Associated Legendre Polynomial
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Operational Techniques for Laguerre and Legendre Polynomials
INTERNATIONAL JOURNAL of PURE MATHEMATICS Volume 2, 2015 Operational techniques for Laguerre and Legendre polynomials Clemente Cesarano, Dario Assante, A. R. El Dhaba Abstract— By starting from the concepts and the related n , (2) formalism of the Monomiality Principle, we exploit methods of δ xn =∏() xm − δ operational nature to describe different families of Laguerre m=0 polynomials, ordinary and generalized, and to introduce the Legendre polynomials through a special class of Laguerre polynomials whose associated multiplication and derivative operators read: themselves. Many of the identities presented, involving families of d different polynomials were derived by using the structure of the ^ δ operators who satisfy the rules of a Weyl group. M= xe dx In this paper, we first present the Laguerre and Legendre d δ −1 (3) polynomials, and their generalizations, from an operational point of ^ e dx P = . view, we discuss some operational identities and further we derive δ some interesting relations involving an exotic class of orthogonal polynomials in the description of Legendre polynomials. It is worth noting that, when δ = 0 then: Keywords— Laguerre polynomials, Legendre polynomials, Weyl group, Monomiality Principle, Generating Functions. ^ Mx= (4) ^ d I. INTRODUCTION P = . In this section we will present the concepts and the related aspects of dx the Monomiality Principle [1,2] to explore different approaches for More in general, a given polynomial Laguerre and Legendre polynomials [3]. The associated operational calculus introduced by the Monomiality Principle allows us to reformulate the theory of the generalized Laguerre and Legendre pxn (), nx∈∈, polynomials from a unified point of view. In fact, these are indeed shown to be particular cases of more general polynomials and can be can be considered a quasi-monomial if two operators also used to derive classes of isospectral problems, an interesting example is given by the generalized Bessel functions [4]. -
' Unit 16 Her-Mite and Laguerre Polynomials
' UNIT 16 HER-MITE AND LAGUERRE POLYNOMIALS Structure Introduction Objectives Hermite's Differential Equation and ~eAitePolynomials Generating Function and Recurrence Relations for Hermite Polynomials Orthogonality Relations for Hermite Polynomials One Dimensional Harmonic Oscillator Laguerre's Differentiation Equation and Laguerre Polynomials Generating Polynomials and Recurrence Relations for Laguerre Polynomials Orthogonality Relations for Laguerre Polynomials Summary Terminal Questions Solutions and Answers 5 16.1 INTRODUCTION You have studied the properties of the Legendre polynomials, and the Bessel functions in Units 14 and 15, respectively. In this unit, you will learn the properties of Hermite polynomials and Laguerre polynomials. These polynomials are useful in studying the behaviour of a harmonic oscillator and the hydrogen atom using quantum mechanics. In fact, these polynomials enable us to describe the microscopic world of molecules, atoms, and sub- atomic particles in a mathematical language. A study of the properties of these polynomials and a knowledge of their zeros is also helpful in developing numerical methods. Like Legendre and Bessel polynomials, the Hermite and Laguerre polynomials are solutions of linear second order ordinary differential equations (ODE) known as the Hermite and the Laguerre differential equations. You will come across these ODES and the two polynomials in Sec. 16.2 and 16.6, respectively. The generating function and the recurrence relations for Hermite polynomials are given in Sec. 16.3. You have already seen the importance of the generating functions for Legendre and Bessel polynomials in the last units. You will now learn how the generating function for Hermite polynomials is helpful in obtaining many of their properties. The recurrence relations connecting Hermite polynomials of different orders and their derivatives are derived from the generating function in the same section. -
32 FA15 Abstracts
