This PDF Was Created from the British Library's Microfilm Copy of the Original Thesis. As Such the Images Are Greyscale and No

Total Page:16

File Type:pdf, Size:1020Kb

This PDF Was Created from the British Library's Microfilm Copy of the Original Thesis. As Such the Images Are Greyscale and No IMAGING SERVICES NORTH Boston Spa, Wetherby West Yorkshire, LS23 7BQ www.bl.uk This PDF was created from the British Library’s microfilm copy of the original thesis. As such the images are greyscale and no colour was captured. Due to the scanning process, an area greater than the page area is recorded and extraneous details can be captured. This is the best available copy D67043ÌB6 \ l ì \ Attention is drawn to ^ the fact that the È copyright o f this thesis rests with its author. This copy o f the thesis has been supplied on condition that anyone who consults it is p- understood to recognise that its copyright rests with its author and that no quotation from the thesis''and no information derived from it may be published without the author’s .pri^^ written consent. - if r>r»FN,..ii Iimm f -pm ' r/. ' Hi. REPRODUCED FROM THE AVAILABLE COPY NEW ASPECTS OF THE MICHAELIS-ARBUZOV AND PERKOW REACTIONS A Thesis SubniittGd. Top the Degpee of* DOCTOR OP PHILOSOPHY of the COUNCIL FOR NATIONAL ACADEMIC AWARDS by Mrs Lubomyra POWROZNYK MSc (Lublin) THE POLYTECHNIC OP NORTH LONDON Holloway Road, London, N? 8 DB October 1985 ACKNOWLEDGEMENTS The authoress owes a great debt and wishes to express her deep gratitude to her supervisor. Dr, H, R. HUDSON, for liis constant guidance, kind patience and helpful discussions during this long investigation. Thanks are also extended to Dr. R. w. Matthews and Mr, J. Crowder for assistance with F and C n.m.r. measurements, and Dr. K. Henrick for X>ray diffraction studies. DECLARATION While registered as a candidate for the degree of Ph.D. for which this subraission is made, I have not been registered as a candidate for any other award. In partial fulfilment of the requirements for the degree, an evening course of MSc lectures on Structural Methods (uv, ir, nmr, mass spectometry and X-ray crystallography) and research colloquia have been attended in the School of Chemistry, Mrs L. Powroznyk ABSTRACT NEW ASPECTS OF THE MICHAELIS-ARBUZOV AND PERKOW REACTIONS Luborayra Powroznyk The work presented in this thesis has involved an inves- gatxonof the thermal decomposition of the Michaelis (o (PhO)5 PMeBr, (PhOjPMel, been shojm to occur by nucleophilic substitution in L e In addition, rnovel^’difpioportionation reactiorgave^tht^™’ 2n r t S quasiphosphonium intermediates and the tetrampfhvi rbrx vx n i ^ salt Which were obtained rrom dispropor by ■>H''"™ p ^ a n d ° §r""® Isolated and identified y n, 1 P, and 1 n.m.r. spectroscopy. In certain C0n t ^ n i n r r p % ® p ‘'?-'‘;i“ ‘*^ proportion of an intermediate -r fu ^ ® linkage was also observed. The mechanisms of these reactions and the spectroscopic features of t h ^ tud T h ^ r S ‘'p n L r ‘^d°"/‘’^ en/produdrhLfbe^e: ^ P-O-P 1 intermediate was isolated in very small amount and was found to be stable in deuterochloroform in a sealed tube, but not as a solid. «^^erocnioroform in hindered phosphorus (III) esters viy (R0 )3 P, (R0 )2 PPh, and R0PPh2 (R = Me3 CCHo), th^f^rst examples of identifiable intermediates ?ROU p+ph p h L r Ph2 Pi(0R)CH2 cSphB;-, ani "^COPhBr-, Ph2 PMORloct:CH2 )PhCl- L v e been^obtained ?n the reactions bv intermediates have been investig^Ud ^ H n.m.r. spectroscopy and the mechanisms^nC their decomposition to Arbuzov and Perkow uroducts hot/o been elucidated. The intermediates PhP+(OR)oGHorr>Pv r - rnriCDir^°L^'^? 2CpPhBr: were suaoiestable ata? roomr o o m temp ' S e r ^ t u r " f L CDCICDOI5.. heating in sealed tubes (O-R(0.5 h)i atq ^-^i o O ^ c ) 3 the dilute solutions decomposed completely to sive nnn^ products of PhP(0)(0R)CH2 C0Ph and of PhoPf0 )cLrnPh respectively. Neopentyl gromide was f S i ^ L c h case. studies on the réaction*^ nc \ 1- have also revealed a competing process of P-N cleavaee o?