosa, a small hardwood shrub found throughout the Pacific, and the endemic mountain broom Baccharis scoparia (Asteraceae). Other shrubs include Clusia rosea, Lantana involucrata, Solanum verbascifolium and several endemic species such as Heterotrichum umbellatum (Melastomataceae) and Lyonia jamaicensis (Ericaceae). Also characteristic of this zone are a number of small trailing woody herbs like Coccocypselum herbaceum, Micromeria obovara, Relbunium hypocarpium and the two endemics Chusquea albietifolia (Poaceae) a climbing bamboo, and Manettia lygistum (Rubiaceae). Typical herbs are Bidens pilosa, Cordia cyclindrostachya, Flemingia strobilifera, Gnaphalium americanum and Leianthus longifolius. West Indian Limestone Forest In Jamaica these sparse scrub forests are confined to arid southern areas with possibly some of the most undisturbed areas on the Portland Ridge. With virtually no soil the plants find support and sustenance by developing long branched root systems that permeate cracks and crevices. The more disturbed areas lack any distinct stratification but those of Portland Ridge have three stories including emergents reaching 25 m, a canopy between 12-20 m and a sub-canopy of 6-10 m. Among the emergent species are Chlorophora tinctoria, Pisonia fragrans and the endemic Rhamnidium jamaicense (Rhamnaceae), while canopy and sub canopy species include Adelia ricinella, Albizzia berteriana, Anona squamosa, Bauhinia divaricata and a variety of Jamaican or West Indian endemics taxa like Bourreria succulenta (Boraginaceae), Brya ebenus (Fabaceae), Bumelia rotundifolia (Sapotaceae), Coccoloba krugii (Polygonaceae), Erythroxylon rotundifolium (Erythroxylaceae), Linociera ligustrina (Oleaceae), Ocotea jamaicensis (Lauraceae) and Oxandra lanceolata (Annonaceae). Most of the trees are thin boled and spindly with branches close to the ground. The shrub layer is well developed with many Jamaican or West Indian endemics such as Allophyllus pachyphyllus (Sapindaceae), Casearia nitida (Flacourtiaceae), Castela macrophyllus (Simaroubaceae), Eupatorium Copyright © 2010 Peter Martin Rhind dalea (Asteraceae), Helicteres jamaicensis (Sterculiaceae), Phyllanthus angustifolius (Euphorbiaceae), Portlandia grandiflora (Rubiaceae) and Psidium albescens (Myrtaceae). Climbing and scrambling plants are also well represented but true lianas are absent. Some of the endemic species include Galactia pendula (Fabaceae), Ipomoea jamaicensis (Convolvulaceae), Passiflora perfoliata (Passifloraceae), Paullinia barbardense (Sapindaceae), Smilax balbisiana (Smilacaceae) and Stigmaphyllon emarginatum (Malpighiaceae). Epiphytes are mainly composed of xerophytic bromeliads, cacti and orchids including the endemic Broughtonia sanguinea (Orchidaceae). A ground flora, on the other hand, is often absent but may include a few ferns, cacti and several non- succulent flowering plants such as the endemic Vernonia divaricata (Asteraceae). In Cuba the limestone or karstic forests are varied but can be extremely species-rich, and endemic taxa are estimated to account for about 40% of their flora. On the karst slopes of Sierra de los Organos they form open forests up to about 8 m tall. Characteristic trees include the barrel-like Gaussia princeps and many endemic tree-shaped species such as Bourreria polyneura (Boraginaceae), Ekmanianthe actinophylla (Bignoniaceae), Ophalea hypoleuca, Sapium leucogynum (Euphorbiaceae) Spathelia brittonii (Rutaceae), Thrinax punctulata (Arecaceae) and the interesting living fossil Microcycas calocoma (Cycadaceae). Succulents are also well represented with endemic species like Agave tubulata (Agavaceae), Leptocereus assurgens and Selenicereus grandiflorus (Cactaceae), while ianas include the endemic Philodendron urbanianum (Araceae) and Siemensia pendula (Rubiaceae). There are other species that can be broadly described as chasmophytes including the endemic Anthurium venosum (Araceae),
