Wearable and Ubiquitous Computing

Total Page:16

File Type:pdf, Size:1020Kb

Wearable and Ubiquitous Computing Education & Training Editor: Scott F. Midkiff ■ Virginia Tech ■ [email protected] Wearable and Ubiquitous Computing Tom Martin EDITOR’S INTRODUCTION ture and thickness of the user’s device primarily depends on the relative power This issue’s column continues its coverage of innovative courses in pervasive computing. consumption and expense of computa- Tom Martin of Virginia Tech describes a course on wearable and ubiquitous computing that tion, communication, and local storage. he developed and has taught twice. He describes the course’s scope, assignments and grad- Because wearable and ubiquitous ing, and design projects and his experiences with them. Please send me your comments and computing systems face significant suggestions for future columns. —Scott Midkiff power consumption challenges, the course spends a good amount of time on low-power design and system-level irginia Tech has offered a course on • User input/output devices power management. These topics are V wearable and ubiquitous comput- • Location and context awareness also some of my main research areas ing in the Bradley Department of Elec- • Application case studies and let me connect teaching and re- trical and Computer Engineering twice: search. I begin this section of the class one at the senior or master’s level in The wearable and ubiquitous com- with the power consumption mecha- spring 2002 (15 students) and another puting overview begins with Mark nisms in digital CMOS (complementary at the master’s level in spring 2003 (11 Weiser’s papers from the early 1990s1–2 metal-oxide semiconductor) circuits and students). The course aims to provide and more recent articles by Mahadev then move on to higher-level power students with an appreciation of current Satyanarayanan3 and Thad Starner.4–5 management problems, such as dynamic wearable and ubiquitous computing These provide a road map and motiva- CPU speed-setting, low-power compi- research issues and give them hands-on tion for topics covered later in the lation and source code modification, design experience. The course features a course. The papers also give the stu- and power management state transition group project (see the related sidebar) dents an historical perspective about the strategies. We also spend time studying that reinforces the readings and lectures. evolution of the research issues since batteries—particularly characteristics of The project also teaches students about Weiser’s early work and about advances various battery chemistries and battery the design process in general, including in hardware and wireless networking. life estimation. refining a specification, partitioning Many of the students are in their early functionality, creating interfaces between twenties. For most of their lives, cell subsystems, working in teams, and plan- phones and personal digital assistants QUICK FACTS ning their work. have been widely available, and proces- sor clock speeds have been measured in Courses: ECE 4984 and ECE 5984, COURSE BACKGROUND hundreds of megahertz and main mem- Wearable and Ubiquitous Computing The course comprises about 25 lec- ory in hundreds of megabytes. They Department: Electrical and Computer tures covering have heard about Moore’s Law, but this Engineering is their first concrete lesson in its con- Institution: Virginia Tech • A wearable and ubiquitous comput- sequences. Another major lesson from Instructor: Tom Martin ([email protected]) ing overview these papers concerns the interdepend- Level: Undergraduate and graduate • Low-power design and power ence of the user’s personal device and URL: www.ece.vt.edu/~tlmartin/ece5984_ management the infrastructure available in the user’s wearable • Hardware case studies environment. The required infrastruc- 8 PERVASIVEcomputing Published by the IEEE CS and IEEE ComSoc ■ 1536-1268/03/$17.00 © 2003 IEEE Case studies of the Itsy6 and the IBM SAMPLE PROJECT DESCRIPTIONS Linux wristwatch7 unite many of the low-power issues. Itsy’s main design goal was high performance with low The group design project aims to give students hands-on experience designing a wearable power consumption, so a large research and ubiquitous computing system and to teach them about aspects of the design process community would find it useful; size that will help them with any computing system’s design. Here I give some representative sam- was a secondary consideration because ple project descriptions. of the PDA form factor. However, size drove the IBM Linux wristwatch’s de- Wearable computer front-end for emergency response wireless network sign because of the form factor. IBM When responding to a disaster, you must keep track of emergency personnel and transmit also wanted an intuitive user interface timely information in the field. In this project, students should create a front-end system such in an aesthetic package. Consequently, that someone in the command center will have a map showing the locations of all personnel the two research prototypes illustrate and be able to select an individual on the map to communicate with them or find out about the trade-offs that designers can make that individual’s environment. The individual will have a body or head-mounted video cam- between computational performance, era, a microphone and headset, and perhaps other sensors (for example, temperature, oxy- power consumption, and physical size. gen, and physiological). Another major problem wearable com- A project by-product should be a product-feature matrix for commercially available wear- puting faces is the impracticality of tradi- able computers that will suit this task. tional user I/O devices such as screens and keyboards. The lectures cover alternative Camera for historical surveys forms of interaction, including tactile dis- Before beginning a major construction project such as a road, the construction company plays, manipulative user