\hfh"îid: p“î:::^nt!" the'=^:?d^nf:s 1.1 MICHAELIS-ARBUZOV REACTION Tlie interaction of trialkyl phosphites and alkyl hali- des, referred to as the Michaelis-Arbuzov reaction, was first reported by Michaelis^ and later exploited extensi- vely by Arbuzov'^ and many other workers. (RO)^P + R'X (R0)2P(0)R' + RX A stable 1:1 intermediate was obtainable in certain instances from triaryl phosphites^-® and in other special cases involving trialkyl phosphites and a,p-dihaloalkyl ethers, ^ ^ The first step in this type of reaction was made by Michaelis and Kahne, who reported in 1898 that the reac­ tion of triphenyl phosphite with iodomethane at 100 °C for 48 h yielded 1 :1 adduct as crystalline needles, m.p. 70- 75 (C^H^O)^P + CH^I (CgH^O)^PCH^I Adducts of this type are generally known as quasiphos- phonium intermediates * ^ and are readily hydrolysed to give the phosphonate, phenol, and hydrogen iodide. (C6H^0)^PCH^I + H*0H — ^ HI + C^H^OH + CH^P0(0C^H^ Michaelis and Kahne prepared a number of other interme­ diates e.g. from tri-m-tolyl or tri-p-tolyl phosphite and iodomethane by heating the reactants together on a water bath, Tri-ni-tolyl phoaphite waü thus heated for 5 h to give a dark brown oily liquid, which became crystalline after cooling, and after washing with dry ether it gave a hygroscopic crystalline product.^ The product from tri-p-tolyl phosphite, obtained after 12 h, remained however as a viscous liquid.^* Triphenyl phosphite and benzyl chloride gave a syrupy liquid on heating at 150-175 °C, instead of the expected crystalline phosphonium compound, A number of aromatic intermediates were also produced by Arbuzov in 1906, but both Michaelis and Arbuzov failed to obtain intermediates from trialkyl phosphites and alkyl halides. They showed that the final products in these reactions were usually phosphonates and alkyl halides, although Michaelis and Kahne obtained methylphosphonic acid, ethyl iodide and ethene by heating triethyl phosphi­ te with methyl iodide at 110-220 °C for 12 h. (G2H^0 )^PCH^I > J CH^POiOH)^ + C^H^I + They assumed from the beginning that a phosphoniuia intermediate was involved: (RO)^P + R»X -* 1(r o ),p r ':^ The thermal decomposition of triphenyl phosphite-alkyl halide adducts was investigated by Arbuzov^^ in 1905, by heating the compounds in sealed tubes at 210-220 °C. Some tar formation occurred, especially with the higher mem­ bers, along with free iodine, and the following decomposi- tion products were isolated. Temp. Time Yield (%) Adduct n (h) Phi RP(0)(0Ph)2 (PhO)^PMel 220 20 74 56 ^ (PhO)^PEtl 220 20 71 60 - (PhO)-PCH. ,PhI 208 20 J 2 15 a 196-9 °C, 1.5520 b b ^2 200-4 °C, 1.5454 The isobutyl iodide adduct, however, gave only iodine as the isolated product after 15 h at 210 °G. The Michaelis-Arbuzov reaction^^ takes place with any derivative of trivalent phosphorus that carries an ester group (OR): > - 0 R + R»X — > 1P(0R)R» X — ► P(0)R' + RX and most varied selection of organic halides R ’X are able to participate in the reaction. The chief requirement of the structure of the organic halide is that the halogen atom must be capable of nucleophilic displacement, this occurring most easily if it is attached to the terminal carbon atom of an aliphatic chain. It must not be directly connected to an aromatic ring. The above reaction is merely one instance of the more general Michaelis-Arbuzov rearrangement, ^ or isomerisa­ tion. If the radical R» of the alkyl halide is identical with the radical R of the ester group the reaction takes on the aspect of a true isomerisation,^^ which can be performed with minute amounts of the halide R'X. Landauer and Rydon thus shoived that