Download From

Total Page:16

File Type:pdf, Size:1020Kb

Download From Information Sheet on Ramsar Wetlands (RIS) – 2009-2014 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 7, 2nd edition, as amended by COP9 Resolution IX.1 Annex B). A 3rd edition of the Handbook, incorporating these amendments, is in preparation and will be available in 2006. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. Tran Ngoc Cuong DD MM YY Biodiversity Conservation Agency 1 0 1 2 2 0 3 Vietnam Environment Administration 8 6 3 Ministry of Natural Resources and Environment Designation date Site Reference Number Address: Room 201, building B, #10 Ton That Thuyet, Cau Giay, Hanoi, Vietnam Tel: +84 4 37956868 ext. 3111 Fax: +84 4 39412028 Email:[email protected], 2. Date this sheet was completed/updated: 24 May 2013 3. Country: Viet Nam 4. Name of the Ramsar site: The precise name of the designated site in one of the three official languages (English, French or Spanish) of the Convention. Alternative names, including in local language(s), should be given in parentheses after the precise name. Con Dao National Park [Local name :Vuon Quoc Gia Con Dao] 5. Designation of new Ramsar site or update of existing site: This RIS is for (tick one box only): a) Designation of a new Ramsar site ; or b) Updated information on an existing Ramsar site 6. For RIS updates only, changes to the site since its designation or earlier update: a) Site boundary and area The Ramsar site boundary and site area are unchanged: Information Sheet on Ramsar Wetlands (RIS), page 2 or If the site boundary has changed: i) the boundary has been delineated more accurately ; or ii) the boundary has been extended ; or iii) the boundary has been restricted** and/or If the site area has changed: i) the area has been measured more accurately ; or ii) the area has been extended ; or iii) the area has been reduced** ** Important note: If the boundary and/or area of the designated site is being restricted/reduced, the Contracting Party should have followed the procedures established by the Conference of the Parties in the Annex to COP9 Resolution IX.6 and provided a report in line with paragraph 28 of that Annex, prior to the submission of an updated RIS. b) Describe briefly any major changes to the ecological character of the Ramsar site, including in the application of the Criteria, since the previous RIS for the site: 7. Map of site: Refer to Annex III of the Explanatory Note and Guidelines, for detailed guidance on provision of suitable maps, including digital maps. a) A map of the site, with clearly delineated boundaries, is included as: i) a hard copy (required for inclusion of site in the Ramsar List): ; (A4 layout: 1:140,000) ii) an electronic format (e.g. a JPEG or ArcView image) ; JPEG (1:140,000) and MapInfo (1:140,000 adapted from original 1:10,000) iii) a GIS file providing geo-referenced site boundary vectors and attribute tables . b) Describe briefly the type of boundary delineation applied: e.g. the boundary is the same as an existing protected area (nature reserve, national park, etc.), or follows a catchment boundary, or follows a geopolitical boundary such as a local government jurisdiction, follows physical boundaries such as roads, follows the shoreline of a waterbody, etc. The boundary of the site is the boundary of Con Dao National Park, as shown on the map and with a demarcation system on the ground and on the sea. 8. Geographical coordinates (latitude/longitude, in degrees and minutes): Provide the coordinates of the approximate centre of the site and/or the limits of the site. If the site is composed of more than one separate area, provide coordinates for each of these areas. Centre: 8°42’23” N - 106°38’08” E; From 8°36’11” to 8°48’35” North, and from 106°30’23” to 106°45’52” East 9. General location: Include in which part of the country and which large administrative region(s) the site lies and the location of the nearest large town. Con Dao National Park is situated in the Con Dao archipelago which is located about 80 km off the coast of southern Vietnam (Bassac River mouth in Can Tho City) and 230 km south from Ho Chi Minh City. 10. Elevation: (in metres: average and/or