Gerd Faltings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A MATHEMATICIAN's SURVIVAL GUIDE 1. an Algebra Teacher I
A MATHEMATICIAN’S SURVIVAL GUIDE PETER G. CASAZZA 1. An Algebra Teacher I could Understand Emmy award-winning journalist and bestselling author Cokie Roberts once said: As long as algebra is taught in school, there will be prayer in school. 1.1. An Object of Pride. Mathematician’s relationship with the general public most closely resembles “bipolar” disorder - at the same time they admire us and hate us. Almost everyone has had at least one bad experience with mathematics during some part of their education. Get into any taxi and tell the driver you are a mathematician and the response is predictable. First, there is silence while the driver relives his greatest nightmare - taking algebra. Next, you will hear the immortal words: “I was never any good at mathematics.” My response is: “I was never any good at being a taxi driver so I went into mathematics.” You can learn a lot from taxi drivers if you just don’t tell them you are a mathematician. Why get started on the wrong foot? The mathematician David Mumford put it: “I am accustomed, as a professional mathematician, to living in a sort of vacuum, surrounded by people who declare with an odd sort of pride that they are mathematically illiterate.” 1.2. A Balancing Act. The other most common response we get from the public is: “I can’t even balance my checkbook.” This reflects the fact that the public thinks that mathematics is basically just adding numbers. They have no idea what we really do. Because of the textbooks they studied, they think that all needed mathematics has already been discovered. -
FIELDS MEDAL for Mathematical Efforts R
Recognizing the Real and the Potential: FIELDS MEDAL for Mathematical Efforts R Fields Medal recipients since inception Year Winners 1936 Lars Valerian Ahlfors (Harvard University) (April 18, 1907 – October 11, 1996) Jesse Douglas (Massachusetts Institute of Technology) (July 3, 1897 – September 7, 1965) 1950 Atle Selberg (Institute for Advanced Study, Princeton) (June 14, 1917 – August 6, 2007) 1954 Kunihiko Kodaira (Princeton University) (March 16, 1915 – July 26, 1997) 1962 John Willard Milnor (Princeton University) (born February 20, 1931) The Fields Medal 1966 Paul Joseph Cohen (Stanford University) (April 2, 1934 – March 23, 2007) Stephen Smale (University of California, Berkeley) (born July 15, 1930) is awarded 1970 Heisuke Hironaka (Harvard University) (born April 9, 1931) every four years 1974 David Bryant Mumford (Harvard University) (born June 11, 1937) 1978 Charles Louis Fefferman (Princeton University) (born April 18, 1949) on the occasion of the Daniel G. Quillen (Massachusetts Institute of Technology) (June 22, 1940 – April 30, 2011) International Congress 1982 William P. Thurston (Princeton University) (October 30, 1946 – August 21, 2012) Shing-Tung Yau (Institute for Advanced Study, Princeton) (born April 4, 1949) of Mathematicians 1986 Gerd Faltings (Princeton University) (born July 28, 1954) to recognize Michael Freedman (University of California, San Diego) (born April 21, 1951) 1990 Vaughan Jones (University of California, Berkeley) (born December 31, 1952) outstanding Edward Witten (Institute for Advanced Study, -
Institut Des Hautes Ét Udes Scientifiques
InstItut des Hautes É t u d e s scIentIfIques A foundation in the public interest since 1981 2 | IHES IHES | 3 Contents A VISIONARY PROJECT, FOR EXCELLENCE IN SCIENCE P. 5 Editorial P. 6 Founder P. 7 Permanent professors A MODERN-DAY THELEMA FOR A GLOBAL SCIENTIFIC COMMUNITY P. 8 Research P. 9 Visitors P. 10 Events P. 11 International INDEPENDENCE AND FREEDOM, THE INSTITUTE’S TWO OPERATIONAL PILLARS P. 12 Finance P. 13 Governance P. 14 Members P. 15 Tax benefits The Marilyn and James Simons Conference Center The aim of the Foundation known as ‘Institut des Hautes Études Scientifiques’ is to enable and encourage theoretical scientific research (…). [Its] activity consists mainly in providing the Institute’s professors and researchers, both permanent and invited, with the resources required to undertake disinterested IHES February 2016 Content: IHES Communication Department – Translation: Hélène Wilkinson – Design: blossom-creation.com research. Photo Credits: Valérie Touchant-Landais / IHES, Marie-Claude Vergne / IHES – Cover: unigma All rights reserved Extract from the statutes of the Institut des Hautes Études Scientifiques, 1958. 