isomerisation^ of trimethyl phosphite occurred with methyl iodide (0.1 mol) by heating the reactants under reflux at 100 °C. After a brief induction period, a vigorous reaction set in and was complete within 5 min. Distillation then gave methyl iodide and dimethyl methylphosphonate: (MeO)^P + Mel (Me0)2P(0)Me + Mel Although customarily used with tertiary phosphites, (RO)^P, from which the reaction product is an ester of a primary phosphonic acid R»P(0)(0R )2 i.e. a PHOSPHONATE,^^ the reaction may also be carried out with esters of phos- phonous acids, RP(0R)2, in which case esters of secon- ^ r y phosphonic acids R»RP(0)0R, i.e. PHOSPHINATES are formed. RP(0R)2 + R»X — ^ R'RP(0)0R + RX Esters of phosphinous acids, R^POR, form tertiary phosphine oxides R^P=0 as follows: R^POR + R»X R2R’P=0 + RX The reactivity of phosphorus (III) esters increases from phosphites to phosphonites and again to phosphinites, in accord with a general increase in reactivity upon approach to the tertiary phosphine structure.^ Although the reaction is frequently conducted by mixing the reactants and warming the mixture to the required tem­ perature,'*^ most often IOO-I5O °C, the most reactive combi­ nations enter the reaction at room temperature, this being especially true of reactions with acyl halides. Crystalline quasipliosphonium salts^^ have in some cases been prepared by the addition of methyl iodide to unsaturated phosphonous diesters containing branched ester radicals, such as GH2=CH-CH2 P(OBu^)^, although the adducts decompose to secondary phosphoric esters on mild heating; 0 CH2=CH-CH2P'"(0Bu ^)^RX~ — » CHp= CH-OBu^ + Bu^X The phosphonous diesters are also more susceptible to self-isomerisation than the trialkyl phosphites, but in a truly pure state they isomerize with difficulty.
Recommended publications
  • Studies on Nucleoside H-Phosphonoselenoate Chemistry and Chalcogen Exchange Reaction Between P(V) and P(III) Compounds
    Studies on nucleoside H-phosphonoselenoate chemistry and chalcogen exchange reaction between P(V) and P(III) compounds Martin Kullberg Stockholm University 2005 Doctoral Dissertation Department of Organic Chemistry Arrhenius Laboratory Stockholm University ISBN 91-7155-163-8 Abstract In this thesis, the chemistry of compounds containing P-Se bonds has been studied. As a new addition to this class of compounds, H-phosphonoselenoate monoesters, have been introduced and two synthetic pathways for their preparation have been developed. The reactivity of H-phosphonoselenoate monoesters towards a variety of condensing agents has been studied. From these, efficient conditions for the synthesis of H-phosphonoselenoate diesters have been developed. The produced diesters have subsequently been used in oxidative transformations, which gave access to the corresponding P(V) compounds, e.g. dinucleoside phosphoroselenoates or dinucleoside phosphoroselenothioates. Furthermore, a new selenizing agent, triphenyl phosphoroselenoate, has been developed for selenization of P(III) compounds. This reagent has high solubility in organic solvents and was found to convert phosphite triesters and H-phosphonate diesters efficiently into the corresponding phosphoroselenoate derivatives. The selenization of P(III) compounds with triphenyl phosphoroselenoate proceeds through a selenium transfer reaction. A computational study was performed to gain insight into a mechanism for this reaction. The results indicate that the transfer of selenium or sulfur from P(V) to P(III) compounds proceeds most likely via an X-philic attack of the P(III) nucleophile on the chalcogen of the P(V) species. For the transfer of oxygen, the reaction may also proceed via an edge attack on the P=O bond. Martin Kullberg 2005 Papers are reprinted with permission of the publishers I Table of contents List of Papers III Abbreviations IV 1.
