Chapter 1410 High-Occupancy Vehicle Facilities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Module 6. Hov Treatments
Manual TABLE OF CONTENTS Module 6. TABLE OF CONTENTS MODULE 6. HOV TREATMENTS TABLE OF CONTENTS 6.1 INTRODUCTION ............................................ 6-5 TREATMENTS ..................................................... 6-6 MODULE OBJECTIVES ............................................. 6-6 MODULE SCOPE ................................................... 6-7 6.2 DESIGN PROCESS .......................................... 6-7 IDENTIFY PROBLEMS/NEEDS ....................................... 6-7 IDENTIFICATION OF PARTNERS .................................... 6-8 CONSENSUS BUILDING ........................................... 6-10 ESTABLISH GOALS AND OBJECTIVES ............................... 6-10 ESTABLISH PERFORMANCE CRITERIA / MOES ....................... 6-10 DEFINE FUNCTIONAL REQUIREMENTS ............................. 6-11 IDENTIFY AND SCREEN TECHNOLOGY ............................. 6-11 System Planning ................................................. 6-13 IMPLEMENTATION ............................................... 6-15 EVALUATION .................................................... 6-16 6.3 TECHNIQUES AND TECHNOLOGIES .................. 6-18 HOV FACILITIES ................................................. 6-18 Operational Considerations ......................................... 6-18 HOV Roadway Operations ...................................... 6-20 Operating Efficiency .......................................... 6-20 Considerations for 2+ Versus 3+ Occupancy Requirement ............. 6-20 Hours of Operations .......................................... -
Design Guidelines for the Use of Curbs and Curb/Guardrail
DESIGN GUIDELINES FOR THE USE OF CURBS AND CURB/GUARDRAIL COMBINATIONS ALONG HIGH-SPEED ROADWAYS by Chuck Aldon Plaxico A Dissertation Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Civil Engineering by September 2002 APPROVED: Dr. Malcolm Ray, Major Advisor Civil and Environmental Engineering Dr. Leonard D. Albano, Committee Member Civil and Environmental Engineering Dr. Tahar El-Korchi, Committee Member Civil and Environmental Engineering Dr. John F. Carney, Committee Member Provost and Vice President, Academic Affairs Dr. Joseph R. Rencis, Committee Member Mechanical Engineering ABSTRACT The potential hazard of using curbs on high-speed roadways has been a concern for highway designers for almost half a century. Curbs extend 75-200 mm above the road surface for appreciable distances and are located very near the edge of the traveled way, thus, they constitute a continuous hazard for motorist. Curbs are sometimes used in combination with guardrails or other roadside safety barriers. Full-scale crash testing has demonstrated that inadequate design and placement of these systems can result in vehicles vaulting, underriding or rupturing a strong-post guardrail system though the mechanisms for these failures are not well understood. For these reasons, the use of curbs has generally been discouraged on high-speed roadways. Curbs are often essential, however, because of restricted right-of-way, drainage considerations, access control, delineation and other curb functions. Thus, there is a need for nationally recognized guidelines for the design and use of curbs. The primary purpose of this study was to develop design guidelines for the use of curbs and curb-barrier combinations on roadways with operating speeds greater than 60 km/hr. -
American Title a Sociation ~ ~
OFFICIAL PUBLICATION AMERICAN TITLE A SOCIATION ~ ~ VOUJME XXXVI JUNE, 1957 NUMBER 6 TITLE NEWS Official Publication of THE AMERICAN TITLE ASSOCIATION 3608 Guardian Building-Detroit 26, Michigan Volume XXXVI June, 1957 Number 6 Table of Contents Introduction-The Federal Highway Program ......... ... ................ .. .................... 2 J. E. Sheridan Highway Laws Relating to Controlled Access Roads ..... .. ....... ........... 6 Norman A. Erbe Title Companies and the Expanded Right of Way Problems ...... ............. .. 39 , Daniel W. Rosencrans Arthur A. Anderson Samuel J. Some William A . Thuma INTRODUCTION The Federal Highway Program J. E. SHERIDAN We are extremely grateful to Nor veloped its planning sufficiently to man A. Erbe, Attorney General of the show to the satisfaction of the dis State of Iowa, for permission to re trict engineer the effect of the pro print his splendid brief embracing posed construction upon adjace.nt the highway laws of various states property, the treatment of access con relating to the control in access roads. trol in the area of Federal acquisi Mr. Erbe originally presented this m tion, and that appropriate arrange narrative form before the convention ments have been made for mainte of the Iowa Title Association in May nance and supervision over the land of this year. As is readily ascertain to be acquired and held in the name able, this is the result of a compre of the United States pending transfer hensive study of various laws touch· of title and jurisdiction to the State ing on the incidents of highway regu or the proper subdivision thereof." lations. Additionally, we are privi It is suggested that our members leged to carry the panel discussion bring this quoted portion to the at of the American Right of Way Asso tention of officers of the Highway ciation Convention held in Chicago, Department and the office of its legal May 16 and 17, dealing with "Title division, plus the Office of the Attor Companies and the Expanded Right ney General within the members' ju of Way Problems". -
"2. Sidewalks". "Boston Complete Streets Design Guide."
