Supplementary Information for

Climate drives the geography of marine consumption by changing predator communities

Matthew A. Whalen, Ross D.B. Whippo, John J. Stachowicz, Paul H. York, Erin Aiello, Teresa Alcoverro, Camilla Bertolini, Lisandro Benedetti-Cecchi, Midoli Bresch, Fabio Bulleri, Paul E. Carnell, Stéphanie Cimon, Rod M. Connolly, Mathieu Cusson, Meredith S. Diskin, Elrika D'Souza, Augusto A.V. Flores, F. Joel Fodrie, Aaron W.E. Galloway, Leo C. Gaskins, Olivia J. Graham, Torrance C. Hanley, Christopher J. Henderson, Clara M. Hereu, Margot Hessing-Lewis, Kevin A. Hovel, Brent B. Hughes, A. Randall Hughes, Kristin M. Hultgren, Holger Jänes, Dean S. Janiak, Lane N. Johnston, Pablo Jorgensen, Brendan P. Kelaher, Claudia Kruschel, Brendan S. Lanham, Kun-Seop Lee, Jonathan S. Lefcheck, Enrique Lozano-Álvarez, Peter I. Macreadie, Zachary L. Monteith, Nessa E. O'Connor, Andrew D. Olds, Jennifer K. O'Leary, Christopher J. Patrick, Oscar Pino, Alistair G.B. Poore, Michael A. Rasheed, Wendel W. Raymond, Katrin Reiss, O. Kennedy Rhoades, Max T. Robinson, Paige G. Ross, Francesca Rossi, Thomas A Schlacher, Janina Seemann, Brian R. Silliman, Delbert L. Smee, Martin Thiel, Richard K.F. Unsworth, Brigitta I. van Tussenbroek, Adriana Vergés, Mallarie E. Yeager, Bree K. Yednock, Shelby L. Ziegler, J. Emmett Duffy

Matthew Adam Whalen Email: [email protected]

This PDF file includes:

Figures S1 to S7 Tables S1 to S3 Legend for Move S1 SI References

Other supplementary materials for this manuscript include the following:

Movies S1

1

Fig. S1. Patterns of consumer (A) richness, (B) diversity expressed as the number of equally abundant species needed to produce observed values of Hurlburt’s probability of interspecific encounter (1), (C) density, and (E) biomass across mean annual sea surface temperature. Lines are LOESS curves (with shaded 95% confidence intervals) independently fitted within each habitat (green=seagrass, gold=unvegetated sediments). Note that density and biomass (C,D) are shown on a log scale.

2

Fig. S2. Relationships between consumption rate and (A) latitude and (B) mean annual sea surface temperature (SST) along the coastlines for which we have sufficient data to test for the presence and shape of latitudinal gradients. Solid lines show logistic regressions with quadratic terms for Latitude or SST, and dashed lines show logistic regressions with linear predictor terms only. Note that while the Eastern North Pacific follows trends in the Southern Hemisphere well, we do not discuss this case specifically in the text because we lack sufficient sampling towards warmer, low latitude environments.

3

Fig. S3. Bivariate relationships among consumption rate and explanatory variables. (A) Water temperature measured at the time of feedings assays tended to exceed long-term average sea surface temperature, as most studies took place during the summer. Differences between mean annual and measured water temperature decreased toward the warmest sites, but variance was highest between 15 and 25 . The red line shows predictions from local regression (LOESS) and the black line is the 1:1 line. (B) Correlations between mean annual SST, the proportion of active foraging consumer taxa, consumer℃ functional richness measured from all scored traits, an index of multivariate consumer composition (PCoA axis 1 from Fig. 2), the abundance of consumers (log-transformed) identified using ordination constrained to consumption rates, and consumption rates (logit-transformed). Red lines within the scatterplots below the diagonal show predictions from LOESS, panels along the diagonal show the frequency and density of each variable, and numbers above the diagonal show Spearman rank correlation coefficients.

4

Fig. S4. Relationships between consumption rate and community-level weighted trait means for six traits relevant to feeding and locomotion. Traits means are based on presence-absence data of consumers from seines and videos for all traits except length, which we weighted by abundance and restricted to seining data. Points represent mean consumption rate for communities in each site and habitat combination. The x-axis in the upper-left panel reflects whether the dominant consumer is an active swimming forager (1) or not (0). Body size in total length for fish and carapace width for crabs.