    [Show full text]
  • Triphenyl Phosphite (TPP) EC No 202-908-4 CAS No 101-02-0
    Substance Evaluation Conclusion document EC No 202-908-4 SUBSTANCE EVALUATION CONCLUSION as required by REACH Article 48 and EVALUATION REPORT for Triphenyl Phosphite (TPP) EC No 202-908-4 CAS No 101-02-0 Evaluating Member State(s): UK Dated: March 2019 UK CA Page 1 of 101 March 2019 Substance Evaluation Conclusion document EC No 202-908-4 Evaluating Member State Competent Authority UK REACH CA Health and Safety Executive Redgrave Court Merton Road Bootle Merseyside L20 7HS Email:[email protected] Chemicals Assessment Unit Environment Agency Red Kite House, Howbery Park Wallingford Oxfordshire, OX10 8BD Email: [email protected] Year of evaluation in CoRAP: 2013 Before concluding the substance evaluation a Decision to request further information was issued on: 2 December 2015 Further information on registered substances here: http://echa.europa.eu/web/guest/information-on-chemicals/registered-substances UK CA Page 2 of 101 March 2019 Substance Evaluation Conclusion document EC No 202-908-4 DISCLAIMER This document has been prepared by the evaluating Member State as a part of the substance evaluation process under the REACH Regulation (EC) No 1907/2006. The information and views set out in this document are those of the author and do not necessarily reflect the position or opinion of the European Chemicals Agency or other Member States. The Agency does not guarantee the accuracy of the information included in the document. Neither the Agency nor the evaluating Member State nor any person acting on either of their behalves may be held liable for the use which may be made of the information contained therein.
    [Show full text]
  • Coordination Chemistry in Liquid Ammonia and Phosphorous Donor Solvents
    Coordination Chemistry in Liquid Ammonia and Phosphorous Donor Solvents Kersti B. Nilsson Faculty of Natural Resources and Agricultural Sciences Department of Chemistry Uppsala Doctoral thesis Swedish University of Agricultural Sciences Uppsala 2005 Acta Universitatis Agriculturae Sueciae 2005: number 21 ISSN 1652-6880 ISBN 91-576-7020-x © 2005 Kersti B. Nilsson, Uppsala Tryck: SLU Service/Repro, Uppsala 2005 Abstract Nilsson, K. B., Coordination chemistry in liquid ammonia and phosphorous donor solvents. Doctor’s dissertation. ISSN 1652-6880, ISBN 91-576-7020-x The thesis summarizes and discusses the results from coordination chemistry studies of solvated d10 metal and copper(II) ions, and mercury(II) halide complexes in the strong electron-pair donor solvents liquid and aqueous ammonia, trialkyl phosphite, triphenyl phosphite and trialkylphosphine. The main techniques used are EXAFS, metal NMR and vibrational spectroscopy, and crystallography. Four crystal structures containing ammonia solvated metal ions have been determined. Questions addressed concern whether any changes in the preferential coordination numbers and geometries occur when these metal ions are transferred from aqueous ammonia to liquid ammonia solution, or to phosphorous donor solvents. Liquid ammonia and trialkyl phosphites are found to possess similar electron-pair donor properties, DS=56 for both, while trialkylphosphines are known to be even stronger electron-pair donors. The studies reveal that the ammonia-solvated d10 metal ions obtain very different configurations in liquid ammonia, with gold(I) being linear, copper(I) and silver(I) trigonal, zinc(II) and mercury(II) tetrahedral, and cadmium(II), indium(III) and thallium(III) octahedral. The ammonia-solvated copper(I) and silver(I) ions are linear in aqueous ammonia solution because of the lower ammonia activity, as the third ammine complexes are very weak in aqueous systems.