Sidewalk Zone Widths The width of the sidewalk contributes to the degree of When making decisions for how to allocate sidewalk space, comfort and enjoyment of walking along a street. Narrow the following principles should be used: sidewalks do not support lively pedestrian activity, and may create dangerous conditions where people walk in the Frontage Zone street. Typically, a five foot wide Pedestrian Zone supports > The Frontage Zone should be maximized to provide space two people walking side by side or two wheel chairs passing for cafés, plazas, and greenscape elements along build- each other. An eight foot wide Pedestrian Zone allows two ing facades wherever possible, but not at the expense of pairs of people to comfortably pass each other, and a ten reducing the Pedestrian Zone beyond the recommended foot or wider Pedestrian Zone can support high volumes of minimum widths. pedestrians. Pedestrian Zone Vibrant sidewalks bustling with pedestrian activity are not > The Pedestrian Zone should be clear of any obstructions only used for transportation, but for social walking, lingering, including utilities, traffic control devices, trees, and furniture. and people watching. Sidewalks, especially along Downtown When reconstructing sidewalks and relocating utilities, all Commercial, Downtown Mixed-Use, and Neighborhood Main utility access points and obstructions should be relocated Streets, should encourage social uses of the sidewalk realm outside of the Pedestrian Zone. by providing adequate widths. > While sidewalks do not need to be perfectly straight, the SIDEWALKS Pedestrian Zone should not weave back and forth in the When determining sidewalk zone widths, factors to consider right-of-way for no other reason than to introduce curves. -
Access Management Manual, September 5, 2019 TABLE of CONTENTS
AccessAccess ManagementManagement ManualManual T E X A S Prepared by the City of Irving Public Works/Traffic and Transportation Department Adopted September 5, 2019 Access Management Manual, September 5, 2019 TABLE OF CONTENTS Section 1 Introduction Page 1.0 Purpose 1 1.1 Scope 1 1.2 Definitions 3 1.3 Authority 10 Section 2 Principles of Access Management 2.1 Relationship between Access and Mobility 11 2.2 Integration of Land Use and Transportation 11 2.3 Relationship between Access and Roadway Efficiency 12 2.4 Relationship between Access and Traffic Safety 12 Section 3 Access Management Programs and Policies 3.1 Identifying Functional Hierarchy of Roadways 14 3.1.1 Sub-Classifications of Roadways 14 3.1.1.1 Revising the “Master Thoroughfare Plan” 15 3.1.2 Comprehensive Plan 15 3.1.3 Discretionary Treatment by the Director 15 3.2 Land Use 15 3.3 Unified Access Planning Policy 16 3.4 Granting Access 16 3.4.1 General Mutual Access 17 3.4.2 Expiration of Access Permission 17 3.4.3 “Grandfathered” Access and Non-Conforming Access 17 3.4.4 Illegal Access 19 3.4.4.1 Stealth Connection 19 3.4.5 Temporary Access 19 3.4.6 Emergency Access 19 3.4.7 Abandoned Access 20 3.4.8 Field Access 20 3.4.9 Provision for Special Case Access 20 3.4.10 Appeals, Variances and Administrative Remedies 20 3.5 Parking and Access Policy 20 3.6 Access vs Accessibility 21 3.7 Precedence of Access Rights Policy 21 3.8 Right to Access A Specific Roadway 22 3.9 Traffic Impact Analyses (TIA’s) 22 3.9.1 Level of Service (LOS) 22 3.9.2 Traffic Impact Analysis (TIA) Requirements -
Replacement of Davis Avenue Bridge Over Indian Harbor Bridge No
REPLACEMENT OF DAVIS AVENUE BRIDGE OVER INDIAN HARBOR BRIDGE NO. 05012 November 19, 2019 1 MEETING AGENDA • Project Team • Project Overview • Existing Conditions • Alternatives Considered • Traffic Impacts • Proposed Alternative • Railing Options • Construction Cost / Schedule • Contact Information • Questions 2 PROJECT TEAM Town of Greenwich Owner Alfred Benesch & Company Prime Consultant, Structural, Highway, Hydraulic, Drainage Design GZA GeoEnvironmantal Inc. Environmental Permitting Didona Associates Landscape Architects, LLC Landscaping Services, Planning 3 LOCATION MAP EXIT 4 EXIT 3 BRIDGE LOCATION 4 