5

Fig. S5. Distribution of presences (1) and absences (0) for selected taxonomic families across latitude. Solid black lines are predicted values from a quadratic logistic model and the dotted lines are local regression (LOESS) curves. Shown are the 13 families with the strongest positive correlation with consumption, the 6 families with strongest negative correlation with consumption rate, and wrasses (Labridae).

6

Fig. S6. Consumption rate estimates within each habitat at every site. Filled symbols show rate estimates from individual assays in seagrass (green) and unvegetated (gold) habitats and are semi-transparent to show overlapping estimates. Open black symbols show the mean consumption rate in each habitat. Note the different scale of the y-axis in each panel, which span the range of observed consumption rates at each site.

7

FL Korea Croatia QLD1

NSW1

Fig. S7. Histogram of parameter estimates from linear models of consumption rate as a function of habitat (seagrass vs. unvegetated sediments), independently-fitted for each site. Estimates above zero mean that consumption rate was higher in seagrass than unvegetated sediments. Sites in the extreme bins of the histogram are labelled. At NSW1, for example, all squid bait were consumed after one hour in seagrass, while just over 40% were consumed in one hour in unvegetated sediments, representing a change in consumption rate of nearly 0.6 hr-1. Estimates for 20 of 38 within-site comparisons fell within the range -0.02 to 0.02.

8

Table S1. Correlations between the presence of predator families and consumption rate based on canonical correspondence analysis of predator taxonomic composition. Correlation is derived from the first axis of the constrained ordination of family composition as a function of consumption rate. Also displayed are the number of morphospecies in each family, the number of sites in our dataset where each family was observed, and patterns of presence and absence in seagrass and unvegetated habitats. Families marked with an asterisk were observed to attack or remove the squid bait from at least one of the 10 sites with video data (Table S3).

Family Morphospecies Sites Seagrass Unvegetated Correlation Sparidae* 14 10 1 1 0.41 Hemiramphidae* 9 7 1 1 0.29 Mugilidae 8 9 1 1 0.25 Gerreidae 6 10 1 1 0.25 Ambassidae 3 3 1 1 0.24 Sillaginidae 3 6 1 1 0.23 Terapontidae 3 5 1 1 0.23 Tetraodontidae* 10 9 1 1 0.19 Monacanthidae 6 7 1 1 0.19 Tetrarogidae 2 4 1 1 0.19 * 6 5 1 1 0.12 Atherinidae 6 8 1 1 0.12 Gobiidae 26 18 1 1 0.10 Monodactylidae 1 2 1 0 0.09 Penaeidae 5 5 1 1 0.09 Mullidae 4 5 1 1 0.09 * 6 3 1 1 0.08 Siganidae 4 3 1 1 0.08 Batrachoididae 1 1 1 1 0.08 Carcharhinidae* 1 1 1 1 0.07 Nemipteridae* 3 1 1 1 0.07 Sphyraenidae 3 5 1 1 0.06 Soleidae 2 2 0 1 0.06 Aulostomidae 1 1 1 0 0.06 Pseudomugilidae 1 1 1 0 0.06 Eleotridae 1 1 1 0 0.06 Muraenidae* 1 1 1 0 0.05 Palaemonidae 7 7 1 1 0.04 Serranidae* 7 6 1 1 0.04 Synodontidae 3 3 1 1 0.04 Caesionidae* 1 1 1 0 0.04 Pomacentridae* 2 2 1 1 0.04 Fundulidae 6 4 1 1 0.03 Kyphosidae 2 2 1 1 0.03 Labridae* 25 10 1 1 0.03 Diodontidae 2 3 1 0 0.03 Ariidae* 1 1 1 1 0.03