32 FA15 Abstracts IP1 metric simple exclusion process and the KPZ equation. In Vector-Valued Nonsymmetric and Symmetric Jack addition, the experiments of Takeuchi and Sano will be and Macdonald Polynomials briefly discussed. For each partition τ of N there are irreducible representa- Craig A. Tracy tions of the symmetric group SN and the associated Hecke University of California, Davis algebra HN (q) on a real vector space Vτ whose basis is [email protected] indexed by the set of reverse standard Young tableaux of shape τ. The talk concerns orthogonal bases of Vτ -valued polynomials of x ∈ RN . The bases consist of polyno- IP6 mials which are simultaneous eigenfunctions of commuta- Limits of Orthogonal Polynomials and Contrac- tive algebras of differential-difference operators, which are tions of Lie Algebras parametrized by κ and (q, t) respectively. These polynomi- als reduce to the ordinary Jack and Macdonald polynomials In this talk, I will discuss the connection between superin- when the partition has just one part (N). The polynomi- tegrable systems and classical systems of orthogonal poly- als are constructed by means of the Yang-Baxter graph. nomials in particular in the expansion coefficients between There is a natural bilinear form, which is positive-definite separable coordinate systems, related to representations of for certain ranges of parameter values depending on τ,and the (quadratic) symmetry algebras. This connection al- there are integral kernels related to the bilinear form for lows us to extend the Askey scheme of classical orthogonal the group case, of Gaussian and of torus type. The mate- polynomials and the limiting processes within the scheme. -
Orthogonal Functions: the Legendre, Laguerre, and Hermite Polynomials
ORTHOGONAL FUNCTIONS: THE LEGENDRE, LAGUERRE, AND HERMITE POLYNOMIALS THOMAS COVERSON, SAVARNIK DIXIT, ALYSHA HARBOUR, AND TYLER OTTO Abstract. The Legendre, Laguerre, and Hermite equations are all homogeneous second order Sturm-Liouville equations. Using the Sturm-Liouville Theory we will be able to show that polynomial solutions to these equations are orthogonal. In a more general context, finding that these solutions are orthogonal allows us to write a function as a Fourier series with respect to these solutions. 1. Introduction The Legendre, Laguerre, and Hermite equations have many real world practical uses which we will not discuss here. We will only focus on the methods of solution and use in a mathematical sense. In solving these equations explicit solutions cannot be found. That is solutions in in terms of elementary functions cannot be found. In many cases it is easier to find a numerical or series solution. There is a generalized Fourier series theory which allows one to write a function f(x) as a linear combination of an orthogonal system of functions φ1(x),φ2(x),...,φn(x),... on [a; b]. The series produced is called the Fourier series with respect to the orthogonal system. While the R b a f(x)φn(x)dx coefficients ,which can be determined by the formula cn = R b 2 , a φn(x)dx are called the Fourier coefficients with respect to the orthogonal system. We are concerned only with showing that the Legendre, Laguerre, and Hermite polynomial solutions are orthogonal and can thus be used to form a Fourier series. In order to proceed we must define an inner product and define what it means for a linear operator to be self- adjoint. -
Generalizations and Specializations of Generating Functions for Jacobi, Gegenbauer, Chebyshev and Legendre Polynomials with Definite Integrals
Journal of Classical Analysis Volume 3, Number 1 (2013), 17–33 doi:10.7153/jca-03-02 GENERALIZATIONS AND SPECIALIZATIONS OF GENERATING FUNCTIONS FOR JACOBI, GEGENBAUER, CHEBYSHEV AND LEGENDRE POLYNOMIALS WITH DEFINITE INTEGRALS HOWARD S. COHL AND CONNOR MACKENZIE Abstract. In this paper we generalize and specialize generating functions for classical orthogo- nal polynomials, namely Jacobi, Gegenbauer, Chebyshev and Legendre polynomials. We derive a generalization of the generating function for Gegenbauer polynomials through extension a two element sequence of generating functions for Jacobi polynomials. Specializations of generat- ing functions are accomplished through the re-expression of Gauss hypergeometric functions in terms of less general functions. Definite integrals which correspond to the presented orthogonal polynomial series expansions are also given. 