<<

UCL AND CLIMATE PHYSICS MULLARD SPACE SCIENCE LABORATORY The PanCam instrument for the Rosalind Franklin (ExoMars 2020) rover

A.J. COATES1,2, R. JAUMANN3, A.D. GRIFFITHS1,2, M. CARTER1,2, C.E. LEFF1,2, N. SCHMITZ3, J.-L. JOSSET4, G. PAAR5, M. GUNN6, E. HAUBER3, C.R. COUSINS7. P. GR IN D R OD 8, J.C. BRIDGES9, M. BALME10, S. GUPTA11, I.A. CRAWFORD12,2, P. IRWIN13, R. STABBINS1,2,8, D. TIRSCH3, J.L.VAGO14, M.CABALLO-PERUCHA5, G.R.OSINSKI15 & the PanCam team* 1Mullard Space Science Laboratory, UCL, UK, 2Centre for UCL/Birkbeck, UK, 3DLR Institute of Planetary Research, D, 4Space Exploration Institute, CH, 5Joanneum Research, A, 6Aberystwyth University, UK, 7U. St Andrews, UK, 8Natural History Museum, London, UK, 9Space Research Centre, U. of Leicester, UK, 10Open University, UK, 11Imperial College London, UK, 12Birkbeck University of London, UK, 13University of Oxford, UK, 14European Space Agency, NL, 15 U. Western Ontario, CDN (1) Science objectives (2) ExoMars’ science eyes: PanCam summary (3) PanCam performance PI: Andrew Coates MSSL-UCL, PM: Mary Carter MSSL-UCL WACs (x2) HRC International team including DLR/OHB (D), TAS-CH/SEI (CH), Joanneum The main objectives of the ExoMars rover PanCam FoV () 38.3x38.3 4.88x4.88 instrument (Coates et al., 2017) are: Research (A), Aberystwyth U. (UK) + International Science Team Pixels 1024x1024 1024x1024 1. Provide context information for the rover and its Filter type Multispectral RGB environment, including digital elevation models and their proper visualisation. Filter type Filter wheel Bayer Filter number 11 per ‘eye’ - 2. Geologically investigate and map the rover sites including drilling locations. IFOV (µrad/pixel) 653 83

Tholins 3. Study the properties of the atmosphere and variable PanCam includes: phenomena, including water and dust content of the Pixel scale (2m) 1.31mm 0.17 mm atmosphere. • Wide Angle Camera (WAC) pair, for multi-spectral stereoscopic panoramic imaging, using a miniaturised filter wheel • High Resolution Camera (HRC) for high resolution colour images Focus Fixed Mechanical autofocus 4. Locate the landing site and the rover position with • Pancam Interface Unit (PIU) to provide a single electronic interface (1.0m-∞) (0.98m-∞) respect to local references, by comparison and data • PanCam Optical Bench (OB) to house PanCam and provide fusion with data from orbiters *PanCam science team: planetary and dust protection A. Coates, R. Jaumann, J-L Josset, A. Griffiths, M. Balme, • ‘Small items’: PanCam Calibration Target (PCT), Fiducial R. Barnes, J-P Bibring, T. 5. Support rover track planning Markers (FidM) and Rover Inspection Mirror (RIM) for radiometric Bontognali, J. Bridges, V. Ciarletti, C. Cousins, I. & geometric calibration, and to observe areas not directly visible Crawford, J. Davis, 6. Image the acquired sample N. Evdokimova, A. Fairén, P. Fawdon, A. Fedorova, B. Foing, F. Forget, Y. Gao, S. van The PanCam science team has developed a detailed Gasselt, M. Golombek, J. Grant, science traceability matrix which links the high level P. Grindrod, M. Gunn, S. Gupta, K. Gwinner, E. Hauber, H. goals to instrument performance (Jaumann et al., 2010). Hiesinger, P. Irwin, G. Jones, B. Hofmann, M. Josset, C. Köberl, R. Kuzmin, M. Leese, P. ESA Masson, G. Michael, S. Mottola, J.-P. M uller, J. Oberst, G. Osinski, G. Paar, T. Parker, M. Patel, D. Plettermeier, L. Preston, F. Preusker, Quantin- Nataf, P. Rueffer, N. Schmitz, C. Smith, R. Stabbins, K. Stephan, M. Tanevski, N. Thomas, D. Tirsch, R. Trautner, S. Turner, F. Westall, L. Whyte, R. Williams, C. Wilson

CAD (above) and Engineering model (STM – right) optical bench & filter wheel (UCL-MSSL)

(4) WAC detail (5) Bandwidth optimisation (6) Geology filter selection

• Optimising bandwidths to capture mineral reflectance spectral à Modelled filter transmission curves for the “FERRIC” features shows an increase in error with bandwidth >10nm. filter set adopted as the geology filters on PanCam.

