The Wind Power Story IEEE Press 445 Hoes Lane Piscataway, NJ 08854

Total Page:16

File Type:pdf, Size:1020Kb

The Wind Power Story IEEE Press 445 Hoes Lane Piscataway, NJ 08854 The Wind Power Story IEEE Press 445 Hoes Lane Piscataway, NJ 08854 IEEE Press Editorial Board Ekram Hossain, Editor in Chief Giancarlo Fortino Andreas Molisch Diomidis Spinellis David Alan Grier Saeid Nahavandi Elya B. Joffe Donald Heirman Ray Perez Sarah Spurgeon Xiaoou Li Jeffrey Reed Ahmet Murat Tekalp The Wind Power Story A Century of Innovation that Reshaped the Global Energy Landscape Brandon N. Owens © 2019 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per‐copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750‐8400, fax (978) 750‐4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748‐6011, fax (201) 748‐6008, or online at http://www.wiley.com/go/permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762‐2974, outside the United States at (317) 572‐3993 or fax (317) 572‐4002. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com. Library of Congress Cataloging‐in‐Publication Data Paperback: 9781118794180 Illustrations credit by Maciej K. Kozak Set in 10/12pt Warnock by SPi Global, Pondicherry, India Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 To Colleen, Lauren, Cameron, and Logan vii Contents Preface xi 1 The Wind Power Pioneers 1 1.1 Work of the Devil 1 1.2 The Danish Edison 7 1.3 The War of the Currents 12 1.4 The Colorado Connection 14 Notes 16 Bibliography 17 2 The Age of Small Wind 19 2.1 ­Networks of Power 19 2.2 ­An Interesting Twist 22 2.3 ­The Savior of the Windmills 25 2.4 ­From the Arctic to Antarctica 27 2.5 ­Rural Electrification 32 Notes 33 ­Bibliography 34 3 The Birth of Big Wind 37 3.1 ­The High Altitude Turbogenerator 37 3.2 ­The Soviets Advance 42 3.3 ­Victory 46 Notes 48 ­Bibliography 49 4 Wind Power’s Giant Leap 53 4.1 ­The Winds of Cape Cod 53 4.2 ­Grandpa’s Knob 58 4.3 ­A Dream Realized 60 viii Contents 4.4 ­A Lesson in Economics 63 Notes 65 ­Bibliography 65 5 Wind Power in the Wake of War 67 5.1 ­The Wind Power Aerogenerator 67 5.2 ­The Search for Tomorrow 72 5.3 ­The British Experiments 73 5.4 ­The Wind Power Schism 77 Notes 79 ­Bibliography 80 6 Wind Power’s Invisible Solution 83 6.1 ­The Death of Windmills 83 6.2 ­The Return of Johannes Juul 88 6.3 ­Learning to Stall 91 6.4 ­Gedser Economics 95 Notes 97 ­Bibliography 98 7 The French Connection 101 7.1 ­The Duke’s Invention 101 7.2 ­The Seeker 106 7.3 ­The Neyrpic Wind Turbines 110 Notes 111 ­Bibliography 112 8 Germany’s Timeless Beauty 115 8.1 ­Wind Power in Wartime 115 8.2 ­Lighting Neuwerk Island 117 8.3 ­The Aesthete 119 8.4 ­The Blade Breakthrough 122 Notes 127 ­Bibliography 128 9 Wind Power’s Silent Decade 129 9.1 ­The Pope’s Speech 129 9.2 ­Silent Spring 134 9.3 ­The Gathering Storm 138 Notes 139 ­Bibliography 140 Contents ix 10 America’s Next Moonshot 143 10.1 ­The Energy Crisis 143 10.2 ­Back to Ohio 148 10.3 ­The Turning Point 152 Notes 155 ­Bibliography 155 11 Denmark Reinvents Wind Power 159 11.1 ­Feared to Freeze 159 11.2 ­More Than a Carpenter 162 11.3 ­Let 100 Windmills Bloom 166 11.4 ­From Blacksmiths to Businessmen 168 Notes 171 ­Bibliography 172 12 The Wind King 175 12.1 ­Heronemus’s Dream 175 12.2 ­California’s Soft Energy Path 180 12.3 ­This Is the Place! 