maximum & minimum) The site is generally plain with an average elevation of 1 m above mean sea level. Minimum: -35 m from the mean sea level Maximum: 577 m above mean sea level Information Sheet on Ramsar Wetlands (RIS), page 3 11. Area: (in hectares) Con Dao National Park has a total area of 19,990.7 hectares, comprised of 2 functional components as follows: Terrestrial Component: 5,990.7 ha Strictly Protected Zone: 4,215.6 hectares Ecological Rehabilitation Zone: 1,755.1 hectares Administration and Service Zone: 20 hectares and a Marine Component: 14,000 hectares Strictly Protected Zone: 1,735.1 hectares Ecological Rehabilitation Zone: 2,740.2 hectares Development Zone: 9,524.7 hectares 12. General overview of the site: Provide a short paragraph giving a summary description of the principal ecological characteristics and importance of the wetland. Con Dao National Park is centred on an archipelago of 14 islands, the largest of which is Con Son. The topography of Con Son Island is mountainous, and dominated by a granite ridge, which runs from south- west to north-east, sheltering the bays on both sides of the island from strong winds. The highest points on the island are the summits of Mount Thanh Gia and Mount Chua, at 577 m and 515 m respectively. The smaller islands reach a maximum elevation of 200 m (BirdLife International and MARD 2004). There are no permanent watercourses on any of the islands of the Con Dao archipelago, only seasonal streams. In the rainy season, water is plentiful but, in the dry season, there is a serious lack of water. Three reservoirs collect water during the rainy season to supply the local population during the dry season. The Con Dao archipelago is located on the boundary between two sea currents: a warm one from the south, and a cold one from the north. Con Son Island and many of the other islands of the archipelago are extensively forested. According to the revised investment plan, the national park supports 5,990.7 ha of forest, equivalent to 81% of the total terrestrial area. To date, 1,077 vascular plant species have been recorded at the national park, including 91 species of medicinal plant. One outstanding feature of Con Dao's flora is the 44 plant species that were discovered for the first time on the islands. A number of these species are named after the site, including Dipterocarpus condorensis, Ilex condorensis, Pavetta condorensis and Psychotria condorensis (Anon. 2009). To date, 24 species of mammal, 69 species of bird and 42 species of reptiles and amphibians have been recorded at the national park. Although the number of species is relatively low, the density of individual species is often high, and there are a number of endemic taxa, including an endemic subspecies of Black Giant Squirrel, Ratufa bicolor condorensis. The bird fauna of Con Dao National Park is not well studied. However, a number of bird species recorded at Con Dao are not known from any other site in Vietnam, including Nicobar Pigeon Caloenas nicobarica, Red-billed Tropicbird Phaethon aethereus, Pied Imperial Pigeon Ducula bicolor and Masked Booby Sula dactylatra (Nguyen Chi Thanh (Eds.) 2004). The marine ecosystems at the national park include mangroves, coral reefs and sea-grass beds. Mangroves cover a total of 15 ha, and are distributed around Ba Island and along the west coast of Bay Canh Island, and along the north and south coasts of Con Son Island. The coral reefs at Con Dao are among the most pristine in Vietnam, and are distributed in shallow waters around the islands, covering a total area of around 1,000 ha. The coral reefs support high levels of biodiversity (Devantier 2002), including over 355 coral species. Surveys conducted by Nha Trang Institute of Oceanography have shown the presence of 1,323 species of marine fauna and flora, including 44 species listed in the Red Data Book of Vietnam (ADB 1999). At 153 species, the recorded mollusc diversity of Con Dao is the highest of any of Vietnam's offshore islands (ADB 1999). The national park supports around 200 ha of sea-grass beds, which support a small population of the globally threatened marine mammal, Dugong Dugong dugon, numbering around 12 individuals (Anon.
