Jacobi-Type Continued Fractions for the Ordinary Generating Functions of Generalized Factorial Functions Maxie D. Schmidt University of Washington Department of Mathematics Padelford Hall Seattle, WA 98195 USA
[email protected] Abstract The article studies a class of generalized factorial functions and symbolic product se- quences through Jacobi-type continued fractions (J-fractions) that formally enumerate the typically divergent ordinary generating functions of these sequences. The rational convergents of these generalized J-fractions provide formal power series approximations to the ordinary generating functions that enumerate many specific classes of factorial- related integer product sequences. The article also provides applications to a number of specific factorial sum and product identities, new integer congruence relations sat- isfied by generalized factorial-related product sequences, the Stirling numbers of the first kind, and the r-order harmonic numbers, as well as new generating functions for the sequences of binomials, mp 1, among several other notable motivating examples − given as applications of the new results proved in the article. 1 Notation and other conventions in the article arXiv:1610.09691v2 [math.CO] 17 Jan 2017 1.1 Notation and special sequences Most of the conventions in the article are consistent with the notation employed within the Concrete Mathematics reference, and the conventions defined in the introduction to the first article [20]. These conventions include the following particular notational variants: ◮ Extraction of formal power series coefficients. The special notation for formal power series coefficient extraction, [zn] f zk : f ; k k 7→ n P 1 ◮ Iverson’s convention. The more compact usage of Iverson’s convention, [i = j]δ δ , in place of Kronecker’s delta function where [n = k = 0] δ δ ; ≡ i,j δ ≡ n,0 k,0 ◮ Bracket notation for the Stirling and Eulerian number triangles.