4 | IHES IHES | 5 A visionary project, for excellence in science Editorial Emmanuel Ullmo, Mathematician, IHES Director A single scientific program: curiosity. A single selection criterion: excellence. The Institut des Hautes Études Scientifiques is an international mathematics and theoretical physics research center. Free of teaching duties and administrative tasks, its professors and visitors undertake research in complete independence and total freedom, at the highest international level. Ever since it was created, IHES has cultivated interdisciplinarity. The constant dialogue between mathematicians and theoretical physicists has led to particularly rich interactions. -
2012-13 Annual Report of Private Giving
MAKING THE EXTRAORDINARY POSSIBLE 2012–13 ANNUAL REPORT OF PRIVATE GIVING 2 0 1 2–13 ANNUAL REPORT OF PRIVATE GIVING “Whether you’ve been a donor to UMaine for years or CONTENTS have just made your first gift, I thank you for your Letter from President Paul Ferguson 2 Fundraising Partners 4 thoughtfulness and invite you to join us in a journey Letter from Jeffery Mills and Eric Rolfson 4 that promises ‘Blue Skies ahead.’ ” President Paul W. Ferguson M A K I N G T H E Campaign Maine at a Glance 6 EXTRAORDINARY 2013 Endowments/Holdings 8 Ways of Giving 38 POSSIBLE Giving Societies 40 2013 Donors 42 BLUE SKIES AHEAD SINCE GRACE, JENNY AND I a common theme: making life better student access, it is donors like you arrived at UMaine just over two years for others — specifically for our who hold the real keys to the ago, we have truly enjoyed our students and the state we serve. While University of Maine’s future level interactions with many alumni and I’ve enjoyed many high points in my of excellence. friends who genuinely care about this personal and professional life, nothing remarkable university. Events like the surpasses the sense of reward and Unrestricted gifts that provide us the Stillwater Society dinner and the accomplishment that accompanies maximum flexibility to move forward Charles F. Allen Legacy Society assisting others to fulfill their are one of these keys. We also are luncheon have allowed us to meet and potential. counting on benefactors to champion thank hundreds of donors. -
Sir Andrew J. Wiles
ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society March 2017 Volume 64, Number 3 Women's History Month Ad Honorem Sir Andrew J. Wiles page 197 2018 Leroy P. Steele Prize: Call for Nominations page 195 Interview with New AMS President Kenneth A. Ribet page 229 New York Meeting page 291 Sir Andrew J. Wiles, 2016 Abel Laureate. “The definition of a good mathematical problem is the mathematics it generates rather Notices than the problem itself.” of the American Mathematical Society March 2017 FEATURES 197 239229 26239 Ad Honorem Sir Andrew J. Interview with New The Graduate Student Wiles AMS President Kenneth Section Interview with Abel Laureate Sir A. Ribet Interview with Ryan Haskett Andrew J. Wiles by Martin Raussen and by Alexander Diaz-Lopez Allyn Jackson Christian Skau WHAT IS...an Elliptic Curve? Andrew Wiles's Marvelous Proof by by Harris B. Daniels and Álvaro Henri Darmon Lozano-Robledo The Mathematical Works of Andrew Wiles by Christopher Skinner In this issue we honor Sir Andrew J. Wiles, prover of Fermat's Last Theorem, recipient of the 2016 Abel Prize, and star of the NOVA video The Proof. We've got the official interview, reprinted from the newsletter of our friends in the European Mathematical Society; "Andrew Wiles's Marvelous Proof" by Henri Darmon; and a collection of articles on "The Mathematical Works of Andrew Wiles" assembled by guest editor Christopher Skinner. We welcome the new AMS president, Ken Ribet (another star of The Proof). Marcelo Viana, Director of IMPA in Rio, describes "Math in Brazil" on the eve of the upcoming IMO and ICM. -