interfaces, and must perform a historical survey of the area where the construction will take place. This survey movement-aware clothing. I also ask stu- documents any structures and features that might have historical significance. Currently, an dents to use an alternative text input inter- individual takes field notes by hand describing the location and structure details and takes face, Dasher (www.inference.phy.cam.ac. photographs of the structure and surroundings. Back in the office, the individual locates the uk/dasher), and compare it to typing and structure on a map, types the notes, and integrates the photographs into the notes. The sur- writing by hand. veyor then enters this into a GIS (geographic information system) and perhaps creates a com- Several of the user I/O devices provide puter model of the landscape. a smooth transition into context-aware- The project should create a historical survey device for a digital camera that records the ness because they can be sensitive to user photograph’s location and the direction it was taken from. The device should automatically actions that are explicitly meant to be place the photograph on an electronic map of the area. input or to implicit actions that an appli- cation can use to infer the user’s current Ultrasonic building-mapping garment context. For example, an explicit action This project aims to model and create an electronic-textile garment that maps a building as would be a hand signal that tells a stereo the user walks through it using ultrasonic emitters and detectors, and perhaps other sensors to lower its volume, while an implicit facing in all directions. The device should be able to estimate the distance to objects in all action would be walking upstairs. Con- directions (within a certain range) and create a map of the areas (of a building) that a user has text-awareness involves knowing the passed through. The system should account for the user’s movement (it might be necessary user’s location, activity, companions, to stand at an entrance to create an initial registration point). and nearby resources. Without context- Students should model the garment in Ptolemy (www.ptolemy.eecs.berkeley.edu) in two awareness, a wearable computer will dimensions. The model should take as input a floor plan and a path through that floor plan, only distract the user, and a ubiquitous and output the garment’s map along the path. The model must account for the ultrasonic computing environment will offer little sensors’ physical properties. Students should use the model to answer questions such as benefit. The course lectures discuss im- plementations using various types of •What are the algorithms for mapping and feature detection (for example, walls, corners, sensors (for example, accelerometers, and openings)? magnetometers, omnidirectional video • How many ultrasonic emitters and detectors do you need? How should you place them on cameras, and microphones) and post- the body? How does the generated map’s accuracy vary with the number and placement processing. We also discuss location- of emitters and detectors? awareness, particularly methods for • What information do you need about the user’s movement (for example, velocity and rates determining location indoors. of turning)? The remaining lectures comprise Continued on p. 10 application case studies. These case JULY–SEPTEMBER 2003 PERVASIVEcomputing 9 EDUCATION & TRAINING EDUCATION & TRAINING SAMPLE PROJECT DESCRIPTIONS (cont’d) I also provide a few supplemental read- ings. This exposes many students to extensive readings from the research lit- Continued from p. 9 erature for the first time. To help them with their reading, I require them to Electronic buttons for e-textiles write a brief summary of each paper, This project aims to devise a method for reliably and cheaply connecting a printed circuit submitted via email at the beginning of board button to a textile. Soldering alone won’t suffice due to mechanical problems and the week. I also ask them to submit a list other incompatibilities. Even if you could solder, you’d still have to line up the button’s con- of questions about the readings, which I nections with fabric’s threads.
Recommended publications
  • Literature Study Concerning Wearable Computers for Use in Process Plants
    Literature study: Wearable Control Room /LWHUDWXUHVWXG\FRQFHUQLQJZHDUDEOHFRPSXWHUVIRUXVHLQSURFHVVSODQWV This report is a literature study concerning different aspects of wearable computers. The report is meant to be used mainly as background information for defining relevant projects within the program “wearable control room” as well as an introduction of this research topics for Ph.D. students and other interested readers. ,QWURGXFWLRQ This report presents the state of the research concerning wearable computers with focus on use within process plants. In addition to wearable computers, the report focuses on human factors as well as the organisational and social aspects of substituting the existing centralised control room with distributed wearable computers. Research related to wearable computers has existed for several years, but most of the research has concentrated on other aspects and goals than developing a wearable control room for process plants. A wearable computer can generally be defined as (Bass 1997): • it may be used while the wearer is in motion; • it may be used while one or both hands are free or occupied with other tasks; • it exists within the corporeal envelope of the user, i.e., it should be not merely attached to the body but becomes an integral part of the person's clothing; • it must allow the user to maintain control; • it must exhibit constancy, in the sense that it should be constantly available. The following chapters outline the state of work related to different topics, applications and finally, universities and research institutions working with wearable computers. Chapter 2 pre- sents a short review of equipment available on the market.