9

Arripidae 1 1 0 1 0.03 Chaetodontidae 1 1 0 1 0.03 Echeneidae 1 1 0 1 0.03 Fistulariidae 1 1 1 0 0.02 Trichechidae 1 1 0 1 0.02 Acanthuridae 3 2 1 1 0.02 Callionymidae 3 3 1 1 0.02 Loliginidae 2 2 1 1 0.02 Sepiidae 2 2 1 1 0.01 Sciaenidae 7 6 1 1 0.01 Platycephalidae 3 4 1 1 0.01 Blenniidae* 9 9 1 1 0.01 Scyliorhinidae* 1 1 1 0 0.01 Lutjanidae* 10 5 1 1 0.01 Portunidae 7 9 1 1 0.00 Elopidae 1 1 0 1 -0.01 Panopeidae 1 1 0 1 -0.01 Lysmatidae 1 1 1 0 -0.01 Rhinobatidae 1 1 1 0 -0.01 Acropomatidae 1 1 1 1 -0.01 Lateolabracidae 1 1 1 1 -0.01 Triglidae 2 2 1 1 -0.01 Urotrygonidae* 1 1 1 0 -0.01 Gobiesocidae 1 1 1 0 -0.01 Carangidae* 8 4 1 1 -0.01 Hippolytidae 1 1 1 1 -0.01 Trachinidae 1 1 0 1 -0.01 Rhombosoleidae 1 1 0 1 -0.01 Ovalipidae 1 1 0 1 -0.01 Osmeridae 1 1 0 1 -0.01 Cheilodactylidae 1 1 1 0 -0.01 Liparidae 1 1 1 0 -0.01 Stichaeidae 1 1 1 0 -0.01 Processidae 1 1 1 1 -0.01 Hexagrammidae 4 2 1 1 -0.02 Balistidae 2 1 1 1 -0.03 Albulidae 1 1 1 1 -0.03 Varunidae 1 3 1 1 -0.03 Cyprinodontidae 2 2 1 1 -0.03 Moronidae 1 2 1 1 -0.03 Paguridae 1 1 1 1 -0.03 Phycidae 1 1 1 1 -0.03 Salmonidae 2 2 0 1 -0.03 Cyclopteridae 1 2 1 0 -0.03 Salangidae 1 1 1 1 -0.03 10

Paralichthyidae 9 9 1 1 -0.04 Belonidae 2 3 1 1 -0.04 Engraulidae 3 3 1 1 -0.04 Epialtidae 2 3 1 0 -0.04 Aulorhynchidae 1 3 1 0 -0.04 Agonidae 2 2 1 1 -0.04 Ammodytidae 3 3 1 1 -0.05 Sebastidae 4 3 1 1 -0.05 Clinidae 2 3 1 1 -0.06 Gadidae 7 4 1 1 -0.06 Ostraciidae* 2 3 1 1 -0.06 Crangonidae 3 4 1 1 -0.07 Gasterosteidae 8 5 1 1 -0.07 Pholidae 6 6 1 1 -0.09 Clupeidae 9 7 1 1 -0.11 Syngnathidae 14 18 1 1 -0.12 Atherinopsidae 6 11 1 1 -0.15 Cancridae* 7 7 1 1 -0.16 Pleuronectidae 9 8 1 1 -0.16 Embiotocidae 13 8 1 1 -0.17 Cottidae 16 12 1 1 -0.18

11

Table S2. Predator taxa observed to strike and remove bait from squidpops in video footage taken during assays. Taxa that were identified in the video footage but not observed to attack squidpops are not included. The order of fish taxa reflects the clades of bony fishes proposed by Hughes et al. 2018 (2). We have included a short clip of one video from Italy in Movie S1. Phylum Class Series Order Family Taxon Site Attack Remove 1 Arthropoda Malacostraca Decapoda Cancridae Carcinus maenas Wales 1 1 2 Romaleon setosum Chile 1 1 3 Palaemonidae Palaemon serratus Wales 1 1 4 Chordata Chondrichthyes Carcharhiniformes Carcharhinidae Carcharinus melanopterus QLD2 1 0 5 Scyliorhinidae Scyliorhinus canicula Wales 1 1 6 Myliobatiformes Urotrygonidae Urobatis jamaicensis Yuca1 1 1 7 Chordata Elopomorpha Anguilliformes Muraenidae Muraena helena Italy 1 1 8 Otophysa Siluriformes Ariidae Ariopsis felis USA (FL) 1 1 9 Carangaria Carangiformes Carangidae Carangoides fulvoguttatus QLD2 1 0 10 Ovalentaria Pomacentridae Abudefduf saxatilis Yuca1 1 1 11 Ovalentaria Blenniiformes Blenniidae Petroscirtes lupus QLD3 1 1 12 Scartichthys gigas Chile 1 1 13 Ovalentaria Beloniformes Hemiramphidae Arrhamphus sclerolepis QLD3 1 1 14 Hyporhamphus regularis ardelio QLD3 1 1 15 Eupercaria Serranidae Serranus scriba Italy 1 1 16 Eupercaria Labriformes Labridae Coris caudimacula QLD2 1 0 17 Coris julis Italy 1 1 18 Coris sp. QLD2 1 0 19 Halichoeres bivittatus Yuca1 1 1 20 Thalassoma bifasciatum Yuca1 1 1 21 Thalassoma sp. QLD2 1 0 22 Eupercaria Lutjanidae Ocyurus chrysurus Yuca1 1 1 23 Caesionidae Caesio sp. QLD2 1 0 24 Eupercaria Haemulidae Diagramma pictum QLD3 1 1 25 Haemulon plumieri Yuca1 1 1