PRESENTAZIONE E LAUDATIO DI DAVID MUMFOD by ALBERTO
PRESENTAZIONE E LAUDATIO DI DAVID MUMFOD by ALBERTO CONTE David Mumford was born in 1937 in Worth (West Sussex, UK) in an old English farm house. His father, William Mumford, was British, ... a visionary with an international perspective, who started an experimental school in Tanzania based on the idea of appropriate technology... Mumford's father worked for the United Nations from its foundations in 1945 and this was his job while Mumford was growing up. Mumford's mother was American and the family lived on Long Island Sound in the United States, a semi-enclosed arm of the North Atlantic Ocean with the New York- Connecticut shore on the north and Long Island to the south. After attending Exeter School, Mumford entered Harvard University. After graduating from Harvard, Mumford was appointed to the staff there. He was appointed professor of mathematics in 1967 and, ten years later, he became Higgins Professor. He was chairman of the Mathematics Department at Harvard from 1981 to 1984 and MacArthur Fellow from 1987 to 1992. In 1996 Mumford moved to the Division of Applied Mathematics of Brown University where he is now Professor Emeritus. Mumford has received many honours for his scientific work. First of all, the Fields Medal (1974), the highest distinction for a mathematician. He was awarded the Shaw Prize in 2006, the Steele Prize for Mathematical Exposition by the American Mathematical Society in 2007, and the Wolf Prize in 2008. Upon receiving this award from the hands of Israeli President Shimon Peres he announced that he will donate the money to Bir Zeit University, near Ramallah, and to Gisha, an Israeli organization that advocates for Palestinian freedom of movement, by saying: I decided to donate my share of the Wolf Prize to enable the academic community in occupied Palestine to survive and thrive. -
Density of Algebraic Points on Noetherian Varieties 3
DENSITY OF ALGEBRAIC POINTS ON NOETHERIAN VARIETIES GAL BINYAMINI Abstract. Let Ω ⊂ Rn be a relatively compact domain. A finite collection of real-valued functions on Ω is called a Noetherian chain if the partial derivatives of each function are expressible as polynomials in the functions. A Noether- ian function is a polynomial combination of elements of a Noetherian chain. We introduce Noetherian parameters (degrees, size of the coefficients) which measure the complexity of a Noetherian chain. Our main result is an explicit form of the Pila-Wilkie theorem for sets defined using Noetherian equalities and inequalities: for any ε> 0, the number of points of height H in the tran- scendental part of the set is at most C ·Hε where C can be explicitly estimated from the Noetherian parameters and ε. We show that many functions of interest in arithmetic geometry fall within the Noetherian class, including elliptic and abelian functions, modular func- tions and universal covers of compact Riemann surfaces, Jacobi theta func- tions, periods of algebraic integrals, and the uniformizing map of the Siegel modular variety Ag . We thus effectivize the (geometric side of) Pila-Zannier strategy for unlikely intersections in those instances that involve only compact domains. 1. Introduction 1.1. The (real) Noetherian class. Let ΩR ⊂ Rn be a bounded domain, and n denote by x := (x1,...,xn) a system of coordinates on R . A collection of analytic ℓ functions φ := (φ1,...,φℓ): Ω¯ R → R is called a (complex) real Noetherian chain if it satisfies an overdetermined system of algebraic partial differential equations, i =1,...,ℓ ∂φi = Pi,j (x, φ), (1) ∂xj j =1,...,n where P are polynomials. -