    [Show full text]
  • Tutorial on Designing for Wearability
    Tutorial on Designing for Wearability Francine Gemperle and Peter Sellar Carnegie Mellon University Pittsburgh, PA 15213 USA [email protected], [email protected] http://www.wearablegroup.org ABSTRACT At the Second International Symposium on The objective of this workshop will be to Wearable Computing we presented a paper titled familiarize the group with two things. The role Design for Wearability [1]. In this paper we of Industrial Design in an interdisciplinary discussed a set of guidelines for designing design process and how to Design for wearable products to fit the three dimensional Wearability. The intended audience for this shapes of the dynamic human body. This paper tutorial is anyone who is managing or also presented a set of wearable forms to be used participating in an interdisciplinary development as a reference tool for the creation of wearable team designing wearable hardware. This tutorial products. In this tutorial we will share our will also be valuable for anyone who is process for both creating a wearable computer interested the role of industrial design in the housing to fit the human body and designing the development of a wearable computer. Some component placement on a printed circuit board knowledge of the field of wearable computing to meet the complex and organic shape of the will be helpful. For the exercise, participants computer housing. This tutorial will focus on an should be comfortable working with their hands iterative and interdisciplinary design process. We and talking in a group. will present a case study application of the Design for Wearability work. We will do an INSTRUCTORS exercise creating wearable shapes for computers Francine Gemperle has been a Design and negotiating those shapes with the internal Researcher with Carnegie Mellon’s Wearable components of a computer.
    [Show full text]
  • Private Data Protection in Ubiquitous Computing
    UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies Private Data Protection in Ubiquitous Computing Malika Yaici Samia Ameza¤, Ryma Houariy and Sabrina Hammachiz Laboratoire LTII Computer Department, University of Bejaia University of Bejaia Bejaia, 06000, Algeria Bejaia, 06000, Algeria ¤[email protected] [email protected] [email protected] [email protected] Abstract—A system in ubiquitous computing consists of a large care and safety where the end-user has authorized credentials amount of heterogeneous users and devices that communicate anonymity. with each other. Users in this dynamic field communicate with lightweight and autonomous devices, which accentuate security In [3], the author uses the framework of contextual integrity problems and make them more complex. The existing mechanisms related to privacy, developed by Nissenbaum in 2010 [4], as and solutions are inadequate to address new challenges mainly a tool to understand citizen’s response to the implementation for problems of authentication and protection of privacy. In this of IoT related technology in a supermarket. The purpose was paper, a new security architecture called Tree Based distributed to identify and understand specific changes in information Privacy Protection System is proposed. It supports protection of practices brought about by the IoT that may be perceived users private data and addresses the shortcomings of systems as privacy violations. Issues identified included the mining of like GAIA, OpenID and User-directed Privacy Protection (UPP). medical data, invasive targeted advertising, and loss of auton- Furthermore, it takes into account the domain dissociation omy through marketing profiles or personal affect monitoring.
    [Show full text]
  • WT41N0 Wearable Computer Spec Sheet
    PRODUCT SPEC SHEET WT41N0 FEATURES Ergonomic hands-free wearable design Award-winning ergonomic design increases user WT41N0 comfort and productivity THE NEXT GENERATION IN RUGGED WEARABLE VOICE AND High-performance nextgeneration DATA MOBILE COMPUTERS platform Best-in-class dual core Easily increase productivity and eliminate errors in your warehouse or distribution center with next processor provides the generation hands-free voice and data. With the major increase in package volume driven by multi-channel support, power to run virtually any demands for the ultimate in customer service, plus increasing regulations for traceability, you need to move more enterprise application items through your warehouse or distribution center and capture more information about those items than ever before. With the WT41N0 wearable mobile computer on the arms of your workers, you will. Now, workers can keep their 802.11a/b/g/n WLAN hands and eyes on the materials they are handling ' no time is lost handling paper or a handheld mobile device. Add a Easily connects to existing ring-style scanner worn on a finger and workers can capture 1-D and 2-D bar codes on the fly, able to document the WLAN for fast integration; path of that item for full traceability ' and verify that the right items are in the right orders, shipped to the right 802.11n and support for customers at the right time. The result? Improved customer satisfaction and loyalty. More throughput with the same advanced Zebra's WLAN staff, driving staff utilization up. And less time spent capturing more information on item movement, driving the cost of features greatly improves compliance with traceability regulations down.