Recommended publications
  • Caryophyllales 2018 Instituto De Biología, UNAM September 17-23
    Caryophyllales 2018 Instituto de Biología, UNAM September 17-23 LOCAL ORGANIZERS Hilda Flores-Olvera, Salvador Arias and Helga Ochoterena, IBUNAM ORGANIZING COMMITTEE Walter G. Berendsohn and Sabine von Mering, BGBM, Berlin, Germany Patricia Hernández-Ledesma, INECOL-Unidad Pátzcuaro, México Gilberto Ocampo, Universidad Autónoma de Aguascalientes, México Ivonne Sánchez del Pino, CICY, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México SCIENTIFIC COMMITTEE Thomas Borsch, BGBM, Germany Fernando O. Zuloaga, Instituto de Botánica Darwinion, Argentina Victor Sánchez Cordero, IBUNAM, México Cornelia Klak, Bolus Herbarium, Department of Biological Sciences, University of Cape Town, South Africa Hossein Akhani, Department of Plant Sciences, School of Biology, College of Science, University of Tehran, Iran Alexander P. Sukhorukov, Moscow State University, Russia Michael J. Moore, Oberlin College, USA Compilation: Helga Ochoterena / Graphic Design: Julio C. Montero, Diana Martínez GENERAL PROGRAM . 4 MONDAY Monday’s Program . 7 Monday’s Abstracts . 9 TUESDAY Tuesday ‘s Program . 16 Tuesday’s Abstracts . 19 WEDNESDAY Wednesday’s Program . 32 Wednesday’s Abstracs . 35 POSTERS Posters’ Abstracts . 47 WORKSHOPS Workshop 1 . 61 Workshop 2 . 62 PARTICIPANTS . 63 GENERAL INFORMATION . 66 4 Caryophyllales 2018 Caryophyllales General program Monday 17 Tuesday 18 Wednesday 19 Thursday 20 Friday 21 Saturday 22 Sunday 23 Workshop 1 Workshop 2 9:00-10:00 Key note talks Walter G. Michael J. Moore, Berendsohn, Sabine Ya Yang, Diego F. Registration
    [Show full text]
  • Lista Plantas, Reserva
    Lista de Plantas, Reserva, Jardín Botanico de Vallarta - Plant List, Preserve, Vallarta Botanical Garden [2019] P 1 de(of) 5 Familia Nombre Científico Autoridad Hábito IUCN Nativo Invasor Family Scientific Name Authority Habit IUCN Native Invasive 1 ACANTHACEAE Dicliptera monancistra Will. H 2 Henrya insularis Nees ex Benth. H NE Nat. LC 3 Ruellia stemonacanthoides (Oersted) Hemsley H NE Nat. LC 4 Aphelandra madrensis Lindau a NE Nat+EMEX LC 5 Ruellia blechum L. H NE Nat. LC 6 Elytraria imbricata (Vahl) Pers H NE Nat. LC 7 AGAVACEAE Agave rhodacantha Trel. Suc NE Nat+EMEX LC 8 Agave vivipara vivipara L. Suc NE Nat. LC 9 AMARANTHACEAE Iresine nigra Uline & Bray a NE Nat. LC 10 Gomphrena nitida Rothr a NE Nat. LC 11 ANACARDIACEAE Astronium graveolens Jacq. A NE Nat. LC 12 Comocladia macrophylla (Hook. & Arn.) L. Riley A NE Nat. LC 13 Amphipterygium adstringens (Schlecht.) Schiede ex Standl. A NE Nat+EMEX LC 14 ANNONACEAE Oxandra lanceolata (Sw.) Baill. A NE Nat. LC 15 Annona glabra L. A NE Nat. LC 16 ARACEAE Anthurium halmoorei Croat. H ep NE Nat+EMEX LC 17 Philodendron hederaceum K. Koch & Sello V NE Nat. LC 18 Syngonium neglectum Schott V NE Nat+EMEX LC 19 ARALIACEAE Dendropanax arboreus (l.) Decne. & Planchon A NE Nat. LC 20 Oreopanax peltatus Lind. Ex Regel A VU Nat. LC 21 ARECACEAE Chamaedorea pochutlensis Liebm a LC Nat+EMEX LC 22 Cryosophila nana (Kunth) Blume A NT Nat+EJAL LC 23 Attalea cohune Martius A NE Nat. LC 24 ARISTOLOCHIACEAE Aristolochia taliscana Hook. & Aarn. V NE Nat+EMEX LC 25 Aristolochia carterae Pfeifer V NE Nat+EMEX LC 26 ASTERACEAE Ageratum corymbosum Zuccagni ex Pers.