11

26 Isacia conceptionis Chile 1 1 27 Eupercaria Spariformes Nemipteridae Scolopsis lineata QLD2 1 0 28 Scolopsis sp. QLD2 1 0 29 Eupercaria Spariformes Sparidae Acanthopagurus australis QLD3 1 1 30 Diplodus annularis Italy 1 1 31 Lagodon rhomboides USA (NC2) 1 1 32 Oblada melanura Italy 1 1 33 Sparus aurata France 1 1 34 Spondyliosoma cantharus Italy 1 1 35 Eupercaria Spariformes Lethrinidae atkinsoni QLD2 1 0 36 Lethrinus genivittatus QLD2 1 0 37 Lethrinus sp. QLD2 1 0 38 Eupercaria Tetraodontiformes Tetraodontidae Sphoerioides nephelus USA (FL) 1 1 39 Eupercaria Tetraodontiformes Ostraciidae Lactrophis trigonius Yuca2 1 1

12

Table S3. List of all sites and habitat types used in consumption assays. We report the date of the first assay in each habitat, the geolocations of sites, and the range of squidpop numbers used in each assay.

First Assay Country Site Date Habitat Latitude Longitude N Australia NSW1 20170222 Seagrass -30.51 153.02 24-25 Australia NSW1 20170222 Unvegetated -30.50 153.02 25 Australia NSW2 20161208 Seagrass -32.38 152.51 25 Australia NSW2 20161208 Unvegetated -32.38 152.51 25 Australia NSW3 20161207 Unvegetated -33.84 151.25 25 Australia NSW4 20160711 Unvegetated -35.10 150.58 25 Australia QLD1 20170313 Seagrass -16.76 145.97 24-25 Australia QLD1 20170313 Unvegetated -16.76 145.97 25 Australia QLD2 20161202 Seagrass -20.02 148.25 25 Australia QLD2 20161202 Unvegetated -20.02 148.25 25 Australia QLD3 20170130 Unvegetated -26.39 153.06 23-25 Australia QLD3 20170131 Seagrass -26.39 153.06 24-25 Australia QLD4 20160208 Seagrass -27.49 153.40 24-25 Australia QLD4 20170208 Unvegetated -27.49 153.40 23-25 Australia VIC 20170222 Seagrass -38.19 144.71 14-25 Australia VIC 20170222 Unvegetated -38.19 144.71 20-25 Belize Belize 20161104 Seagrass 16.80 -88.08 25 Brazil Brazil 20170307 Seagrass -23.79 -45.36 29-30 Brazil Brazil 20170307 Unvegetated -23.76 -45.35 29-30 Canada BC 20160705 Seagrass 51.68 -128.12 23-25 Canada BC 20160705 Unvegetated 51.68 -128.11 21-25 Canada QC 20160705 Seagrass 49.09 -68.32 25 Canada QC 20160705 Unvegetated 49.09 -68.32 24-25 Chile Chile 20170307 Seagrass -30.29 -71.61 24-25 Chile Chile 20170307 Unvegetated -30.30 -71.61 25 Croatia Croatia 20160625 Seagrass 44.21 15.47 25 Croatia Croatia 20160625 Unvegetated 44.21 15.47 25 France France 20160705 Seagrass 43.45 3.67 25 France France 20160705 Unvegetated 43.45 3.67 25 India India 20170116 Seagrass 10.07 73.63 25 India India 20170116 Unvegetated 10.07 73.63 25 Ireland Ireland 20160827 Seagrass 54.53 -5.57 24-25 Ireland Ireland 20160827 Unvegetated 54.53 -5.58 23-25 Italy Italy 20160727 Seagrass 43.07 9.83 21-25 Italy Italy 20160727 Unvegetated 43.07 9.83 23-25 Korea Korea 20160620 Seagrass 34.73 128.60 24-25 Korea Korea 20160620 Unvegetated 34.73 128.60 24-25 Mexico Baja 20160625 Seagrass 31.75 -116.63 25 Mexico Baja 20160625 Unvegetated 31.75 -116.63 25