Recommended publications
  • Growing Plants for Hawaiian Lei ‘A‘Ali‘I
    6 Growing Plants for Hawaiian Lei ‘a‘ali‘i OTHER COMMON NAMES: ‘a‘ali‘i kū range of habitats from dunes at sea makani, ‘a‘ali‘i kū ma kua, kū- level up through leeward and dry makani, hop bush, hopseed bush forests and to the highest peaks SCIENTIFIC NAME: Dodonaea viscosa CURRENT STATUS IN THE WILD IN HAWAI‘I: common FAMILY: Sapindaceae (soapberry family) CULTIVARS: female cultivars such as ‘Purpurea’ and ‘Saratoga’ have NATURAL SETTING/LOCATION: indigenous, been selected for good fruit color pantropical species, found on all the main Hawaiian Islands except Kaho‘olawe; grows in a wide Growing your own PROPAGATION FORM: seeds; semi-hardwood cuttings or air layering for selected color forms PREPLANTING TREATMENT: step on seed capsule to release small, round, black seeds, or use heavy gloves and rub capsules vigorously between hands; put seeds in water that has been brought to a boil and removed from heat, soak for about 24 hours; if seeds start to swell, sow imme- diately; discard floating, nonviable seeds; use strong rooting hormone on cuttings TEMPERATURE: PLANTING DEPTH: sow seeds ¼" deep in tolerates dry heat; tem- after fruiting period to shape or keep medium; insert base of cutting 1–2" perature 32–90°F short; can be shaped into a small tree or maintained as a shrub, hedge, or into medium ELEVATION: 10–7700' espalier (on a trellis) GERMINATION TIME: 2–4 weeks SALT TOLERANCE: good (moderate at SPECIAL CULTURAL HINTS: male and female CUTTING ROOTING TIME: 1½–3 months higher elevations) plants are separate, although bisex- WIND RESISTANCE:
    [Show full text]
  • Pu'u Wa'awa'a Biological Assessment
    PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9
    [Show full text]
  • Rhinogobius Mizunoi, a New Species of Freshwater Goby (Teleostei: Gobiidae) from Japan
    Bull. Kanagawa prefect. Mus. (Nat. Sci.), no. 46, pp. 79-95, Feb. 2017 79 Original Article Rhinogobius mizunoi, A New Species of Freshwater Goby (Teleostei: Gobiidae) from Japan Toshiyuki Suzuki 1), Koichi Shibukawa 2) & Masahiro Aizawa 3) Abstract. A new freshwater goby, Rhinogobius mizunoi, is described based on six specimens from a freshwater stream in Shizuoka Prefecture, Japan. The species is distinguished from all congeneric species by the following combination of characters: I, 8 second dorsal-fin rays; 18–20 pectoral-fin rays; 13–18 predorsal scales; 33–35 longitudinal scales; 8 or 9 transverse scales; 10+16=26 vertebrae 26; first dorsal fin elongate in male, its distal tip reaching to base of fourth branched ray of second dorsal fin in males when adpressed; when alive or freshly-collected, cheek with several pale sky spots; caudal fin without distinct rows of dark dots; a pair of vertically- arranged dark brown blotches at caudal-fin base in young and females. Key words: amphidoromous, fish taxonomy, Rhinogobius sp. CO, valid species Introduction 6–11 segmented rays; anal fin with a single spine and 5–11 The freshwater gobies of the genus Rhinogobius Gill, segmented rays; pectoral fin with 14–23 segmented rays; 1859 are widely distributed in the East and Southeast pelvic fin with a single spine and five segmented rays; Asian regions, including the Russia Far East, Japan, 25–44 longitudinal scales; 7–16 transverse scales; P-V 3/ Korea, China, Taiwan, the Philippines, Vietnam, Laos, II II I I 0/9; 10–11+15–18= 25–29 vertebrae; body mostly Cambodia, and Thailand (Chen & Miller, 2014).
    [Show full text]
  • Checklist of Fish and Invertebrates Listed in the CITES Appendices
    JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No.