    [Show full text]
  • Revision of Oxandra (Annonaceae)
    Blumea 61, 2016: 215–266 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE https://doi.org/10.3767/000651916X694283 Revision of Oxandra (Annonaceae) L. Junikka1, P.J.M. Maas2, H. Maas-van de Kamer2, L.Y.Th. Westra2 Key words Abstract A taxonomic revision is given of the Neotropical genus Oxandra (Annonaceae). Within the genus 27 spe- cies are recognized, 4 of which are new to science. Most of the species are occurring in tropical South America, Annonaceae whereas a few (6) are found in Mexico and Central America and two in the West Indies (Greater and Lesser Antilles). Neotropics A key to all species is provided. The treatment includes chapters about the history of the genus and morphology. Oxandra All species are fully described, including full synonymy, notes on distribution and ecology, field observations (when taxonomy available), vernacular names (when given), and mostly short notes about relationships of the species concerned. For vernacular names each species a distribution map is made. At the end of the revision a complete list of vernacular names is included. Published on 7 December 2016 INTRODUCTION the genus in his Malmea subfamily and the Malmea tribe with Bocageopsis, Cremastosperma, Ephedranthus, Malmea, Ony- The genus Oxandra was first published in 1841 by A. Richard chopetalum, Pseudephedranthus, Pseudoxandra, Ruizoden- with the two species O. virgata (Sw.) A.Rich. (= O. lanceolata dron, Unonopsis, and the African genus Annickia (as Enantia, (Sw.) Baill. and O. laurifolia (Sw.) A.Rich. Oxandra was first now placed by Chatrou et al. (2012) in the subfamily Malme- classified by Baillon (1868a) in the tribe Anoneae Endl.
    [Show full text]
  • Pilosocereus Robinii) Using New Genetic Tools Tonya D
    Volume 31: Number 2 > 2014 The Quarterly Journal of the Florida Native Plant Society Palmetto Fern Conservation in a Biodiversity Hotspot ● Saving the Endangered Florida Key Tree Cactus Saving the Endangered Florida Key Tree Cactus (Pilosocereus robinii) Using New Genetic Tools Tonya D. Fotinos, Dr. Joyce Maschinski & Dr. Eric von Wettberg Biological systems around the globe are being threatened by human-induced landscape changes, habitat degradation and climate change (Barnosky et al. 2011; Lindenmayer & Fischer 2006; Thomas et al. 2004; Tilman et al. 1994). Although there is a considerable threat across the globe, numerically the threat is highest in the biodiversity hotspots of the world. Of those hotspots, South Florida and the Caribbean are considered in the top five areas for conservation action because of the high level of endemism and threat (Myers et al. 2000). South Florida contains roughly 125 endemic species and is the northernmost limit of the distribution of many tropical species (Abrahamson 1984; Gann et al. 2002). The threat to these species comes predominantly from sea level rise, which could be >1 m by the end of the century (Maschinski et al. 2011). Above: Pilosocereus robinii stand in the Florida Keys. Photo: Jennifer Possley, Center for Tropical Conservation/Fairchild Tropical Botanic Garden. Above: Pilosocereus robinii in bloom at the Center for Tropical Conservation. Photo: Devon Powell, Center for Tropical Conservation/Fairchild Tropical Botanic Garden. 12 ● The Palmetto Volume 31:2 ● 2014 Restoration of imperiled populations is a priority for mitigating the looming species extinctions (Barnosky et al. 2011). Populating new or previously occupied areas or supple- menting a local population of existing individuals are strategies that improve the odds that a population or species will survive.