AERIAL VIEW BRIDGE LOCATION 5 PROJECT TIMELINE CURRENT PROJECT STATUS INVESTIGATION ALTERNATIVES PRELIMINARY FINAL CONSTRUCTION PHASE ASSESSMENT DESIGN DESIGN Spring to Fall 2020 February 2018 to June 2018 to January 2019 to May 2019 to May 2018 January 2019 April 2019 December 2019 6 PROJECT GOALS • Correct Existing Deficiencies of the Bridge (Structural and Functional) • Improve Multimodal Traffic Flow at Bridge Crossing (Vehicles / Bicycles / Pedestrians) • Maintain / Enhance Safety at Bridge Crossing • Meet Local, State, and Federal Requirements 7 EXISTING BRIDGE – BRIDGE PLAN 8 EXISTING BRIDGE – CURRENT PLAN VIEW 9 EXISTING BRIDGE Existing Bridge Data • Construction Year: 1934 • Structure Type: Concrete Slab Supported on Stone Masonry Abutments and Pier • Structure Length: 37’‐3” (17’‐1” Span Lengths) • Bridge Width: 43’+ (Outside to Outside) • Lane Configuration: Two Lanes, Two 4’ Sidewalks • Existing Utilities: Water, Gas (Supported -
Evaluation of Concrete Pavements with Tied Shoulders Or Widened Lanes Bert E
39 19. K. Y. Kung. A New Method in Correlation Study of vision of Pavements. Proc., 3rd International Con Pavement Deflection and Cracking. Proc., 2nd In ference on Structural Design of Asphalt Pavements, ternational Conference on Structural Design of 1972, pp. 1188-1205. Asphalt Pavements, 1967, pp. 1037-1046. 20. P. H. Leger and P. Autret. The Use of Deflection Publication of this paper sponsored by Committee on Pavement Condi Measurements for the Structural Design and Super- tion Evaluation. Evaluation of Concrete Pavements With Tied Shoulders or Widened Lanes Bert E. Colley, Claire G. Ball, and Pichet Arriyavat, Portland Cement Association Field and laboratory pavements were instrumented and load tested to reducing pavement performance, Because of this prob evaluate the effect of widened lanes, concrete shoulders, and slab thick lem, several states have installed costly longitudinal ness on measured strains and deflectfons. Eight slabs were tested in the and transverse drainage systems. Thus, concrete field and two in the laboratory. Pavement slabs were 203, 229, or 254 shoulders and widened lanes have the potential for curing mm (8, 9, or 10 in) thick. Other major design variables included the width of lane widening, the presence or absence of dowels or of a con many drainage problems as well as providing additional crete shoulder, joint spacing, and the type of shoulder joint construc slab strength. tion. Generally, there was good agreement between measured strains and Many design features contribute to pavement life. values calculated by using Westergaard's theoretical equations. Concrete The effect of some of these features can be evaluated shoulders were effective in reducing the magnitude of measured strains analytically. -
PLANNING and DESIGNING for PEDESTRIANS Table of Contents
PLANNING AND DESIGNING FOR PEDESTRIANS Table of Contents 1. Executive Summary ................................................................1 1.1 Scope of Guidelines.............................................................................. 2 1.2 How the Pedestrian-Oriented Design Guidelines Can be Used........ 5 1.3 How to Use the Chapters and Who Should Use Them ...................... 6 2. Pedestrian Primer ...................................................................9 2.1 What is Pedestrian-Oriented Design? ................................................. 9 2.2 Link Between Land Use and Transportation Decisions .................. 10 2.3 Elements of a Walkable Environment ............................................... 11 2.4 What Kind of Street Do You Have and What Kind Do You Want?... 12 2.4.1 "Linear" and "Nodal" Structures .......................................................................... 12 2.4.2 Interconnected or Isolated Streets ....................................................................... 14 2.4.3 Street Rhythm......................................................................................................... 15 2.4.4 "Seams" and "Dividers" ........................................................................................ 16 3. Community Structure and Transportation Planning.........17 3.1 Introduction ......................................................................................... 17 3.2 Land Use Types and Organization..................................................... 18 -