185 Notes 187 ­Bibliography 188 13 The California Wind Rush 191 13.1 ­The Deluge 191 13.2 ­The Danish Invasion 194 13.3 ­Brand New Day 199 Notes 203 ­Bibliography 204 14 Germany’s Giant 207 14.1 ­Ulrich Hütter Returns 207 14.2 ­Bottoms Up 215 14.3 ­Our Common Future 218 Notes 220 ­Bibliography 221 15 Spain’s Wind Power Miracle 223 15.1 ­A Hot Day in Madrid 223 15.2 ­Wind Policy Push 228 15.3 ­Denmark’s Design 229 Notes 233 ­Bibliography 234 x Contents 16 Europe Sails Ahead 237 16.1 ­Wind Power Reincarnated 237 16.2 ­The Wind Power Wizard 242 16.3 ­The Wind Virus 246 Notes 249 ­Bibliography 250 17 Reigniting American Wind Power 253 17.1 ­Picking up the Pieces 253 17.2 ­Iowa Innovates 257 17.3 ­The Selfish Invention 262 Notes 265 ­Bibliography 266 18 India’s Wind Power Path 269 18.1 ­Coping with the Crisis 269 18.2 ­A Star Is Born 274 18.3 ­Gamesa Gets It 278 18.4 ­The Path Forward 279 Notes 281 ­Bibliography 282 19 China’s Wind Power Surge 285 19.1 ­The Birth of Goldwind 285 19.2 ­The Rise of Sinovel 289 19.3 ­The Year of Adjustment 293 19.4 ­Sinovel’s Stall 297 19.5 ­Recalibration 300 Notes 303 ­Bibliography 304 20 The Globalization of Wind Power 307 20.1 ­Into the Fire 307 20.2 ­The Final Frontier 311 20.3 ­A Stable Sunset 314 20.4 ­Around the World 317 20.5 ­The Tipping Point 318 20.6 ­Back to the Future 321 Notes 324 ­Bibliography 325 Index 329 xi Preface When I joined the National Renewable Energy Laboratory in 1994, wind power appeared to have reached its nadir. The California Wind Rush of the 1980s had crashed, global energy prices had fallen from their peaks, and wind turbine manufacturers and developers were struggling to stay afloat. Wind power technology itself appeared unrefined and sometimes unreliable. This was before policy makers in the United States and Europe began enacting support pro- grams that would ultimately jumpstart the rise of wind power in the twenty-first century. When US manufacturer Kenetech filed for bankruptcy in the spring of 1996, it seemed to confirm our worst fears about the future of wind energy. Yet—to those who studied the technology—it was abundantly clear that wind power still had enormous potential to transform the global energy landscape. Both public and private research efforts had advanced the technology to the point where it had become evident that wind power could successfully inte- grate into power networks across the globe and—with continued effort—we believed that wind power would eventually achieve the cost and reliability targets needed to compete head‐to‐head with conventional generation options in a commercial environment. The technology just needed more time and additional policy support in order to get the ball rolling again. Today, as we look back from 2019, what’s happened since has exceeded the expectations of even the most optimistic wind power believers. From a global installed base of 3.5 gigawatts (GW) in 1994, wind power grew to nearly 600 GW by the end of 2018. In other words, the installed base of wind power increased over one hundred and fifty times. Wind power is now being added to power networks around the world at a rate of over fifty gigawatts per year. Here in the United States, there’s more wind and solar being added to the grid than all other sources combined. The rise of wind power has been breathtaking. Wind power’s rise occurred just in time. The growing threat of climate change is the greatest challenge facing humankind today, and zero‐greenhouse gas emitting wind power technologies represent one of the great technological solutions at our disposal. Wind power is now playing a critical role in ushering much‐needed transformation into the global energy system. Given the urgency xii Preface of the climate crisis, it is more important than ever to hasten the adoption of wind power and all other low carbon technologies. Given the success to date, it’s now time to hit the accelerator, not the brake. Our future depends upon it. Because of the important role that wind power is playing on the global stage, I believe it is important to convey the full story of wind power’s arrival on the global energy scene.