    [Show full text]
  • Phylogenetic Analyses of Pilosocereus (Cactaceae) Inferred from Plastid and Nuclear Sequences
    Botanical Journal of the Linnean Linnean Society Society,, 2017,2016. 183 With, 25–38. 2 figures With 2 figures Phylogenetic analyses of Pilosocereus (Cactaceae) inferred from plastid and nuclear sequences ALICE CALVENTE1*, EVANDRO M. MORAES2,PAMELA^ LAVOR1, ISABEL A. S. BONATELLI2, PAMELA NACAGUMA2, LEONARDO M. VERSIEUX1, NIGEL P. TAYLOR3 and DANIELA C. ZAPPI4 1Laboratorio� de Botanica^ Sistematica,� Departamento de Botanica^ e Zoologia, Centro de Biociencias,^ Universidade Federal do Rio Grande do Norte, Campus Central, Lagoa Nova, Natal, CEP 59078-970, RN, Brazil 2 Laboratorio� de Diversidade Genetica� e Evolucßao,~ Departamento de Biologia, Centro de Ciencias^ Humanas e Biologicas,� Universidade Federal de Sao~ Carlos, Sorocaba, Sao~ Paulo, CEP 18052-780, Brazil 3Singapore Botanic Gardens, 1 Cluny Road 259569, Singapore 4Jardim Botanico^ do Rio de Janeiro, Rua Pacheco Leao~ 915, Rio de Janeiro, CEP 22460-030 RJ, Brazil Received 1 March 2016; revised 1 June 2016; accepted for publication 29 August 2016 Pilosocereus is a large genus of Cactaceae with 42 species of columnar cacti distributed in the Americas. In this work we investigate the phylogenetics and evolutionary history of Pilosocereus based in plastid and nuclear DNA sequences. We use phylogenetic trees obtained as a basis to analyse infrageneric relationships and to study the evolution of selected morphological characters and geographical distribution in the group. Thirty-three species of the genus were sampled and five molecular regions were selected, four non-coding intergenic spacers of plastid DNA (trnS-trnG, psbD-trnT, trnL-trnT, petL-psbE) and one nuclear low-copy gene (phytochrome C). The phylogenetic analyses obtained point to a paraphyletic Pilosocereus, with P.
    [Show full text]
  • Keel, S. 2005. Caribbean Ecoregional Assessment Cuba Terrestrial
    CARIBBEAN ECOREGIONAL ASSESSMENT Cuba Terrestrial Report July 8, 2005 Shirley Keel INTRODUCTION Physical Features Cuba is the largest country in the Caribbean, with a total area of 110,922 km2. The Cuba archipelago consists of the main island (105,007 km2), Isla de Pinos (2,200 km2), and more than one thousand cays (3,715 km2). Cuba’s main island, oriented in a NW-SE direction, has a varied orography. In the NW the major mountain range is the Guaniguanico Massif stretching from west to east with two mountain chains of distinct geological ages and composition—Sierra de los Organos of ancient Jurassic limestone deposited on slaty sandstone, and Sierra del Rosario, younger and highly varied in geological structure. Towards the east lie the low Hills of Habana- Matanzas and the Hills of Bejucal-Madruga-Limonar. In the central part along the east coast are several low hills—from north to south the Mogotes of Caguaguas, Loma Cunagua, the ancient karstic range of Sierra de Cubitas, and the Maniabón Group; while along the west coast rises the Guamuhaya Massif (Sierra de Escambray range) and low lying Sierra de Najasa. In the SE, Sierra Maestra and the Sagua-Baracoa Massif form continuous mountain ranges. The high ranges of Sierra Maestra stretch from west to east with the island’s highest peak, Pico Real (Turquino Group), reaching 1,974 m. The complex mountain system of Sagua-Baracoa consists of several serpentine mountains in the north and plateau-like limestone mountains in the south. Low limestone hills, Sierra de Casas and Sierra de Caballos are situated in the northeastern part of Isla de Pinos (Borhidi, 1991).
    [Show full text]
  • The Castilleae, a Tribe of the Moraceae, Renamed and Redefined Due to the Exclusion of the Type Genus Olmedia From
    Bot. Neerl. Ada 26(1), February 1977, p. 73-82, The Castilleae, a tribe of the Moraceae, renamed and redefined due to the exclusion of the type genus Olmedia from the “Olmedieae” C.C. Berg Instituut voor Systematische Plantkunde, Utrecht SUMMARY New data on in the of Moraceae which known cladoptosis group was up to now as the tribe Olmedieae led to a reconsideration ofthe position ofOlmedia, and Antiaropsis , Sparattosyce. The remainder ofthe tribe is redefined and is named Castilleae. 1. INTRODUCTION The monotypic genus Olmedia occupies an isolated position within the neo- tropical Olmedieae. Its staminate flowers have valvate tepals, inflexed stamens springing back elastically at anthesis, and sometimes well-developed pistil- lodes. Current anatomical research on the wood of Moraceae (by Dr. A. M. W. Mennega) and recent field studies (by the present author) revealed that Olmedia is also distinct in anatomical characters of the wood and because of the lack of self-pruning branches. These differences between Olmedia and the other representatives of the tribe demand for reconsideration of the position of the genus and the deliminationof the tribe. The Olmedia described The genus was by Ruiz & Pavon (1794). original description mentioned that the stamens bend outward elastically at anthesis. Nevertheless it was placed in the “Artocarpeae” (cf. Endlicher 1836-1840; Trecul 1847), whereas it should have been placed in the “Moreae” on ac- of of count the characters the stamens which were rather exclusively used for separating the two taxa. Remarkably Trecul (1847) in his careful study on the “Artocarpeae” disregarded the (described) features of the stamens.