    [Show full text]
  • Diaryl Alkylphosphonates and Methods for Preparing
    (19) TZZ_Z_T (11) EP 1 940 855 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07F 9/12 (2006.01) C07F 9/145 (2006.01) 01.07.2015 Bulletin 2015/27 C07F 9/40 (2006.01) (21) Application number: 06849055.6 (86) International application number: PCT/US2006/060035 (22) Date of filing: 17.10.2006 (87) International publication number: WO 2007/079272 (12.07.2007 Gazette 2007/28) (54) DIARYL ALKYLPHOSPHONATES AND METHODS FOR PREPARING SAME DIARYL-ALKYLPHOSPHONATE UND HERSTELLUNGSVERFAHREN DAFÜR ALKYLPHOSPHONATES DE DIARYLE ET LEURS MÉTHODES DE SYNTHÈSE (84) Designated Contracting States: • YAO ET AL: "A concise method for the synthesis AT BE BG CH CY CZ DE DK EE ES FI FR GB GR of diaryl aryl- or alkylphosphonates" HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI TETRAHEDRON LETT., vol. 47, 22 November SK TR 2005 (2005-11-22), pages 277-281, XP002495388 Designated Extension States: • DATABASECA [Online] CHEMICAL ABSTRACTS AL BA HR MK RS SERVICE, COLUMBUS, OHIO, US HUDSON, HARRY R. ET AL: ’Quasiphosphonium (30) Priority: 18.10.2005 US 727619 P intermediates. I. Preparation, structure, and 18.10.2005 US 727680 P nuclear magnetic resonance spectroscopy of triphenyl and trineopentyl phosphite- alkyl halide (43) Date of publication of application: adducts’ Retrieved from STN Database 09.07.2008 Bulletin 2008/28 accession no. 1974:449742 & JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS (60) Divisional application: 1: ORGANIC AND BIO-ORGANIC CHEMISTRY 11169075.6 / 2 395 011 (1972-1999) , (9), 982-5 CODEN: JCPRB4; ISSN: 0300-922X, 1974, (73) Proprietor: FRX Polymers, Inc.
    [Show full text]
  • Iodination of Poly(Ethylene Glycol) by a Mixture of Triphenyl Phosphite and Iodomethane
    CHEMIJA. 2008. Vol. 19. No. 2. P. 43–49 © Lietuvos mokslų akademija, 2008 © Lietuvos mokslų akademijos leidykla, 2008 Iodination of poly(ethylene glycol) by a mixture of triphenyl phosphite and iodomethane Ūla Bernadišiūtė*, Iodination of poly(ethylene glycol) (PEG) with the molecular weight 2000 and its monomethyl ether (MPEG) by the iodinating mixture of triphenyl phosphite and iodomethane was studied Tomas Antanėlis, in detail. The structure of the synthesized PEG (MPEG) iodides was confirmed by elemental analysis, FT-IR and 1H NMR spectroscopy. The degree of iodination (DI) of PEG (MPEG) was Aušvydas Vareikis, determined by two independent methods based on argentometric titration and 1H NMR spec- tra. Argentometric titration the (Mohr method) was found to be limited by the incomplete hy- Ričardas Makuška drolysis of PEG (MPEG) iodides, while the analysis based on 1H NMR spectroscopy became accurate at a high DI only. The highest DI of PEG (MPEG) was reached carrying out the reaction Department of Polymer Chemistry, of iodination in a hermetic reactor at 120 °C for 5 hours and using a double-fold excess of the Vilnius University, iodinating mixture. The synthesized PEG (MPEG) iodides with DI 90–95 mol% could be useful Naugarduko 24, for “grafting to” or even for polycondensation with diamines. LT-03225 Vilnius, Lithuania Key words: poly(ethylene glycol), iodination, PEG, Mohr method, PEGylation INTRODUCTION under solvent-free conditions using microwave irradiation was found to be a simple and highly chemoselective process [26]. Halogen-containing compounds are useful intermediates in or- A relatively simple method for iodination of alcohols was ganic synthesis [1, 2].