    [Show full text]
  • Taxonomic Checklist of CITES Listed Coral Species Part II
    CoP16 Doc. 43.1 (Rev. 1) Annex 5.2 (English only / Únicamente en inglés / Seulement en anglais) Taxonomic Checklist of CITES listed Coral Species Part II CORAL SPECIES AND SYNONYMS CURRENTLY RECOGNIZED IN THE UNEP‐WCMC DATABASE 1. Scleractinia families Family Name Accepted Name Species Author Nomenclature Reference Synonyms ACROPORIDAE Acropora abrolhosensis Veron, 1985 Veron (2000) Madrepora crassa Milne Edwards & Haime, 1860; ACROPORIDAE Acropora abrotanoides (Lamarck, 1816) Veron (2000) Madrepora abrotanoides Lamarck, 1816; Acropora mangarevensis Vaughan, 1906 ACROPORIDAE Acropora aculeus (Dana, 1846) Veron (2000) Madrepora aculeus Dana, 1846 Madrepora acuminata Verrill, 1864; Madrepora diffusa ACROPORIDAE Acropora acuminata (Verrill, 1864) Veron (2000) Verrill, 1864; Acropora diffusa (Verrill, 1864); Madrepora nigra Brook, 1892 ACROPORIDAE Acropora akajimensis Veron, 1990 Veron (2000) Madrepora coronata Brook, 1892; Madrepora ACROPORIDAE Acropora anthocercis (Brook, 1893) Veron (2000) anthocercis Brook, 1893 ACROPORIDAE Acropora arabensis Hodgson & Carpenter, 1995 Veron (2000) Madrepora aspera Dana, 1846; Acropora cribripora (Dana, 1846); Madrepora cribripora Dana, 1846; Acropora manni (Quelch, 1886); Madrepora manni ACROPORIDAE Acropora aspera (Dana, 1846) Veron (2000) Quelch, 1886; Acropora hebes (Dana, 1846); Madrepora hebes Dana, 1846; Acropora yaeyamaensis Eguchi & Shirai, 1977 ACROPORIDAE Acropora austera (Dana, 1846) Veron (2000) Madrepora austera Dana, 1846 ACROPORIDAE Acropora awi Wallace & Wolstenholme, 1998 Veron (2000) ACROPORIDAE Acropora azurea Veron & Wallace, 1984 Veron (2000) ACROPORIDAE Acropora batunai Wallace, 1997 Veron (2000) ACROPORIDAE Acropora bifurcata Nemenzo, 1971 Veron (2000) ACROPORIDAE Acropora branchi Riegl, 1995 Veron (2000) Madrepora brueggemanni Brook, 1891; Isopora ACROPORIDAE Acropora brueggemanni (Brook, 1891) Veron (2000) brueggemanni (Brook, 1891) ACROPORIDAE Acropora bushyensis Veron & Wallace, 1984 Veron (2000) Acropora fasciculare Latypov, 1992 ACROPORIDAE Acropora cardenae Wells, 1985 Veron (2000) CoP16 Doc.
    [Show full text]
  • Trait Decoupling Promotes Evolutionary Diversification of The
    Trait decoupling promotes evolutionary diversification of the trophic and acoustic system of damselfishes rspb.royalsocietypublishing.org Bruno Fre´de´rich1, Damien Olivier1, Glenn Litsios2,3, Michael E. Alfaro4 and Eric Parmentier1 1Laboratoire de Morphologie Fonctionnelle et Evolutive, Applied and Fundamental Fish Research Center, Universite´ de Lie`ge, 4000 Lie`ge, Belgium 2Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland Research 3Swiss Institute of Bioinformatics, Ge´nopode, Quartier Sorge, 1015 Lausanne, Switzerland 4Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA Cite this article: Fre´de´rich B, Olivier D, Litsios G, Alfaro ME, Parmentier E. 2014 Trait decou- Trait decoupling, wherein evolutionary release of constraints permits special- pling promotes evolutionary diversification of ization of formerly integrated structures, represents a major conceptual the trophic and acoustic system of damsel- framework for interpreting patterns of organismal diversity. However, few fishes. Proc. R. Soc. B 281: 20141047. empirical tests of this hypothesis exist. A central prediction, that the tempo of morphological evolution and ecological diversification should increase http://dx.doi.org/10.1098/rspb.2014.1047 following decoupling events, remains inadequately tested. In damselfishes (Pomacentridae), a ceratomandibular ligament links the hyoid bar and lower jaws, coupling two main morphofunctional units directly involved in both feeding and sound production. Here, we test the decoupling hypothesis Received: 2 May 2014 by examining the evolutionary consequences of the loss of the ceratomandib- Accepted: 9 June 2014 ular ligament in multiple damselfish lineages. As predicted, we find that rates of morphological evolution of trophic structures increased following the loss of the ligament.