Higher Genus Counterexamples to Relative Manin–Mumford
Higher genus counterexamples to relative Manin{Mumford Sean Howe [email protected] Advised by prof. dr. S.J. Edixhoven. ALGANT Master's Thesis { Submitted 10 July 2012 Universiteit Leiden and Universite´ Paris{Sud 11 Contents Chapter 1. Introduction 2 Chapter 2. Preliminaries 3 2.1. Conventions and notation 3 2.2. Algebraic curves 3 2.3. Group schemes 4 2.4. The relative Picard functor 5 2.5. Jacobian varieties 8 Chapter 3. Pinching, line bundles, and Gm{extensions 11 3.1. Amalgamated sums and pinching 11 3.2. Pinching and locally free sheaves 17 3.3. Pinching and Gm{extensions of Jacobians over fields 26 Chapter 4. Higher genus counterexamples to relative Manin{Mumford 28 4.1. Relative Manin{Mumford 28 4.2. Constructing the lift 30 4.3. Controlling the order of lifts 32 4.4. Explicit examples 33 Bibliography 35 1 CHAPTER 1 Introduction The goal of this work is to provide a higher genus analog of Edixhoven's construction [2, Appendix] of Bertrand's [2] counter-example to Pink's relative Manin{Mumford conjecture (cf. Section 4.1 for the statement of the conjecture). This is done in Chapter 4, where further discussion of the conjecture and past work can be found. To give our construction, we must first develop the theory of pinchings a la Ferrand [8] in flat families and understand the behavior of the relative Picard functor for such pinchings, and this is the contents of Chapter 3. In Chapter 2 we recall some of the results and definitions we will need from algebraic geometry; the reader already familiar with these results should have no problem beginning with Chapter 3 and referring back only for references and to fix definitions. -
Download PDF of Summer 2016 Colloquy
Nonprofit Organization summer 2016 US Postage HONORING EXCELLENCE p.20 ONE DAY IN MAY p.24 PAID North Reading, MA Permit No.8 What’s the BUZZ? Bees, behavior & pollination p.12 What’s the Buzz? 12 Bees, Behavior, and Pollination ONE GRADUATE STUDENT’S INVESTIGATION INTO BUMBLEBEE BEHAVIOR The 2016 Centennial Medalists 20 HONORING FRANCIS FUKUYAMA, DAVID MUMFORD, JOHN O’MALLEY, AND CECILIA ROUSE Intellectual Assembly 22 ALUMNI DAY 2016 One Day in May 24 COMMENCEMENT 2016 summer/16 An alumni publication of Harvard University’s Graduate School of Arts and Sciences 3 FROM UNIVERSITY HALL 4 NEWS & NOTES Harvard Horizons, Health Policy turns 25, new Alumni Council leadership. 8 Q&A WITH COLLEEN CAVANAUGH A path-breaking biologist provides new evolutionary insights. 10 SHELF LIFE Elephants, Manchuria, the Uyghur nation and more. 26 NOTED News from our alumni. 28 ALUMNI CONNECTIONS Dudley 25th, Life Lab launches, and recent graduates gathering. summer Cover Image: Patrick Hruby Facing Image: Commencement Begins /16 Photograph by Tony Rinaldo CONTRIBUTORS Xiao-Li Meng dean, PhD ’90 Jon Petitt director of alumni relations and publications Patrick Hruby is a Los Angeles–based Ann Hall editor freelance illustrator and designer with Visual Dialogue design an insatiable appetite for color. His work Colloquy is published three times a year by the Graduate School Alumni has appeared in The New York Times, Association (GSAA). Governed by its Alumni Council, the GSAA represents Fortune Magazine, and WIRED, among and advances the interests of alumni of the Graduate School of Arts and Sciences through alumni events and publications. others. -
Inter-Universal Teichmüller Theory II: Hodge-Arakelov-Theoretic Evaluation