Recommended publications
  • Free Decay Testing of a Semisubmersible Offshore Floating
    Master's thesis carried out at the Department of Mathematical Sciences and Technology of the Norwegian University of Life Sciences and submitted in partial fulfilment of the requirements for the M.Sc. degree at the Department of Mechanical Engineering of the University of Kassel Free decay testing of a semisubmersible offshore floating platform for wind turbines in model scale Examiners: Prof. Dr.-Ing. Martin Lawerenz Author: Felix Kelberlau Prof. Dr.Ing. Tor Anders Nygaard Abstract Wind turbines can be installed on floating platforms in order to use wind resources, which blow above the deep sea. The presented research investigates the hydro- dynamic behaviour of the Olav Olsen Concrete Star floater in free decay motion. The floater is a new design of a semisubmersible offshore floating platform for wind turbines. The thesis describes the physical free decay testing of a 1/40 plastic scale model in a water basin as well as numerical simulations of the same test cases with the aero- hydro-servo-elastic code 3Dfloat. Tests are performed for the heave and pitch degree of freedom and without mooring lines. The experimental results are compared with the simulation results in order to find adequate added mass and damping coefficients for the numerical model and to validate 3Dfloat for the prediction of heave motions. The overall added mass coefficient for the vertical direction is found to be CM = 2.71 and the damping behaviour is simulated by using a Morison coefficient of CD = 8.0 and a considerable amount of additional linear damping. Subsequently, the results are discussed in order to find possible causes for discrepancies between the results.
    [Show full text]
  • International Experiences of Wind Energy
    MORTENSEN FORMAT-PAGINATED-4_8.DOC 04/08/2008 9:42:27 AM ARTICLE INTERNATIONAL EXPERIENCES OF WIND ENERGY Bent Ole Gram Mortensen* I. INTRODUCTION .......................................................................................180 II. PRIMARY POLITICAL INCENTIVES FOR WIND POWER DEVELOPMENT................................................................................184 A. Security of Supply......................................................................184 B. Climate Change..........................................................................185 III. AFFECTING THE SURROUNDINGS .........................................................185 A. Environmental Issues.................................................................186 B. Affecting Human Life................................................................189 IV. THE VARIABLE PRODUCTION ..............................................................192 V. LEGAL AND ECONOMIC INCENTIVES.....................................................193 A. Grid Access and Priority............................................................195 B. Peak Demand and Balancing Capacity ......................................196 C. Economic Support Mechanisms.................................................197 1. Tariffs and Premiums ..........................................................198 2. Selling Wind Power on a Renewable Power Market...........200 D. Planning, Tender, and Quotas....................................................201 E. Zoning ........................................................................................203
    [Show full text]
  • Sounds of Science – Schall Im Labor (1800–1930)
    MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science 2008 PREPRINT 346 Julia Kursell (ed.) Sounds of Science – Schall im Labor (1800–1930) TABLE OF CONTENTS Introductory Remarks Julia Kursell 3 „Erzklang“ oder „missing fundamental“: Kulturgeschichte als Signalanalyse Bernhard Siegert 7 Klangfiguren (a hit in the lab) Peter Szendy 21 Sound Objects Julia Kursell 29 A Cosmos for Pianoforte d’Amore: Some Remarks on “Miniature Estrose” by Marco Stroppa Florian Hoelscher 39 The “Muscle Telephone”: The Undiscovered Start of Audification in the 1870s Florian Dombois 41 Silence in the Laboratory: The History of Soundproof Rooms Henning Schmidgen 47 Cats and People in the Psychoacoustics Lab Jonathan Sterne 63 The Resonance of “Bodiless Entities”: Some Epistemological Remarks on the Radio-Voice Wolfgang Hagen 73 VLF and Musical Aesthetics Douglas Kahn 81 Ästhetik des Signals Daniel Gethmann 89 Producing, Representing, Constructing: Towards a Media-Aesthetic Theory of Action Related to Categories