13

Mexico Yuca1 20160712 Seagrass 19.83 -87.45 25 Mexico Yuca1 20160712 Unvegetated 19.83 -87.45 25 Mexico Yuca2 20160716 Unvegetated 20.83 -86.88 25 Mexico Yuca2 20160718 Seagrass 20.83 -86.88 25 Norway Norway 20160721 Seagrass 67.21 15.01 25 Norway Norway 20160721 Unvegetated 67.21 15.01 25 Panama Panama 20160929 Seagrass 9.35 -82.26 25 Panama Panama 20160929 Unvegetated 9.35 -82.26 24-25 USA AK 20160821 Seagrass 58.61 -134.93 25 USA AK 20160821 Unvegetated 58.61 -134.93 25 USA CA 20160623 Seagrass 32.77 -117.25 24-25 USA CA 20160623 Unvegetated 32.77 -117.25 25 USA CA2 20160723 Seagrass 35.35 -120.84 23-25 USA CA2 20160723 Unvegetated 35.35 -120.84 25 USA CA3 20160622 Seagrass 36.81 -121.78 24-25 USA CA3 20160622 Unvegetated 36.81 -121.78 24-25 USA CA4 20160720 Seagrass 38.32 -123.05 25 USA CA4 20160720 Unvegetated 38.32 -123.05 22-25 USA DE 20160620 Unvegetated 38.47 -75.95 21-25 USA FL 20161115 Seagrass 27.54 -80.35 25 USA FL 20161115 Unvegetated 27.54 -80.35 25 USA MA 20160607 Seagrass 42.42 -70.92 25 USA MA 20160607 Unvegetated 42.42 -70.92 25 USA NC 20160815 Seagrass 34.69 -76.62 25 USA NC 20160815 Unvegetated 34.69 -76.62 25 USA NC2 20161028 Seagrass 34.70 -76.83 25 USA NC2 20161028 Unvegetated 34.70 -76.83 24-25 USA OR 20160718 Seagrass 43.32 -124.32 25 USA OR 20160718 Unvegetated 43.32 -124.32 25 USA TX 20160707 Seagrass 27.42 -97.19 25-28 USA TX 20160707 Unvegetated 27.42 -97.19 21-25 USA VA 20160811 Seagrass 37.22 -76.39 25 USA VA 20160811 Unvegetated 37.22 -76.39 25 USA VA2 20160621 Seagrass 37.69 -75.87 22-25 USA VA2 20160621 Unvegetated 37.69 -75.87 25 USA WA 20160706 Seagrass 47.35 -122.32 22-25 USA WA 20160706 Seagrass 47.35 -122.32 24-25 USA WA2 20160719 Seagrass 48.49 -123.08 21-25 USA WA2 20160719 Unvegetated 48.49 -123.08 24-29 Wales Wales 20160902 Seagrass 52.94 -4.57 24-25 Wales Wales 20160902 Unvegetated 52.94 -4.56 23-25

14

Movie S1 (separate file). Example of fish feeding behavior in a seagrass meadow (Posidonia oceanica) from Italy showing attacks on a squidpop. Later in the video a moray eel appears and strikes at one of the smaller fish. This movie illustrates the complex ecological interactions that can take place in seagrass meadows.

SI References

Sample References:

1. J. M. Chase, T. M. Knight, Scale-dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecol. Lett. 16, 17–26 (2013).

2. L. C. Hughes, et al., Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc. Natl. Acad. Sci. 115, 6249–6254 (2018).

15