    [Show full text]
  • Measuring the Electronic Effect of Some Phosphines and Phosphites
    Measuring the electronic effect of some phosphines and phosphites By Sanaa Moftah Ali Abushhewa A dissertation submitted to the University of Manchester for the degree of Master of Science by research in the Faculty of Engineering and Physical Sciences. School of Chemistry 2010 Contents page Abstract 6 Declaration 7 Acknowledgement 8 1. Introduction 9 1.1 History of Phosphorus 9 1.2 Phosphorus (III) compounds 10 1.3 Preparation and Properties of Phosphines 11 1.4 Preparation and Properties of Phosphites 12 1.5 Bonding of phosphorus (III) ligands 14 1.6 Measurement of Electronic and Steric Effects 15 1.7 Steric parameter 17 1.8 Electronic parameter 17 1.9 Effects of electronegative substituents 21 1.10 Phosphines and Phosphites ligand effects 21 2. Experimental section 24 General conditions 25 2.1- Preparation of phosphites 25 2.1.1- Synthesis of 2, 2’- Biphenyl Chlorophosphite 25 2.1.2- Synthesis of 1H,1H,2H,2H-perfluorodecyldiphenyl phosphinite 25 2 2.1.3- Synthesis of 3-fluorophenyldiphenyl phosphinite 26 2.1.4- Synthesis of 2-fluorophenyldiphenyl phosphinite 26 2.1.5- Synthesis of 2, 2-biphenyltrifluoroethyl phosphinite 27 2.1.6- Synthesis of 2, 2'-biphenylhexafluoroisopropyl phosphinite 27 2.1.7-Synthesis of 2, 2'-biphenylpropyl phosphite 28 2.2-Preparation of P(III) Selenides 28 2.2.1- Synthesis of triphenylphosphine selenide 28 2.2.2- Synthesis of triphenylphosphite selenide 29 2.2.3- Synthesis of tris(2,4,6-trimethylphenyl)phosphite selenide 29 2.2.4- Synthesis of diphenyl(o-tolyl) phosphine selenide 30 2.2.5- Synthesis of 2, 2’-biphenyl
    [Show full text]
  • United States CC Patented May 16, 1961
    2,984,680 United States CC Patented May 16, 1961 2 similar to Example 1, supra, by placing 5.5 grams of phosphorous acid and 47.2 grams of tri(para-cresyl) 2,984,680 phosphite in the reaction ?ask. The phosphorous acid was again insoluble but began to go into solution after 13 METHOD FOR PREPARING DIPI-ENYL minutes of heating when the temperature reached 60° C. PHOSPHITES Heating was continued to a temperature of 100° C. Edward N. Walsh, Chicago Heights, 111., assignor to after 38 minutes. The product was cooled to give a ‘ Victor Chemical Works, a corporation of Illinois clear oil, n25D>=1.5469. 10 grams of this product was distilled in a molecular still at 115-125° C. at 5 microns N0 Drawing. Filed Apr. 30, 1956, Ser. No. 581,357 10 to yield 9.9 g. of di(para-cresyl) phosphite, n25D=1.5466, 8 Claims. (Cl. 260-461) which analyzed 11.7% P, Cl- nil (theory 11.8% P, 0.0% Cl), and had a speci?c gravity of 1.5669 ?g25 This invention relates to a method for making diaryl 15 phosphites and the products produced thereby. Example 3 More speci?cally, this invention relates to a novel, sim ple method whereby diaryl phosphites may be made by The process of Example 2, supra, was repeated using reacting a triaryl phosphite with phosphorous acid. 70.4 g. of tri(meta-cresyl) phosphite and 8.2 g. of phos Diaryl phosphites have been known since diphenyl 20 phorous acid. The acid went into solution at 65—68° phosphite was reported by Milobendzki and Szulgin, C.
    [Show full text]
  • Chemical Hazard Reviews Volume 2: Furniture Flame Retardancy Partnership
    Volume 2 Chemical Hazard Reviews Furniture Flame Retardancy Partnership: Environmental Profiles of Chemical Flame-Retardant Alternatives for Low-Density Polyurethane Foam September 2005 TABLE OF CONTENTS Page Introduction .................................................................. i Flame Retardant Alternatives: Triphenyl Phosphate ................................ 1-1 Flame Retardant Alternatives: Tribromoneopentyl Alcohol .......................... 2-1 Flame Retardant Alternatives: Tris(1,3-dichloro-2-propyl) Phosphate .................. 3-1 Flame Retardant Alternatives: Proprietary A: Chloroalkyl phosphate (1) ................ 4-1 Flame Retardant Alternatives: Proprietary B: Aryl phosphate ......................... 5-1 Flame Retardant Alternatives: Proprietary C: Chloroalkyl phosphate (2) ................ 6-1 Flame Retardant Alternatives: Proprietary D: Reactive brominated flame retardant ........ 7-1 Flame Retardant Alternatives: Proprietary E: Tetrabromophthalate diol diester ........... 8-1 Flame Retardant Alternatives: Proprietary F: Halogenated aryl ester ................... 9-1 Flame Retardant Alternatives: Proprietary G: Triaryl phosphate, isopropylated .......... 10-1 Flame Retardant Alternatives: Proprietary H: Halogenated aryl ester .................. 11-1 Flame Retardant Alternatives: Proprietary I: Organic phosphate ester ................. 12 -1 Flame Retardant Alternatives: Proprietary J: Aryl phosphate ........................ 13 -1 Flame Retardant Alternatives: Proprietary K: Aryl phosphate .......................