of Experimental Methods Elena Ungeheuer 99 Standardizing Aesthetics: Physicists, Musicians, and Instrument Makers in Nineteenth-Century Germany Myles W. Jackson 113 Introductory Remarks The following collection of papers documents the workshop “Sounds of Science – Schall im Labor, 1800 to 1930,” carried out at the Max Planck Institute for the History of Science, Berlin October 5 to 7, 2006. It was organized within the context of the project “Experimentalization of Life: Configurations between Science, Art, and Technology” situated in Department III of the Institute. While the larger project has discussed topics such as “Experimental Cultures,” the “Materiality of Time Relations in Life Sciences, Art, and Technology (1830-1930),” “Science and the City,” “Relations between the Living and the Lifeless,” and the “Shape of Experiment” in workshops and conferences, this workshop asked about the role sound plays in the configurations among science, technology and the arts, focusing on the years between 1800 and 1930.
    [Show full text]
  • A Short History of (Wind Turbine) Aerodynamics
    A Short History of (Wind Turbine) Aerodynamics Jens Nørkær Sørensen and Valery Okulov DTU Wind Energy Presentation at the Wind Denmark Conference Hedensted, October 30, 2018 Momentum (or slipstream, or actuator disk) theory (1889) W. Rankine R.E. Froude Considerable discussions to understand the basics of the theory took place up to the first formulation of the vortex theory, but the English school kept a distrust to Froude’s theory for a long time. DTU Vindenergi, Danmarks Tekniske Universitet Aerodynamics of the aerofoil Lord Rayleigh M. Kutta N. Joukowsky Considerable discussion about the aerodynamics of aerofoils resulted in the formulation of Kutta-Joukowsky theorem (1904). DTU Vindenergi, Danmarks Tekniske Universitet Blade element theory (1892) S. Drzewiecki The original theory of Drzewecki was incomplete because it did not include the contribution from the induced velocity. For this reason, propellers designed in accordance with his theory, in the beginning of the 20th century, were inferior to later design that included the induced velocity. DTU Vindenergi, Danmarks Tekniske Universitet Wing Aerodynamics F. Lanchester The first picture of the wing (tip) vortex by Lanchester (1907) The first simplified vortex model of a wing (Prandtl 1913) More accurate vortex model (Prandtl 1918) Used by Joukowsky in his rotor L. Prandtl (vortex) theory Used by Betz it in his rotor theory DTU Vindenergi, Danmarks Tekniske Universitet Rotor (vortex) theory of Joukowsky (October 1912) was formulated in the first article in a series of 4 articles
    [Show full text]
  • Historical Trajectories and Corporate Competences in Wind Energy
    Historical Trajectories and Corporate Competences in Wind Energy Geoffrey Jones Loubna Bouamane Working Paper 11-112 Copyright © 2011 by Geoffrey Jones and Loubna Bouamane Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may not be reproduced without permission of the copyright holder. Copies of working papers are available from the author. Historical Trajectories and Corporate Competences in Wind Energy* Geoffrey Jones Loubna Bouamane Harvard Business School Harvard Business School May 2011 Abstract This working paper surveys the business history of the global wind energy turbine industry between the late nineteenth century and the present day. It examines the long- term prominence of firms headquartered in Denmark, the more fluctuating role of US- based firms, and the more recent growth of German, Spanish, Indian and Chinese firms. While natural resource endowment in wind has not been very significant in explaining the country of origin of leading firms, the existence of rural areas not supplied by grid electricity was an important motivation for early movers in both the US and Denmark. Public policy was the problem rather than the opportunity for wind entrepreneurs before 1980, but beginning with feed-in tariffs and other policy measures taken in California, policy mattered a great deal. However, Danish firms, building on inherited technological capabilities and benefitting from a small-scale and decentralized industrial structure, benefitted more from Californian public policies. The more recent growth of German, Spanish and Chinese firms reflected both home country subsidies for wind energy and strong local content policies, whilst successful firms pursued successful strategies to acquire technologies and develop their own capabilities.