    [Show full text]
  • Scleractinian Reef Corals: Identification Notes
    SCLERACTINIAN REEF CORALS: IDENTIFICATION NOTES By JACKIE WOLSTENHOLME James Cook University AUGUST 2004 DOI: 10.13140/RG.2.2.24656.51205 http://dx.doi.org/10.13140/RG.2.2.24656.51205 Scleractinian Reef Corals: Identification Notes by Jackie Wolstenholme is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. TABLE OF CONTENTS TABLE OF CONTENTS ........................................................................................................................................ i INTRODUCTION .................................................................................................................................................. 1 ABBREVIATIONS AND DEFINITIONS ............................................................................................................. 2 FAMILY ACROPORIDAE.................................................................................................................................... 3 Montipora ........................................................................................................................................................... 3 Massive/thick plates/encrusting & tuberculae/papillae ................................................................................... 3 Montipora monasteriata .............................................................................................................................. 3 Massive/thick plates/encrusting & papillae ...................................................................................................
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Plants of Cat Tien National Park DANH LỤC THỰC VẬT VƯỜN
    Plants of Cat Tien National Park 22 January 2017 * DANH LỤC THỰC VẬT VƯỜN QUỐC GIA CÁT TIÊN Higher Family Chi - Loài NGÀNH / LỚP v.v. HỌ / HỌ PHỤ Rec. No. Clas. (& sub~) Species Authority ssp., var., syn. etc. & notes TÊN VIỆT NAM Ds Cd Mã số Clade: Embryophyta Nhánh: Thực vật có phôi (Division) Marchantiophyta Liverworts Ngành Rêu tản (Division) Anthocerotophyta Hornworts Ngành Rêu sừng (Division) Bryophyta Mosses Ngành Rêu Tracheophyta: Vascular plants: Thực vật có mạch: (Division) Lycopodiophyta clubmosses, etc Ngành Thạch tùng Lycopodiaceae 1. HỌ THẠCH TÙNG Huperzia carinata (Poir.) Trevis Thạch tùng sóng K C - T 4 Huperzia squarrosa (Forst.) Trevis Thạch tùng vảy K T 12 Huperzia obvalifolia (Bon.) Thạch tùng xoan ngược K C - T 8 Huperzia phlegmaria (L.) Roth Râu cây K C - T 9 Lycopodiella cernua (L.) Franco & Vasc Thạch tùng nghiên K T 16 Lycopodiella sp. Thạch tùng K T Selaginellaceae spikemosses 2. HỌ QUYỂN BÁ Selaginella delicatula (Desv) Alst. Quyển bá yếu K T 41 Selaginella rolandi-principis Alston. Hoa đá K T 27 Selaginella willdenowii (Desv.) Baker. Quyển bá Willdenov K T 33 Selaginella chrysorrhizos Spring Quyển bá vàng K 39 Selaginella minutifolia Spring Quyển bá vi diệp K 49 (Division) Pteridophyta (Polypodiophyta) Leptosporangiate ferns Ngành Dương xỉ Class: Marattiopsida Lớp Dương xỉ tòa sen Marattiaceae (prev. Angiopteridaceae) 4. HỌ HIỀN DỰC Angiopteris repandulade Vriese. Ráng hiền dực K 82 Class: Pteridopsida or Polypodiopsida Lớp Dương xỉ Order: Polypodiales polypod ferns Bộ Dương xỉ Aspleniaceae 5. HỌ CAN XỈ Asplenium nidus L. Ráng ổ phụng K 456 Asplenium wightii Eatoni Hook.