1. Introduction This paper concerns itself with analysis of generating functions for Jacobi, Gegen- bauer, Chebyshev and Legendre polynomials involving generalization and specializa- tion by re-expression of Gauss hypergeometric generating functions for these orthog- onal polynomials. The generalizations that we present here are for two of the most important generating functions for Jacobi polynomials, namely [4, (4.3.1–2)].1 In fact, these are the first two generating functions which appear in Section 4.3 of [4]. As we will show, these two generating functions, traditionally expressed in terms of Gauss hy- pergeometric functions, can be re-expressed in terms of associated Legendre functions (and also in terms of Ferrers functions, associated Legendre functions on the real seg- ment ( 1,1)). Our Jacobi polynomial generating function generalizations, Theorem 1, Corollary− 1 and Corollary 2, generalize the generating function for Gegenbauer polyno- mials. -
On Sobolev Orthogonality for the Generalized Laguerre Polynomials* Teresa E
Journal of Approximation Theory AT2973 journal of approximation theory 86, 278285 (1996) article no. 0069 On Sobolev Orthogonality for the Generalized Laguerre Polynomials* Teresa E. Perez and Miguel A. Pin~ar- Departamento de Matematica Aplicada, Universidad de Granada, Granada, Spain Communicated by Walter Van Assche Received December 27, 1994; accepted in revised form September 4, 1995 (:) The orthogonality of the generalized Laguerre polynomials, [Ln (x)]n0,isa well known fact when the parameter : is a real number but not a negative integer. In fact, for &1<:, they are orthogonal on the interval [0, +) with respect to the weight function \(x)=x:e&x, and for :<&1, but not an integer, they are orthogonal with respect to a non-positive definite linear functional. In this work we will show that, for every value of the real parameter :, the generalized Laguerre polynomials are orthogonal with respect to a non-diagonal Sobolev inner product, that is, an inner product involving derivatives. 1996 Academic Press, Inc. 1. INTRODUCTION Classical Laguerre polynomials are the main subject of a very extensive (:) literature. If we denote by [Ln (x)]n0 the sequence of monic Laguerre polynomials, their crucial property is the following orthogonality condition + (:) (:) (:) (:) (:) : &x (Ln , Lm )L = Ln (x) L m (x) x e dx=kn $n, m , (1.1) |0 where m, n # N, kn{0 and the parameter : satisfies the condition &1<: in order to assure the convergence of the integrals. For the monic classical Laguerre polynomials, an explicit representation is well known (see Szego [5, p. 102]): n j (:) n (&1) n+: j Ln (x)=(&1) n! : x , n0, (1.2) j j! \n&j+ =0 a where ( b) is the generalized binomial coefficient a 1(a+1) = . -
Arxiv:2008.08079V2 [Math.FA] 29 Dec 2020 Hypergroups Is Not Required)
HARMONIC ANALYSIS OF LITTLE q-LEGENDRE POLYNOMIALS STEFAN KAHLER Abstract. Many classes of orthogonal polynomials satisfy a specific linearization prop- erty giving rise to a polynomial hypergroup structure, which offers an elegant and fruitful link to harmonic and functional analysis. From the opposite point of view, this allows regarding certain Banach algebras as L1-algebras, associated with underlying orthogonal polynomials or with the corresponding orthogonalization measures. The individual be- havior strongly depends on these underlying polynomials. We study the little q-Legendre polynomials, which are orthogonal with respect to a discrete measure. Their L1-algebras have been known to be not amenable but to satisfy some weaker properties like right character amenability. We will show that the L1-algebras associated with the little q- Legendre polynomials share the property that every element can be approximated by linear combinations of idempotents. This particularly implies that these L1-algebras are weakly amenable (i. e., every bounded derivation into the dual module is an inner deriva- tion), which is known to be shared by any L1-algebra of a locally compact group. As a crucial tool, we establish certain uniform boundedness properties of the characters. Our strategy relies on continued fractions, character estimations and asymptotic behavior. 1. Introduction 1.1. Motivation. One of the most famous results of mathematics, the ‘Banach–Tarski paradox’, states that any ball in d ≥ 3 dimensions can be split into a finite number of pieces in such a way that these pieces can be reassembled into two balls of the original size. It is also well-known that there is no analogue for d 2 f1; 2g, and the Banach–Tarski paradox heavily relies on the axiom of choice [37]. -