    [Show full text]
  • 1 a Brief History of the Wind Turbine Industries in Denmark and the United States Jens Vestergaard Associate Professor of Intern
    A Brief History of the Wind Turbine Industries in Denmark and the United States Jens Vestergaard Associate Professor of International Business Aarhus School of Business DK-8210 Aarhus V, Denmark +45 86 15 55 88 Lotte Brandstrup Research Assistant Aarhus School of Business DK-8210 Århus V, Denmark +45 86 15 55 88 Robert D. Goddard, III* Professor of Management John A. Walker College of Business Appalachian State University Boone, North Carolina 28608 704-262-6230 Published in the Academy of International Business (Southeast USA Chapter) Conference Pro- ceedings, November 2004, pp. 322-327. *Contact Author Abstract The history of wind-power used to produce electricity dates back to the late 19th century and early 20th century when the two pioneering countries in the industry, Denmark and the United States, developed the first electricity-producing wind turbines. Ever since then both countries have invested countless resources in development, which should have lead the way to company formations, and continuous industry development. A follow-up paper will attempt to explain why the development of the wind turbine industries in the U.S. and Denmark has taken such different paths. The World Market Today The global wind industry has been growing at a rate above 40% per annum during the past five years with the top markets being Germany, Spain, Denmark and the US. The production of wind turbine-generated electricity is hence drastically increasing and some countries have now reached a double-digit (percentage) coverage of their electricity consumption – Denmark being the leading country with 13-14% compared to only 2% in the US.
    [Show full text]
  • Chapter 1 History of Windmills
    CHAPTER 1 HISTORY OF WINDMILLS 1.1 HISTORY OF WINDMILLS Since the dawn of civilization mankind could have used wind power for various purposes, but according to documented history wind power has been in use since the year 5000 BC by the ancient Egyptians [1]. The Egyptians discovered that wind could be used as a source of energy for grinding corn, pumping water and other similar applications. The wind is a free, clean, and inexhaustible source of energy. It has served mankind well for many centuries. The first practical application of wind energy was witnessed in 4000 BC in the form of a single square sail on a sailing ship. This was done successfully on a trial basis to take advantage of the north wind up the River Nile against the river current. This idea was improved further by using many sails fixed to tall masts on ships as shown in figure 1.1. This allowed sailors to reef a sail thereby exposing a large surface area to harness all the available wind and propel the ship. In 2500 BC, during the reign of the fifth dynasty of the Egyptian emperor, the people were allowed to travel out to sea by sail ships. This trail was carried on an exploration and trading trip around the horn of Africa and to the land of Punt without using muscle power. The immense potential of the inexhaustible wind flowing through the seas and continents was utilized to generate useful energy for humans. Indeed, wind was almost the only source of power for ships until Watt invented the steam engine in the 18th century.