    [Show full text]
  • Consumer Data and Privacy in Ubiquitous Computing
    ESPOO 2007 VTT PUBLICATIONS 647 VTT PUBLICATIONS VTT PUBLICATIONS 647 Consumer Data and Privacy in Ubiquitous Computing 629 Communications Technologies. VTT's Research Programme 2002–2006. Final Report. Ed. by Markku Sipilä. 2007. 354 p. 630 Solehmainen, Kimmo. Fabrication of microphotonic waveguide components on silicon. 2007. 68 p. + app. 35 p. 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345 631 Törrö, Maaretta. Global intellectual capital brokering. Facilitating the emergence of 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345 innovations through network mediation. 106 p. + app. 2 p. 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345 632 Lanne, Marinka. Yhteistyö yritysturvallisuuden hallinnassa. Tutkimus sisäisen 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345
    [Show full text]
  • Ubiquitous Commerce: Ubiquitous Computing Based Commerce Dolly Amit Pruthi Deptt
    Volume 4, Issue 8, August 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Ubiquitous Commerce: Ubiquitous Computing Based Commerce Dolly Amit Pruthi Deptt. of Computer Science & Applications, G.J. University of Sci. & Tech., M.D. University, Rohtak, India Hisar, India Abstract- With the rapid advancement in field of networking and communications, no aspect of human life is untouched. Commercial activities are also affected by the new advancements. Traditional commercial activities are changed and modified with the passage of time. Firstly, the age of E-Commerce arrived, then M-Commerce. Now, after E-Commerce and M-Commerce, the age of Ultimate Commerce is arrived. Any time/ Always/ Anywhere service providing is the key to this ultimate or ubiquitous commerce. This paper studies the concept of ubiquitous computing and its adaption to commerce with new issues associated. Keywords- Ubiquitous computing, Ubiquitous commerce. I. INTRODUCTION Ubiquitous commerce, also referred to as „u-commerce‟ is a new paradigm that broadens and extends the Internet usage in today‟s environment. With the rapid development of ubiquitous computing and mobile communication technologies, the traditional business model is changing drastically. As a logical extension of e-commerce and m-commerce, Watson proposed the concept of ubiquitous commerce (u-commerce) in 2000. As the next generation business model, it immediately gained a lot of attention. U-commerce emerges as a continuous, seamless stream of communication, content and services exchanged among businesses, suppliers, employees, customers, and products. It will enable interactions and transactions to happen anywhere and at any time without being constrained to stay connected through power and telephone lines.
    [Show full text]
  • Classification of Smart Environment Scenarios in Combination with a Human-Wearable- Environment-Communication Using Wireless Connectivity
    CLASSIFICATION OF SMART ENVIRONMENT SCENARIOS IN COMBINATION WITH A HUMAN-WEARABLE- ENVIRONMENT-COMMUNICATION USING WIRELESS CONNECTIVITY Kristof Friess1 and Prof. Dr. Dr. h.c. Volker Herwig2 1Department of Applied Computer Science, University of Applied Science Erfurt, Erfurt, Germany [email protected] 2Department of Applied Computer Science, University of Applied Science Erfurt, Erfurt, Germany [email protected] ABSTRACT The development of computer technology has been rapid. Not so long ago, the first computer was developed which was large and bulky. Now, the latest generation of smartphones has a calculation power, which would have been considered those of supercomputers in 1990. For a smart environment, the person recognition and re-recognition is an important topic. The distribution of new technologies like wearable computing is a new approach to the field of person recognition and re-recognition. This article lays out the idea of identifying and re-identifying wearable computing devices by listening to their wireless communication connectivity like Wi-Fi and Bluetooth and building a classification of interaction scenarios for the combination of human-wearable-environment. KEYWORDS Wireless Network, Smart Environment, Wearable-Computing, UbiComp, Interaction-Scenarios 1. INTRODUCTION With the growing market of worn computer systems like smartphones and smartwatches, in short wearables, the possible interaction between human and computer has changed. In a short time, also the interaction between human, computer and the environment will change. There are unlimited use cases where a human uses the computer as an assistant for filtering data, processing information or storing context information. Now and in the near future, there are a lot of use cases coming up, where not the device itself helps the human to become smarter, but the environment, based on the knowledge about the human, acts smartly.