Shifted Jacobi Polynomials and Delannoy Numbers
SHIFTED JACOBI POLYNOMIALS AND DELANNOY NUMBERS GABOR´ HETYEI A` la m´emoire de Pierre Leroux Abstract. We express a weigthed generalization of the Delannoy numbers in terms of shifted Jacobi polynomials. A specialization of our formulas extends a relation between the central Delannoy numbers and Legendre polynomials, observed over 50 years ago [8], [13], [14], to all Delannoy numbers and certain Jacobi polynomials. Another specializa- tion provides a weighted lattice path enumeration model for shifted Jacobi polynomials and allows the presentation of a combinatorial, non-inductive proof of the orthogonality of Jacobi polynomials with natural number parameters. The proof relates the orthogo- nality of these polynomials to the orthogonality of (generalized) Laguerre polynomials, as they arise in the theory of rook polynomials. We also find finite orthogonal polynomial sequences of Jacobi polynomials with negative integer parameters and expressions for a weighted generalization of the Schr¨odernumbers in terms of the Jacobi polynomials. Introduction It has been noted more than fifty years ago [8], [13], [14] that the diagonal entries of the Delannoy array (dm,n), introduced by Henri Delannoy [5], and the Legendre polynomials Pn(x) satisfy the equality (1) dn,n = Pn(3), but this relation was mostly considered a “coincidence”. An important observation of our present work is that (1) can be extended to (α,0) (2) dn+α,n = Pn (3) for all α ∈ Z such that α ≥ −n, (α,0) where Pn (x) is the Jacobi polynomial with parameters (α, 0). This observation in itself is a strong indication that the interaction between Jacobi polynomials (generalizing Le- gendre polynomials) and the Delannoy numbers is more than a mere coincidence. -
Algorithms for Classical Orthogonal Polynomials
Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustr. 7, D-14195 Berlin - Dahlem Wolfram Ko epf Dieter Schmersau Algorithms for Classical Orthogonal Polynomials at Berlin Fachb ereich Mathematik und Informatik der Freien Universit Preprint SC Septemb er Algorithms for Classical Orthogonal Polynomials Wolfram Ko epf Dieter Schmersau koepfzibde Abstract In this article explicit formulas for the recurrence equation p x A x B p x C p x n+1 n n n n n1 and the derivative rules 0 x p x p x p x p x n n+1 n n n n1 n and 0 p x p x x p x x n n n n1 n n resp ectively which are valid for the orthogonal p olynomial solutions p x of the dierential n equation 00 0 x y x x y x y x n of hyp ergeometric typ e are develop ed that dep end only on the co ecients x and x which themselves are p olynomials wrt x of degrees not larger than and resp ectively Partial solutions of this problem had b een previously published by Tricomi and recently by Yanez Dehesa and Nikiforov Our formulas yield an algorithm with which it can b e decided whether a given holonomic recur rence equation ie one with p olynomial co ecients generates a family of classical orthogonal p olynomials and returns the corresp onding data density function interval including the stan dardization data in the armative case In a similar way explicit formulas for the co ecients of the recurrence equation and the dierence rule x rp x p x p x p x n n n+1 n n n n1 of the classical orthogonal p olynomials of a discrete variable are given that dep end only -
Some Identities for the Generalized Laguerre Polynomials
Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 9 (2016), 3388{3396 Research Article Some identities for the generalized Laguerre polynomials Wen-Kai Shaoa, Yuan Heb,∗, Jing Panb aDepartment of Mathematical Teaching and Research, Yibin Vocational & Technical College, 644003 Yibin, Sichuan, P. R. China. bFaculty of Science, Kunming University of Science and Technology, 650500 Kunming, Yunnan, P. R. China. Communicated by R. Saadati Abstract In this paper, we perform a further investigation for the generalized Laguerre polynomials. By applying the generating function methods and Pad´eapproximation techniques, we establish some new identities for the generalized Laguerre polynomials, and give some illustrative special cases as well as immediate consequences of the main results. c 2016 All rights reserved. Keywords: Generalized Laguerre polynomials, Pad´eapproximation, combinatorial identities. 2010 MSC: 11B83, 42C05, 41A21, 05A19. 