    [Show full text]
  • For the Proposed Expansion Project by Capacity Enhancement and Addition
    FOR THE PROPOSED EXPANSION PROJECT BY CAPACITY ENHANCEMENT AND ADDITION OF NEW PRODUCTS FOR MANURACTURING OF Tri phenyl phosphite @300 MT/Month, Poly phosphoric acid @30 MT/Month, Plastic Additives (Organic Phosphite) @240 MT/Month Organic Phosphates @50 MT/Month and addition of Styrenated Phenol @100 MT/Month Under Activity: 5(f), Category- B (Synthetic Organic Chemicals Industry) OF Located at: Plot No. 313/1, 40 Shed Area, GIDC Estate, Vapi-396 195, Dist- Valsad (Gujarat). PROJECT PRE-FEASIBILITY REPORT INDEX 1. Executive Summary……………………………………………………………………………………….………… 4 2. Introduction……………………………………………………………………………………..………….…………… 6 i. Identification of the Project and Proponent. 6 ii. Brief Description of the project 7 iii. Need of the project and its importance to the country and or region 10 iv. Demand –Supply Gap 10 v. Imports vs. Indigenous production 10 vi. Export Possibility / Domestic / export Markets 10 vii. Employment Generation (Direct and Indirect) due to the project. 10 3. Project Description…………………………………………………………………………………………………… 11 i. Type of Project including interlinked and interdependent projects, If any 11 ii. Location (map showing general location, Specific location, and project 13 boundary & project site layout)with coordinates iii. Profile of Project site 14 iv. Site Layout Plan 15 v. Details of alternate sites considered and the basis of selecting the proposed 16 site, particularly the environmental considerations gone into should be highlighted vi. Size or magnitude of operation 16 vii. Project description with process details (a schematic diagram/ flow chart 16 showing the project layout components of the project etc. should be given) viii. Resource optimization/ recycling and reuse envisaged in the project, If any, 29 should briefly outlined ix.
    [Show full text]
  • United States Patent Office Patented Sept
    3,403,186 United States Patent Office Patented Sept. 24, 1968 2 sible paths. For instance, phosphoric acid (U.S. 2,752,- 3,403,186 398) inhibits a discoloration of a phenol which is acceler STABILIZATION OF PHENOLS ated by contact with metal (steel containers, ducts, valves, Hans L. Schlichting, Grand Island, and Ellis I. Lichtblau, and so forth). But as known and illustrated later, the Kenmore, N.Y., assignors to Hooker Chemical Corpo 5 stabilization is less effective if the phenol is also exposed ration, Niagara Falls, N.Y., a corporation of New York to air and/or sunlight and/or additional trace amounts No Drawing. Filed Nov. 30, 1965, Ser. No. 510,683 of caustic or acids, such as hydrochloric acid, sulfuric 14 Claims. (CI. 260-621) acid, and so forth. Other stabilizers, for instance organic polybasic carboxylic acids (U.S. 2,672,485), or Schiff's bases (British 787,859) or amino acids (British 807,736) ABSTRACT OF THE DISCLOSURE 10 may inhibit more or less effectively a discoloration of a A mixture of a trivalent phosphorus-containing organic phenol which is promoted and accelerated by exposure to compound of the formula air and/or sunlight and/or additional trace amounts of Z. acids or alkalies. But the stabilization is less effective 5 (almost nil) if the phenol is also exposed to metal and/or P2 metal oxides, as for instance steel, iron, rust, and so Zer forth. where Z can be hydroxyl, Z and Z' can be hydrogen and It has now been found that a mixture of an aromatic Z, Z and Z' are selected from the group consisting of o-hydroxycarboxylic
    [Show full text]
  • SFU Thesis Template Files