    [Show full text]
  • Ubiquitous Computing: Trends and History
    Ubiquitous Computing: Trends and History Lecture 2 CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 1 Introduction Review: What is Ubiquitous Computing? • Immerses computers in a real environment • Sensors support interact with and control the environment. • Limited power supply, storage, memory and bandwidth. • Operate unattended (much like embedded systems). • Devices are mobile/wireless. • May reside on a person (wearable computing). • Have special peripherals. • Contrast this with virtual reality which immerses humans in a computer generated articial environment. CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 2 Historical Origins and Trends Computers are becoming smaller and cheaper over time • Originally few computers many operators . Machines Expensive and Large . People (relatively) cheap • Trend toward more computers per person . Users may not be tech savvy . Even tech savvy users have limited time . Minimal intervention is required People don't want to be separated from their data • But spying on users upsets them • And can violate laws - security is important • Mobility and wireless access are critical. CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 3 Some Popular Views Many visions were popularized in the press • First to work on it, although other visionaries preceded him • Entertainment Industry (Ian Fleming, Gene Rodenberry) • Vanaver Bush's seminal article [1] As We Might Think predicted the WWW and Ubiquitous Computing in 1945! • Vernor Vinge (retired Computer Science Professor and Science ction writer) has interesting ubiquitous computing visions. • Movies: The Terminator, numerous Philip K. Dick books and screen plays (Blade Runner, Total Recall, Minority Report). Has been popular in the research community for over a decade CSI 660, William A.
    [Show full text]
  • Wearable Technology for Enhanced Security
    Communications on Applied Electronics (CAE) – ISSN : 2394-4714 Foundation of Computer Science FCS, New York, USA Volume 5 – No.10, September 2016 – www.caeaccess.org Wearable Technology for Enhanced Security Agbaje M. Olugbenga, PhD Babcock University Department of Computer Science Ogun State, Nigeria ABSTRACT Sproutling. Watches like the Apple Watch, and jewelry such Wearable's comprise of sensors and have computational as Cuff and Ringly. ability. Gadgets such as wristwatches, pens, and glasses with Taking a look at the history of computer generations up to the installed cameras are now available at cheap prices for user to present, we could divide it into three main types: mainframe purchase to monitor or securing themselves. Nigerian faced computing, personal computing, and ubiquitous or pervasive with several kidnapping in schools, homes and abduction for computing[4]. The various divisions is based on the number ransomed collection and other unlawful acts necessitate these of computers per users. The mainframe computing describes reviews. The success of the wearable technology in medical one large computer connected to many users and the second, uses prompted the research into application into security uses. personal computing, as one computer per person while the The method of research is the use of case studies and literature term ubiquitous computing however, was used in 1991 by search. This paper takes a look at the possible applications of Paul Weiser. Weiser depicted a world full of embedded the wearable technology to combat the cases of abduction and sensing technologies to streamline and improve life [5]. kidnapping in Nigeria. Nigeria faced with several kidnapping in schools and homes General Terms are in dire need for solution.