    [Show full text]
  • Pomacentridae): Structural and Expression Variation in Opsin Genes
    Molecular Ecology (2017) 26, 1323–1342 doi: 10.1111/mec.13968 Why UV vision and red vision are important for damselfish (Pomacentridae): structural and expression variation in opsin genes SARA M. STIEB,*† FABIO CORTESI,*† LORENZ SUEESS,* KAREN L. CARLETON,‡ WALTER SALZBURGER† and N. J. MARSHALL* *Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia, †Zoological Institute, University of Basel, Basel 4051, Switzerland, ‡Department of Biology, The University of Maryland, College Park, MD 20742, USA Abstract Coral reefs belong to the most diverse ecosystems on our planet. The diversity in col- oration and lifestyles of coral reef fishes makes them a particularly promising system to study the role of visual communication and adaptation. Here, we investigated the evolution of visual pigment genes (opsins) in damselfish (Pomacentridae) and exam- ined whether structural and expression variation of opsins can be linked to ecology. Using DNA sequence data of a phylogenetically representative set of 31 damselfish species, we show that all but one visual opsin are evolving under positive selection. In addition, selection on opsin tuning sites, including cases of divergent, parallel, conver- gent and reversed evolution, has been strong throughout the radiation of damselfish, emphasizing the importance of visual tuning for this group. The highest functional variation in opsin protein sequences was observed in the short- followed by the long- wavelength end of the visual spectrum. Comparative gene expression analyses of a subset of the same species revealed that with SWS1, RH2B and RH2A always being expressed, damselfish use an overall short-wavelength shifted expression profile. Inter- estingly, not only did all species express SWS1 – a UV-sensitive opsin – and possess UV-transmitting lenses, most species also feature UV-reflective body parts.
    [Show full text]
  • Scleractinia Fauna of Taiwan I
    Scleractinia Fauna of Taiwan I. The Complex Group 台灣石珊瑚誌 I. 複雜類群 Chang-feng Dai and Sharon Horng Institute of Oceanography, National Taiwan University Published by National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei, Taiwan Table of Contents Scleractinia Fauna of Taiwan ................................................................................................1 General Introduction ........................................................................................................1 Historical Review .............................................................................................................1 Basics for Coral Taxonomy ..............................................................................................4 Taxonomic Framework and Phylogeny ........................................................................... 9 Family Acroporidae ............................................................................................................ 15 Montipora ...................................................................................................................... 17 Acropora ........................................................................................................................ 47 Anacropora .................................................................................................................... 95 Isopora ...........................................................................................................................96 Astreopora ......................................................................................................................99
    [Show full text]
  • AC26 Doc. 20 Annex 6 English Only / Únicamente En Inglés / Seulement En Anglais
    AC26 Doc. 20 Annex 6 English only / únicamente en inglés / seulement en anglais Annex 6 CORAL SPECIES, SYNONYMS, AND NOMENCLATURE REFERENCES CURRENTLY RECOGNIZED IN THE UNEP-WCMC DATABASE Data kindly provided by UNEP-WCMC AC26 Doc. 20, Annex 6 – 1 AC26 Doc. 20 Annex 6 English only / únicamente en inglés / seulement en anglais CORAL SPECIES AND SYNONYMS CURRENTLY RECOGNIZED IN THE UNEP‐WCMC DATABASE 1. Scleractinia families FamName Accepted Name SpcAuthor Nomenclature Reference Synonyms ACROPORIDAE Acropora abrolhosensis Veron, 1985 Veron (2000) Acropora mangarevensis; Madrepora ACROPORIDAE Acropora abrotanoides (Lamarck, 1816) Veron (2000) crassa; Madrepora abrotanoides ACROPORIDAE Acropora aculeus (Dana, 1846) Veron (2000) Madrepora aculeus Acropora diffusa; Madrepora acuminata; ACROPORIDAE Acropora acuminata (Verrill, 1864) Veron (2000) Madrepora diffusa; Madrepora nigra ACROPORIDAE Acropora akajimensis Veron, 1990 Veron (2000) Madrepora anthocercis; Madrepora ACROPORIDAE Acropora anthocercis (Brook, 1893) Veron (2000) coronata ACROPORIDAE Acropora arabensis Hodgson & Carpenter, 1995 Veron (2000) Acropora cribripora; Acropora hebes; Acropora manni; Acropora yaeyamaensis; ACROPORIDAE Acropora aspera (Dana, 1846) Veron (2000) Madrepora aspera; Madrepora cribripora; Madrepora hebes; Madrepora manni ACROPORIDAE Acropora austera (Dana, 1846) Veron (2000) Madrepora austera ACROPORIDAE Acropora awi Wallace & Wolstenholme, 1998 Veron (2000) ACROPORIDAE Acropora azurea Veron & Wallace, 1984 Veron (2000) ACROPORIDAE Acropora batunai Wallace,
    [Show full text]