    [Show full text]
  • Materials for Wind Turbine Blades: an Overview
    materials Review Materials for Wind Turbine Blades: An Overview Leon Mishnaevsky Jr. * ID , Kim Branner, Helga Nørgaard Petersen, Justine Beauson, Malcolm McGugan and Bent F. Sørensen Department of Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark; [email protected] (K.B.); [email protected] (H.N.P.); [email protected] (J.B.); [email protected] (M.M.); [email protected] (B.F.S.) * Correspondence: [email protected]; Tel.: +45-4677-5729 Received: 23 August 2017; Accepted: 13 October 2017; Published: 9 November 2017 Abstract: A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed. Keywords: wind energy; composite materials; properties; reliability; modeling; manufacturing; wind turbine; blades 1. Introduction The reduction of fossil fuel dependency requires the expansion of the renewable energy sector. The European Union seeks to cover 20% of its energy needs from renewables by 2020. In order to achieve this goal [1,2], the wind energy capacity should be expanded by two orders of magnitude. The EU offshore wind energy capacity is expected to grow by 21% annually [3–5]. The history of wind turbines for electric power generation started in 1988 Cleveland Ohio, USA, 1888 by Charles F. Brush [6] and in Askov, Denmark in 1889 by pioneer Poul La Cour [7].
    [Show full text]
  • Università Degli Studi Di Padova Padua Research Archive
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio istituzionale della ricerca - Università di Padova Università degli Studi di Padova Padua Research Archive - Institutional Repository "Blowin' in the Wind" Original Citation: Availability: This version is available at: 11577/3257336 since: 2018-02-15T12:46:15Z Publisher: Institute of Electrical and Electronics Engineers Inc. Published version: DOI: 10.1109/MIE.2017.2652798 Terms of use: Open Access This article is made available under terms and conditions applicable to Open Access Guidelines, as described at http://www.unipd.it/download/file/fid/55401 (Italian only) (Article begins on next page) Historical by Massimo Guarnieri “Blowin’ in the Wind” Massimo Guarnieri he title of this article may sug- Ocean atolls, a millenarian conquest in northern Europe. Being mounted gest that it constitutes a tribute that was completed in about the tenth on a post, it could be oriented in the T to the recent Nobel Prize in Lit- century AD, when Eastern Polynesia wind’s direction by acting on a rudder. erature and a sweet remembrance of and Easter Island were reached. It was It could be placed far from rivers and our 20s for those of us who are now in again the power of wind that made pos- creeks and used when the water froze, our 60s. That could be the case. After sible the oceanic navigations of the ex- and it also allowed farmers to escape all, scientists and tech- plorers who discovered the mill right that ensured only feu- nicians live in a diversi- other continents then dal lords with the ownership of water fied and interconnected WINDMILLS WERE unknown in Europe in mills.
    [Show full text]
  • Uma Das Patentes De Alexander Graham Bell
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE FÍSICA “GLEB WATAGHIN” F 609 – TÓPICOS DE ENSINO DE FÍSICA I Coordenador: Profº Dr. Jose Joaquín Lunazzi TELEFONE COM DIAPASÃO: UMA DAS PATENTES DE ALEXANDER GRAHAM BELL André Coelho da Silva* Orientação: Profº Dr. Peter Alexander Bleinroth Schulz** 2º semestre de 2009 – Relatório finalizado em 3 de dezembro * [email protected] ** [email protected] 1) RESULTADOS ATINGIDOS Após a coleta dos materiais necessários e a busca por fontes de informação sobre o tema, foram alcançados como resultados uma bem-sucedida realização do experimento do telefone com diapasão e uma discussão da parte histórica envolvida no surgimento do telefone. Ou seja, foi possível, assim como fez originalmente Alexander Graham Bell, transmitir o som de um diapasão através de fios elétricos e ouvi-lo com o auxílio de um alto-falante; e realizar um trabalho sobre a evolução das telecomunicações focado principalmente no telefone e nos protagonistas de seu desenvolvimento. Deve-se ressaltar que, ao menos a priori, não há restrições no que diz respeito ao público-alvo deste trabalho. 2) FOTOS DA EXPERIÊNCIA Seguem logo abaixo as fotos dos materiais utilizados: Figura 1: Diapasão de garfo Figura 2: Bateria de 9 Volts Figura 3: Alto-falante Figura 4: Parte de trás do alto-falante 2 Figura 5: Tipo de fio elétrico usado Figura 6: Recipiente com água e vinagre Com os materiais acima, montamos o experimento: Figura 7: Montagem experimental – as setas azuis indicam que dois fios compõem o fio branco do alto-falante, um deles deve ser ligado ao diapasão e o outro à bateria 3 3) DIFICULDADES ENCONTRADAS Na etapa de coleta de materiais houve certa dificuldade em encontrar um alto-falante que pudesse ser usado, então, o retiramos de uma “caixinha” de som (de computador).