    [Show full text]
  • The Challenges of Wearable Computing: Part 2
    THE CHALLENGES OF WEARABLE COMPUTING: PART 2 WEARABLE COMPUTING PURSUES AN INTERFACE IDEAL OF A CONTINUOUSLY WORN, INTELLIGENT ASSISTANT THAT AUGMENTS MEMORY, INTELLECT, CREATIVITY, COMMUNICATION, AND PHYSICAL SENSES AND ABILITIES. MANY CHALLENGES AWAIT WEARABLE DESIGNERS. PART 2 BEGINS WITH THE CHALLENGES OF NETWORK RESOURCES AND PRIVACY CONCERNS. THIS SURVEY DESCRIBES THE POSSIBILITIES OFFERED BY WEARABLE SYSTEMS AND, IN DOING SO, DEMONSTRATES ATTRIBUTES UNIQUE TO THIS CLASS OF COMPUTING. Challenges throughput. Another serious issue is open The most immediately striking challenge standards to enable interoperability between in designing wearable computers is creating different services. For example, only one long- appropriate interfaces. However, the issues of range radio should be necessary to provide power use, heat dissipation, networking, and telephony, text messaging, Global Positioning privacy provide a necessary framework in System (GPS) correction signals, and so on. which to discuss interface. Part 1 of this arti- For wearable computers, networking cle covers the first two of these issues; Part 2 involves communication off body to the fixed begins with the networking discussion. network, on body among devices, and near Thad Starner body with objects near the user. Each of these Networking three network types requires different design Georgia Institute of As with any wireless mobile device, the decisions. Designers must also consider pos- amount of power and the type of services sible interference between the networks. Technology available can constrain networking. Wearable computers could conserve resources through Off-body communications. Wireless commu- improved coordination with the user inter- nication from mobile devices to fixed infra- face. For example, the speed at which a given structure is the most thoroughly researched of information packet is transferred can be bal- these issues.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0070439 A1 Bostick Et Al
    US 2016.0070439A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0070439 A1 Bostick et al. (43) Pub. Date: Mar. 10, 2016 (54) ELECTRONIC COMMERCEUSING G06F 3/0 (2006.01) AUGMENTED REALITY GLASSES ANDA G06F 3/16 (2006.01) SMART WATCH (52) U.S. Cl. CPC ............ G06F 3/04842 (2013.01); G06F 3/017 (71) Applicant: International Business Machines (2013.01); G06F 3/013 (2013.01); G06F 3/167 Corporation, Armonk, NY (US) (2013.01); G06T 19/006 (2013.01); G06Q 30/0641 (2013.01) (72) Inventors: James E. Bostick, Cedar Park, TX (US); John M. Ganci, JR. Cary, NC (US); Sarbajit K. Rakshit, Kolkata (IN); (57) ABSTRACT Craig M.Trim, Sylmar, CA (US) In an approach for electronic commerce using augmented reality glasses and a Smart watch, a computer receives a (21) Appl. No.: 14/477,127 configuration associating a user gesture to a command. The computer determines whethera user of the augmented reality (22) Filed: Sep. 4, 2014 glasses selects an object in a first electronic commerce envi ronment and, responsive to determining the user selects an Publication Classification object, the computer determines whether the user performs a (51) Int. C. first gesture detectable by a Smart watch. The computer, then, G06F 3/0484 (2006.01) determines whether the first gesture matches the user gesture G06O 30/06 (2006.01) and, responsive to determining the first gesture matches the G06T 9/00 (2006.01) usergesture, the computer performs the associated command. -1 200 RECEIVESA CONFIGURATION OFA COMMAND ASSOCATED WITHAUSERGESTURE DETERMINES WHETHER AN OBJECT ISSELECTED RECEIVESA COMMAND BASED ONADETECTED USERGESTURE 216 DETERMINES WHETHER THE COMMAND EXECUTES THE DETERMINED RECEIVED PROCEEDS TO A SHOPPING CART COMMAND PROCEEDS TO SHOPPING CART Patent Application Publication Mar.
    [Show full text]
  • Ubiquitous Computing, Virtual Worlds, and the Displacement of Property Rights
    Ubiquitous Computing, Virtual Worlds, and the Displacement of Property Rights M. ScoT BOONE* Abstract: Examining one emerging technology, virtual worlds, may provide us with insight about another emerging technology, ubiquitous computing. The rapid increase in both the popularity and economic value of virtual worlds has resulted in a conflict over whether players in these worlds have any property rights with respect to virtual world objects associated with their avatars. A close examination however reveals that even if such rights exist, they can be overridden through the combined use of contract and technology. This observation may in turn provide an insight about the future of real world property. The emerging technology of ubiquitous computing shares technological characteristics with virtual worlds such that ubiquitous computing would make a displacement of property rights in real world objects possible in the same way that virtual world technology makes such a displacement possible for potential property rights in virtual world objects. "Associate Professor of Law, Appalachian School of Law. I would like to thank Charlie Condon, Judie Barger, David Ritchie and James McGrath for their helpful comments on drafts of this article. I would also like to thank for their comments the participants of the Works-in-Progress Intellectual Property Colloquium, the participants of the Intellectual Property & Communications Law and Policy Scholars Roundtable sponsored by Michigan State University College of Law, and the participants of the annual meeting of Southeastern Association of Laws Schools. The research assistance of Russell Kloosterman and Justin Williams was also immensely helpful. I/S: A JOURNAL OF LAWAND POLICY [VOL.
    [Show full text]