1. Introduction (α) The generalized Laguerre polynomials Ln (x) associated with non-negative integer n and real number α > −1 are widely used in many problems of mathematical physics and quantum mechanics, for example, in the integration of Helmholtz's equation in paraboloidal coordinates, in the theory of the propagation of electromagnetic oscillations along long lines, etc., as well as in physics in connection with the solution of the second-order linear differential equation: xy00 + (α + 1 − x)y0 + ny = 0: (1.1) These polynomials satisfy some recurrence relations. One very useful, when extracting properties of the wave functions of the hydrogen atom, is the following three-term recurrence relation (see, e.g., [10, 19]): 2n + 1 + α − x n + α L(α) (x) = L(α)(x) − L(α) (x)(n ≥ 1); (1.2) n+1 n + 1 n n + 1 n−1 ∗Corresponding author Email addresses: wksh [email protected] (Wen-Kai Shao), [email protected],[email protected] (Yuan He), [email protected] (Jing Pan) Received 2016-02-28 W.-K. -
Arxiv:1705.01190V1 [Math.CA]
Noname manuscript No. (will be inserted by the editor) Uniform asymptotic expansions for Laguerre polynomials and related confluent hypergeometric functions T. M. Dunster · A. Gil · J. Segura Received: date / Accepted: date Abstract Uniform asymptotic expansions involving exponential and Airy (α) functions are obtained for Laguerre polynomials Ln (x), as well as comple- mentary confluent hypergeometric functions. The expansions are valid for n large and α small or large, uniformly for unbounded real and complex values of (α) x. The new expansions extend the range of computability of Ln (x) compared to previous expansions, in particular with respect to higher terms and large values of α. Numerical evidence of their accuracy for real and complex values of x is provided. Keywords Asymptotic expansions Laguerre polynomials Confluent hypergeometric functions Turning point· theory, WKB methods· Numerical computation · · Mathematics Subject Classification (2000) MSC 34E05 33C45 33C15 34E20 33F05 · · · · The authors acknowledge support from Ministerio de Econom´ıa y Competitividad, project MTM2015-67142-P (MINECO/FEDER, UE). T. M. Dunster Department of Mathematics and Statistics San Diego State University. 5500 Campanile Drive San Diego, CA, USA. E-mail: [email protected] A. Gil Departamento de Matem´atica Aplicada y CC. de la Computaci´on. ETSI Caminos. Universidad de Cantabria. 39005-Santander, Spain. arXiv:1705.01190v1 [math.CA] 2 May 2017 E-mail: [email protected] J. Segura Departamento de Matem´aticas, Estad´ıstica y Computaci´on. Universidad de Cantabria. 39005-Santander, Spain. E-mail: [email protected] 2 T. M. Dunster et al. 1 Introduction In this paper we shall obtain computable asymptotic expansions for Laguerre (α) polynomials Ln (x), for the case n large and α small or large. -
A Uniqueness Theorem for the Legendre and Hermite
A UNIQUENESSTHEOREM FOR THELEGENDRE ANDHERMITE POLYNOMIALS* BY K. P. WILLIAMS 1. If we replace y in the expansion of (l-\-y)~v by 2xz-\-z2, the coefficient of zn will, when x is replaced by —x, be the generalized polynomial L'ñ(x) of Legendre. It is also easy to show that the Hermitian polynomial Hn(x), usually defined by is the coefficient of 2"/«! in the series obtained on replacing y in the expansion of e~y by the same expression 2xz-\-z2. Furthermore, there is a simple recursion formula between three successive Legrendre polynomials and between three successive Hermitian polynomials. These facts suggest the following problem. Let a> ftg <p(y) = «o + «i 2/ +y,-2/2+3y ¡y3+ ••• and put (p(2xz 4z2) = P„ + Px (x) t + Ps(x) z2+---. To what extent is the generating function q>(y) determined if it is known that a simple recursion relation exists between three of the successive polynomials P0, Pi(x), P%(x), •••? We shall find that the generalized Legendre polynomials and those of Hermite possess a certain uniqueness in this regard. 2. We have PÁX) = «! 7i«íp(2!rí + £,).._0- When we make use of the formula for the «th derivative of a function of a function given by Faà de Bruno,t we find without difficulty P»(x) = Zjtt^xy, 'Presented to the Society, October 25, 1924. "¡■Quarterly Journal of Mathematics, vol. 1, p. 359. 441 License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 442 K- p- WILLIAMS [October where the summation extends to all values of i and j subject to the relation i + 2j = n.