    [Show full text]
  • Social Factors in Wind Energy Development of Denmark in 1980S – 1990S: Society and Technology
    1 Social Factors in Wind Energy Development of Denmark in 1980s – 1990s: Society and Technology By Panuwat Permsantithum1 and Rajarajan Rathinavelu2 Abstract During the 1970s, the oil price in global market was raising nearly to US$ 100 per barrel. At that time, 92 % of electricity production in Denmark depended on the imported oil. The global oil crisis forced the Danish government to seek the alternative energy solutions, while the government cancelled their plan for atomic power in 1985. Electricity from wind, biomass, and solar power became the answer of Danish government. Nowadays, Denmark becomes one of the world leaders in wind energy. This paper believes that the collaboration between the people’s reaction and the policy of Danish government in 1980s- 1990s is the main factor of the today’s success of the wind energy development in Denmark. Therefore, this paper will examine the social factors behind the industry development of wind energy in Denmark. Key words: Wind Energy Denmark Oil Crisis Industry Development Policy Implementation Relationship between Society and Technology NOTE: 1 Panuwat Permsantithum, MA., MA., ([email protected]) 2 Rajarajan Rathinavelu M.Eng.,M.Sc, ([email protected]) Panuwat Permsantithum, and Rajarajan Rathinavelu are the volunteers and trainees in Nordic Folkecenter for Renewable Energy, in Ydby, Denmark. 2 Introduction During the 1970s, the oil price in global market was raising nearly to US$ 100 per barrel (Minister of Natural Resources of Canada (NRCan), 2010: Online). At that time, 92 % of electricity production in Denmark depended on the imported oil (Maegaard, 2009: 46). The global oil crisis forced the Danish government to seek the alternative energy solutions, while the government cancelled their plan for atomic power in 1985 (Maegaard, 2009: 46).
    [Show full text]
  • Wind Energy in the 21St Century a Iso by Roberi Y
    Wind Energy in the 21St Century A iso by Roberi Y. Redlinger TOOLS AND MEIHC)DS FOR INFTGRXIw RESOURLI: PLANNING (with Joel Swisher and Gilberto Jannuzzi) / Wind Energy in the 21st Century Economics, Policy, Technology and the Changing Electricity Industry Robert YRed1inger Rgionol 1 naCT )I)iStfl.biitCil (!atOfl (\1. Viron Ewigy S,i'ic's, (alitoJnhl Per Dannemand Andersen S'uior Sdeutit Ri) Natknial Laboroturj Dcutnork and Poul Erik Morthorst .S'n or Rescaroi Spciilict Rise 'JctiouaI Ii.bnratorv L)n?nork 7 ,. • 4%4 j • ;\,•j UNEP United Nations Fnvironment Programme © UNEP Collaborating Centre on Energy and Environment 2002 ALL rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No paragraph of this pubtication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright, Designs and Patents Act 1988, or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, 90 Tottenham Court Road, London WiT 41-1). Any person who does any unauthorised act in relation to this publication may be liable to criminal prosecution and civil claims for damages. The authors have asserted their rights to be identified as the authors of this work in accordance with the Copyright, Designs and Patents Act 1988. First published 2002 by PALG RAVE Houndmills, Basingstoke, Hampshire RG21 6XS and 175 Fifth Avenue, New York, N.Y. 10010 Companies and representatives throughout the world PALGRAVE is the new global academic imprint of St. Martin's Press LLC Scholar'y and Reference Division and Palgrave Publishers Ltd (formerly Macmillan Press LEd).
    [Show full text]