    [Show full text]
  • Brya Ebenus (L.) DC
    TAXON: Brya ebenus (L.) DC. SCORE: 4.0 RATING: Low Risk Taxon: Brya ebenus (L.) DC. Family: Fabaceae Common Name(s): cocoswood Synonym(s): Aspalathus ebenus L. ebony cocuwood grenadilla Jamaican raintree Jamaican-ebony West Indian-ebony Assessor: Chuck Chimera Status: Assessor Approved End Date: 3 May 2017 WRA Score: 4.0 Designation: L Rating: Low Risk Keywords: Tropical Tree, Spiny, Dense Stands, N-Fixing, Coppices Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) n 401 Produces spines, thorns or burrs y=1, n=0 y 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens Creation Date: 3 May 2017 (Brya ebenus (L.) DC.) Page 1 of 13 TAXON: Brya ebenus (L.) DC.
    [Show full text]
  • Anatomical Structure of Barks in Neotropical Genera of Annonaceae
    Ann. Bot. Fennici 44: 79–132 ISSN 0003-3847 Helsinki 28 March 2007 © Finnish Zoological and Botanical Publishing Board 2007 Anatomical structure of barks in Neotropical genera of Annonaceae Leo Junikka1 & Jifke Koek-Noorman2 1) Finnish Museum of Natural History, Botanical Museum, P.O. Box 7, FI-00014 University of Helsinki, Finland (present address: Botanic Garden, P.O. Box 44, FI-00014 University of Helsinki, Finland) (e-mail: [email protected]) 2) National Herbarium of the Netherlands, P.O. Box 80102, 3508 TC Utrecht, The Netherlands (e-mail: [email protected]) Received 1 Oct. 2004, revised version received 23 Aug. 2006, accepted 21 Jan. 2005 Junikka, L. & Koek-Noorman, J. 2007: Anatomical structure of barks in Neotropical genera of Annonaceae. — Ann. Bot. Fennici 44 (Supplement A): 79–132. The bark anatomy of 32 Neotropical genera of Annonaceae was studied. A family description based on Neotropical genera and a discussion of individual bark compo- nents are presented. Selected character states at the family and genus levels are sur- veyed for identification purposes. This is followed by a discussion on the taxonomical and phylogenetic relevance of bark characters according to a phylogram in preparation based on molecular characters. Although the value of many bark anatomical characters turned out to be insignificant in systematic studies of the family, some features lend support to recent phylogenetic results based on morphological and molecular data sets. The taxonomically most informative features of the bark anatomy are sclerification of phellem cells, shape of fibre groups and occurrence of crystals in bark components. Key words: anatomy, Annonaceae, bark, periderm, phloem, phylogeny, rhytidome, taxonomy Introduction collections and the development of some novel methods a multidisciplinary programme on Anno- Woody members of the Annonaceae are one of naceae was embarked on in 1983 at the Univer- the most species-rich components in the tropi- sity of Utrecht.
    [Show full text]
  • The Effects of Habitat Disturbance on the Populations of Geoffroy's Spider Monkeys in the Yucatan Peninsula
    The Effects of Habitat Disturbance on the Populations of Geoffroy’s Spider Monkeys in the Yucatan Peninsula PhD thesis Denise Spaan Supervisor: Filippo Aureli Co-supervisor: Gabriel Ramos-Fernández August 2017 Instituto de Neuroetología Universidad Veracruzana 1 For the spider monkeys of the Yucatan Peninsula, and all those dedicated to their conservation. 2 Acknowledgements This thesis turned into the biggest project I have ever attempted and it could not have been completed without the invaluable help and support of countless people and organizations. A huge thank you goes out to my supervisors Drs. Filippo Aureli and Gabriel Ramos- Fernández. Thank you for your guidance, friendship and encouragement, I have learnt so much and truly enjoyed this experience. This thesis would not have been possible without you and I am extremely proud of the results. Additionally, I would like to thank Filippo Aureli for all his help in organizing the logistics of field work. Your constant help and dedication to this project has been inspiring, and kept me pushing forward even when it was not always easy to do so, so thank you very much. I would like to thank Dr. Martha Bonilla for offering me an amazing estancia at the INECOL. Your kind words have encouraged and inspired me throughout the past three years, and have especially helped me to get through the last few months. Thank you! A big thank you to Drs. Colleen Schaffner and Jorge Morales Mavil for all your feedback and ideas over the past three years. Colleen, thank you for helping me to feel at home in Mexico and for all your support! I very much look forward to continue working with all of you in the future! I would like to thank the CONACYT for my PhD scholarship and the Instituto de Neuroetología for logistical, administrative and financial support.