Ramp Metering
Ramp Metering The application of control devices to regulate the number of vehicles entering or leaving the freeway, in order to achieve operational objectives. Brief History • 1963: First use – Chicago; Eisenhower Expressway – traffic officers would stand on ramp and release vehicles • 1964 – 1967: Detroit and Los Angeles – (although no permanent meters were installed for a number of years thereafter) • 1970: Minneapolis area – “fixed time, permanent” (including a bus bypass on some ramps to encourage transit use) • 1972: Minneapolis area – the first “coordinated” meters were installed on multiple ramps on facilities • 1980’s and 90’s: advancements towards “traffic responsive, dynamic” meters that would “self-regulate” • 2000: Minnesota’s public “push-back” against meters • Circa 2006: CALTRANS District 7 advanced “System Wide Adaptive Ramp Metering (SWARM)” to control whole freeway corridors automatically Types of Ramp Metering • Stand-alone (i.e., “time of day”) 1960-70 – Often manually operated (switch on, switch off) or simple “traffic cop” management – An isolated, pre-timed location. Not much capability to adjust to traffic demand. – Problems: no way to clear congested queues; not responsive to upstream demand • Local Control 1970-80 – Fixed segments of ‘upstream+ramp+downstream’ sections of highway using detectors to verify success – Problems: not responsive to downstream bottlenecks that would back up • Coordinated 1980-1990 – Improvements on local control; use of TMC’s; greater sophistication – First use of algorithms (beyond just “timing patterns”) • Responsive (i.e., “adaptive”) 2000’s – At the most-congested MPO’s; can understand multiple and dynamic bottlenecks. – Uses real-time data in 30-sec or 5-min intervals to readjust the algorithms • Predictive Future? – In theory, would use upstream changes in traffic density to predict conditions and “forewarn” the meters how to operate Where are R-Meters used today? Representative (not all-inclusive) as of 2012 • Most Robust: (i.e., have the most installations, largest deployment) – So. -
CONCRETE Pavingtechnology Concrete Intersections a Guide for Design and Construction
CONCRETE PAVINGTechnology Concrete Intersections A Guide for Design and Construction Introduction Traffic causes damage to pavement of at-grade street and road intersections perhaps more than any other location. Heavy vehicle stopping and turning can stress the pavement surface severely along the approaches to an intersection. The pavement within the junction (physical area) of an intersection also may receive nearly twice the traffic as the pavement on the approaching roadways. At busy intersections, the added load and stress from heavy vehicles often cause asphalt pavements to deteriorate prematurely. Asphalt surfaces tend to rut and shove under the strain of busses and trucks stopping and turning. These deformed surfaces become a safety concern for drivers and a costly maintenance problem for the roadway agency. Concrete pavements better withstand the loading and turning movements of heavy vehicles. As a result, city, county and state roadway agencies have begun rebuilding deteriorated asphalt intersections with con- crete pavement. These agencies are extending road and street system maintenance funds by eliminating the expense of intersections that require frequent maintenance. At-grade intersections along business, industrial and arterial corridor routes are some of the busiest and most vital pavements in an urban road network. Closing these roads and intersections for pavement repair creates costly traffic delays and disruption to local businesses. Concrete pavements provide a long service life for these major corridors and intersections. Concrete pavements also offer other advantages for As a rule, it is important to evaluate the existing pave- intersections: ment condition before choosing limits for the new concrete pavement. On busy routes, it may be desir- 1. -