INTER-UNIVERSAL TEICHMULLER¨ THEORY II: HODGE-ARAKELOV-THEORETIC EVALUATION Shinichi Mochizuki December 2020 Abstract. In the present paper, which is the second in a series of four pa- pers, we study the Kummer theory surrounding the Hodge-Arakelov-theoretic eval- uation — i.e., evaluation in the style of the scheme-theoretic Hodge-Arakelov theory established by the author in previous papers — of the [reciprocal of the l- th root of the] theta function at l-torsion points [strictly speaking, shifted by a suitable 2-torsion point], for l ≥ 5 a prime number. In the first paper of the series, we studied “miniature models of conventional scheme theory”, which we referred to as Θ±ellNF-Hodge theaters, that were associated to certain data, called initial Θ-data, that includes an elliptic curve EF over a number field F , together with a prime num- ber l ≥ 5. The underlying Θ-Hodge theaters of these Θ±ellNF-Hodge theaters were glued to one another by means of “Θ-links”, that identify the [reciprocal of the l-th ±ell root of the] theta function at primes of bad reduction of EF in one Θ NF-Hodge theater with [2l-th roots of] the q-parameter at primes of bad reduction of EF in an- other Θ±ellNF-Hodge theater. The theory developed in the present paper allows one ×μ to construct certain new versions of this “Θ-link”. One such new version is the Θgau- link, which is similar to the Θ-link, but involves the theta values at l-torsion points, rather than the theta function itself. -
An Introduction to P-Adic Teichmüller Theory Astérisque, Tome 278 (2002), P
Astérisque SHINICHI MOCHIZUKI An introduction to p-adic Teichmüller theory Astérisque, tome 278 (2002), p. 1-49 <http://www.numdam.org/item?id=AST_2002__278__1_0> © Société mathématique de France, 2002, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les conditions générales d’uti- lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Astérisque 278, 2002, p. 1-49 AN INTRODUCTION TO p-ADIC TEICHMULLER THEORY by Shinichi Mochizuki Abstract. — In this article, we survey a theory, developed by the author, concerning the uniformization of p-adic hyperbolic curves and their moduli. On the one hand, this theory generalizes the Fuchsian and Bers uniformizations of complex hyperbolic curves and their moduli to nonarchimedean places. It is for this reason that we shall often refer to this theory as p-adic Teichmiiller theory, for short. On the other hand, this theory may be regarded as a fairly precise hyperbolic analogue of the Serre-Tate theory of ordinary abelian varieties and their moduli. The central object of p-adic Teichmiiller theory is the moduli stack of nilcurves. This moduli stack forms a finite flat covering of the moduli stack of hyperbolic curves in positive characteristic. It parametrizes hyperbolic curves equipped with auxiliary "uniformization data in positive characteristic." The geometry of this moduli stack may be analyzed combinatorially locally near infinity. -
1. GIT and Μ-GIT
1. GIT and µ-GIT Valentina Georgoulas Joel W. Robbin Dietmar A. Salamon ETH Z¨urich UW Madison ETH Z¨urich Dietmar did the heavy lifting; Valentina and I made him explain it to us. • A key idea comes from Xiuxiong Chen and Song Sun; they were doing an • analogous infinite dimensional problem. I learned a lot from Sean. • The 1994 edition of Mumford’s book lists 926 items in the bibliography; I • have read fewer than 900 of them. Dietmar will talk in the Geometric Analysis Seminar next Monday. • Follow the talk on your cell phone. • Calc II example of GIT: conics, eccentricity, major axis. • Many important problems in geometry can be reduced to a partial differential equation of the form µ(x)=0, where x ranges over a complexified group orbit in an infinite dimensional sym- plectic manifold X and µ : X g is an associated moment map. Here we study the finite dimensional version.→ Because we want to gain intuition for the infinite dimensional problems, our treatment avoids the structure theory of compact groups. We also generalize from projective manifolds (GIT) to K¨ahler manifolds (µ-GIT). In GIT you start with (X, J, G) and try to find Y with R(Y ) R(X)G. • ≃ In µ-GIT you start with (X,ω,G) and try to solve µ(x) = 0. • GIT = µ-GIT + rationality. • The idea is to find analogs of the GIT definitions for K¨ahler manifolds, show that the µ-GIT definitions and the GIT definitions agree for projective manifolds, and prove the analogs of the GIT theorems in the K¨ahler case.