    Synthetic Design and Development of Sterically-Protected Hydroxide-Conducting Polymers for Energy Conversion Devices by Andrew Gordon Wright B.Sc. (Hons), Simon Fraser University, 2012 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Chemistry Faculty of Science Andrew Gordon Wright 2016 SIMON FRASER UNIVERSITY Fall 2016 Approval Name: Andrew Gordon Wright Degree: Doctor of Philosophy (Chemistry) Title: Synthetic Design and Development of Sterically- Protected Hydroxide-Conducting Polymers for Energy Conversion Devices Chair: Dr. Roger G. Linington Associate Professor Examining Committee: Dr. Steven Holdcroft Senior Supervisor Professor Dr. Andrew J. Bennet Supervisor Professor Dr. Vance E. Williams Supervisor Associate Professor Dr. Robert A. Britton Internal Examiner Professor Dr. Patric Jannasch External Examiner Professor Department of Chemistry Lund University Date Defended/Approved: October 06, 2016 ii Abstract The production of renewable energy conversion devices is crucial in reducing greenhouse gas emissions and sustaining the energy required for future generations. However, most energy conversion devices currently available have high costs, which greatly slow down any transition from non-renewable combustion devices. The most promising low-cost, renewable energy conversion devices are based on anion- conducting membranes, such as those found in hydrogen fuel cells, water electrolyzers, redox flow batteries, and electrodialysis. Unfortunately, the current lifetime of such devices is too short for wide-spread adoption. The main issue is the instability of the alkaline anion exchange membrane towards caustic hydroxide. While a significant amount of research has been on demonstrating materials that have longer lifetimes, little work has been concentrated on investigating the degradation pathways on small molecule model compounds.
    [Show full text]
  • Some New Observations on an Old Reaction: Disproportionation and The
    Issue in Honor of Prof. Cheng-Ye Yuan ARKIVOC 2004 (ix) 19-33 Some new observations on an old reaction: disproportionation and the formation of P-O-P intermediates in the Michaelis-Arbuzov reaction of triaryl phosphites with alkyl halides Harry R. Hudson* and Lubomira Powroznyk London Metropolitan University, 116-220 Holloway Road, London, N7 8DB, UK E-mail: [email protected] Dedicated to Professor Chengye Yuan on the occasion of his 80th birthday and in recognition of his distinguished contributions to organophosphorus chemistry (received 23 Feb 04; accepted 19 May 04; published on the web 21 May 04) Abstract Thermolysis of methyltriaryloxyphosphonium halides (ArO)3PMeX (X = Br or I) in the molten state (> 175 oC) was accompanied by disproportionation, with the formation of structures of the general type (ArO)nPMe4-nX (X = Br or I; n = 0-4). Further decomposition to give the corresponding aryl halides and phosphoryl derivatives became progressively slower as aryloxy groups were replaced by methyl. Thermal decomposition in CDCl3 (sealed tube) additionally confirmed the formation of novel species containing a P-O-P linkage. Products were identified by a combination of 31P and 1H NMR spectroscopy. Possible reaction mechanisms are discussed. Keywords: Michaelis-Arbuzov, quasiphosphonium, disproportionation, NMR spectroscopy Introduction The Michaelis-Arbuzov reaction is one of the best known and most fundamental reactions of organophosphorus chemistry encompassing, in its widest aspects, all reactions of phosphorus (III) esters with electrophilic reagents. The reaction proceeds via an alkoxy- or aryloxy- phosphonium intermediate 1, leading to the formation of a tetrahedral P(V) product containing a P=O bond (Scheme 1).1 δ+ δ− + − RO P: X Y RO P X Y O P X + RY 1 Scheme 1 ISSN 1424-6376 Page 19 ©ARKAT USA, Inc Issue in Honor of Prof.
    [Show full text]