• When compared to the filters used for the MER and Beagle2, error scores are lower for the proposed FERRIC filter set

Comparison of error scores for Ferric filter 0.45 se t a nd those use d in pre vious Ma rs missions Transmission 0.40 3.70E-03 3.51E-03 3.50E-03 0.35 (1) PanCam science objectives

3.30E-03 3.24E-03 0.30 Each WAC has 11 filters Ferric 3.10E-03 400 500 600 700 800 900 1000 1100

F2-12 Error score 2.90E-03 Filter wheel diameter 61mm Mean reflectance error (%) 0.25 2 2.77E-03 Wavelength (nm) MER 2.70E-03 Filter diameter 12mm 0.20 C.Theobald/MDO, 2.50E-03 0 10 20 30 40 50 B2 MER Ex oMar s - Fer r ic C. Cousins et al., Planet. Space Sci., 2012 MSSL-UCL Filter Bandwidths (nm)

(7) Reflectance Spectra & Blind Rock Tests (8) Field tests (9) Flight hardware delivered!

PanCam emulator AUPE-2 used for imaging and science. In Blind tests showed good identification of minerals conjunction with other ExoMars instruments – practice for After environmental testing and calibration, PanCam was operations. Tests include AMASE (09-14), SAFER + Iceland (13), delivered to Airbus (UK) on 20 May 2019 MURFI (16 – see Balme et al., 2019), ExoFit (18-19) References Balme, M.R., et al., Planet. Space Sci., 165, 31-56, The 2016 UK Space Agency Mars Utah Rover Field Investigation Acknowledgments (MURFI), Planet. Space Sci., 165, 31-56 , 2019.

We acknowledge support from the UK Space Agency (S.Horne), DLR (Germany Coates, A.J., R. Jaumann, A.D. Griffiths, C.E. Leff, N. Schmitz, J.-L. Josset, G. Paar, M. Gunn, E. Hauber, C.R. C.Henselowsky, H.Witte, O.Angerer), and the (A. Werthmueller) Cousins, R.E. Cross,, P. Grindrod, J.C. Bridges, M. Balme, S. Gupta, I.A. Crawford, P. I rwin, R. Stabbins, D. Tirsch, J.L. and Austrian support (via Prodex M.M.Stienstra)). The dedicated PanCam technical Vago, T. Theodorou, M.Caballo-Perucha, G.R. Osinski and the PanCam team, The PanCam instrument for the teams at MSSL (T.Hunt, B.Yu, B.Whiteside, C.Theobald, B.Winter, G. Davison, ExoMars rover, , 17 (6-7), 511-541, 2017. A.Spencer, A.Rousseau, P. Yuen, T.Brochant de Villiers, A.Nash, K.Ruane), Aberystwyth (H.Miles, L.Tyler, A.Ladegaard), DLR/OHB (K.Manthey, F.Trauthan, M. Cousins, C., M Gunn, B Prosser, D Barnes, I Crawford, A Griffiths, L Davis, A Coates, Selecting the geology filter Bibus, H.Mosebach, M.Glier, E. Gubbini, C. Wimmer, A. Althammer, N. Tobias, A-M wavelengths for the ExoMars Panoramic Camera instrument, Planet. Space Sci., 71, 80-100, 2012. Bais, H-H Zuknik, A. Mottaghibonab, J. Klammer, B. Schultz) , TAS-CH (M. Mosberger, D. Vernani, J. Widmer) and Joanneum/VRVis (A.Bauer, M.Caballo- Harris, J.K, C.R. Cousins, M. Gunn, P.M. Grindrod, D. Barnes, I.A. Crawford, R.E. Cross, A.J. Coates, Remote Perucha, G.Hesner) are gratefully acknowledged. detection of past habitability at Mars-analogue hydrothermal alteration terrains using an ExoMars Panoramic Camera Emulator, Icarus, 252, 284-300, 2015.

Jaumann, R., A.J. Coates, E. Hauber, H. Hoffmann, N. Schmitz, L. Le Deit, D. Tirsch, G. Paar, A.D. Griffiths, The PanCam instrument on the 2018 Exomars rover: Scientific objectives, EGU General Assembly 2010, p.11061, 2010.