    [Show full text]
  • Biodiversity in Forests of the Ancient Maya Lowlands and Genetic
    Biodiversity in Forests of the Ancient Maya Lowlands and Genetic Variation in a Dominant Tree, Manilkara zapota (Sapotaceae): Ecological and Anthropogenic Implications by Kim M. Thompson B.A. Thomas More College M.Ed. University of Cincinnati A Dissertation submitted to the University of Cincinnati, Department of Biological Sciences McMicken College of Arts and Sciences for the degree of Doctor of Philosophy October 25, 2013 Committee Chair: David L. Lentz ABSTRACT The overall goal of this study was to determine if there are associations between silviculture practices of the ancient Maya and the biodiversity of the modern forest. This was accomplished by conducting paleoethnobotanical, ecological and genetic investigations at reforested but historically urbanized ancient Maya ceremonial centers. The first part of our investigation was conducted at Tikal National Park, where we surveyed the tree community of the modern forest and recovered preserved plant remains from ancient Maya archaeological contexts. The second set of investigations focused on genetic variation and structure in Manilkara zapota (L.) P. Royen, one of the dominant trees in both the modern forest and the paleoethnobotanical remains at Tikal. We hypothesized that the dominant trees at Tikal would be positively correlated with the most abundant ancient plant remains recovered from the site and that these trees would have higher economic value for contemporary Maya cultures than trees that were not dominant. We identified 124 species of trees and vines in 43 families. Moderate levels of evenness (J=0.69-0.80) were observed among tree species with shared levels of dominance (1-D=0.94). From the paleoethnobotanical remains, we identified a total of 77 morphospecies of woods representing at least 31 plant families with 38 identified to the species level.
    [Show full text]
  • Part Iv the Phytogeographical Subdivision of Cuba (With the Contribution of O
    PART IV THE PHYTOGEOGRAPHICAL SUBDIVISION OF CUBA (WITH THE CONTRIBUTION OF O. MUÑIZ) CONTENTS PART IV The phytogeographical subdivision of Cuba (With the contribution of O. Muñiz) 21 The phytogeographical status of Cuba . 283 21.1 Good's phytogeographic regionalization ofthe Caribbean . 283 21.2 A new proposal for the phytogeographic regionalization of the Caribbean area 283 21.3 Relationships within the flora of the West Indies . 284 21. 4 Toe phytogeographical subdivision of Cuba . 29(J Sub-province A. Western Cuba . .. .. 290 Sub-province B. Central Cuba . 321 Sub-province C. Eastern Cuba .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 349 8 21 The phytogeographical status of Cuba 21.1 Good's phytogeographic regionalization of the Caribbean Cuba belongs to the Neotropical floristic kingdom whose phytogeographic subdivision has been defined by Good (1954) and, later by Takhtadjan (1970). According to these authors, the Neotropical kingdom is divided into seven floristic regions and is characterized by 32 endemic plant families, 10 of which occur in Cuba. These are: Marcgraviaceae, Bixaceae, Cochlospermaceae, Brunelliaceae, Picrodendraceae, Calyceraceae, Bromeliaceae, Cyclanthaceae, Heliconiaceae and Cannaceae. The Caribbean floristic region has been divided into four provinces: l. Southern California-Mexico, 2. Caribbean, 3. Guatemala-Panama, and 4. North Colombia-North Venezuela, Cuba, as a separate sub-province, belongs to the Caribbean province. 21.2 A new proposal far the phytogeographic regionalization of the Caribbean area In the author's opinion the above-mentioned phytogeographic classification does not reflect correctly the evolutionary history and the present floristic conditions of the Caribbean. In addition, the early isolation of the Antilles and the rich endemic flora of the archipelago are not considered satisfactorily.
    [Show full text]