Concrete Sidewalk Specifications
CONCRETE SIDEWALK SPECIFICATIONS GENERAL Concrete sidewalks shall be constructed in accordance with these specifications and the requirements of the State of Wisconsin, Department of Transportation, Standard Specifications for Road and Bridge Construction, Current Edition (hereafter “Standard Specifications”). Concrete sidewalks shall conform to the lines and grades established by the City Engineer. All removal and replacements will be made as ordered by the City Engineer. The Contractor shall construct one-course sidewalks of a minimum thickness of four (4) inches in accordance with the plans and specifications. Sidewalk through a driveway section shall be a minimum thickness of six (6) inches. Concrete driveway approaches shall be a minimum thickness of six (6) inches. SUBGRADE A new sub-base may be required by the Engineer if, in his opinion, the soil in the subgrade is soft or spongy in places and will swell or shrink with changes in its moisture content. If a new sub- base is required, it shall consist of granular material and shall be spread to a depth of at least three (3) inches and thoroughly compacted. While compacting the sub-base the material shall be thoroughly wet and shall be wet when the concrete is deposited but shall not show any pools of water. If the Contractor undercuts the subgrade two (2) inches or more, he shall, at his expense, bring the subgrade to grade by using gravel fill and it shall be thoroughly compacted. Where sidewalk is placed over excavations such as tree roots or sewer laterals, four (4) one-half (1/2) inch reinforcing bars shall be placed to prevent settling or cracking of the sidewalk. -
Costing of Bicycle Infrastructure and Programs in Canada Project Team
Costing of Bicycle Infrastructure and Programs in Canada Project Team Project Leads: Nancy Smith Lea, The Centre for Active Transportation, Clean Air Partnership Dr. Ray Tomalty, School of Urban Planning, McGill University Researchers: Jiya Benni, The Centre for Active Transportation, Clean Air Partnership Dr. Marvin Macaraig, The Centre for Active Transportation, Clean Air Partnership Julia Malmo-Laycock, School of Urban Planning, McGill University Report Design: Jiya Benni, The Centre for Active Transportation, Clean Air Partnership Cover Photo: Tour de l’ile, Go Bike Montreal Festival, Montreal by Maxime Juneau/APMJ Project Partner: Please cite as: Benni, J., Macaraig, M., Malmo-Laycock, J., Smith Lea, N. & Tomalty, R. (2019). Costing of Bicycle Infrastructure and Programs in Canada. Toronto: Clean Air Partnership. CONTENTS List of Figures 4 List of Tables 7 Executive Summary 8 1. Introduction 12 2. Costs of Bicycle Infrastructure Measures 13 Introduction 14 On-street facilities 16 Intersection & crossing treatments 26 Traffic calming treatments 32 Off-street facilities 39 Accessory & support features 43 3. Costs of Cycling Programs 51 Introduction 52 Training programs 54 Repair & maintenance 58 Events 60 Supports & programs 63 Conclusion 71 References 72 Costing of Bicycle Infrastructure and Programs in Canada 3 LIST OF FIGURES Figure 1: Bollard protected cycle track on Bloor Street, Toronto, ON ..................................................... 16 Figure 2: Adjustable concrete barrier protected cycle track on Sherbrook St, Winnipeg, ON ............ 17 Figure 3: Concrete median protected cycle track on Pandora Ave in Victoria, BC ............................ 18 Figure 4: Pandora Avenue Protected Bicycle Lane Facility Map ............................................................ 19 Figure 5: Floating Bus Stop on Pandora Avenue ........................................................................................ 19 Figure 6: Raised pedestrian crossings on Pandora Avenue .....................................................................