Federal Register/Vol. 71, No. 34/Tuesday, February 21, 2006

Total Page:16

File Type:pdf, Size:1020Kb

Federal Register/Vol. 71, No. 34/Tuesday, February 21, 2006 Federal Register / Vol. 71, No. 34 / Tuesday, February 21, 2006 / Notices 8859 DEPARTMENT OF HEALTH AND DEPARTMENT OF HEALTH AND of the Public Health Service Act to HUMAN SERVICES HUMAN SERVICES conduct directly or by grants or contracts, research, experiments, and Office of the National Coordinator; Office of the National Coordinator; demonstrations relating to occupational American Health Information American Health Information safety and health and to mine health. Community Chronic Care Workgroup Community Consumer Empowerment The BSC shall provide guidance to the Meeting Workgroup Meeting Director, NIOSH on research and prevention programs. Specifically, the ACTION: Announcement of meeting. ACTION: Announcement of meeting. board shall provide guidance on the institute’s research activities related to SUMMARY: SUMMARY: This notice announces the This notice announces the developing and evaluating hypotheses, third meeting of the American Health third meeting of the American Health Information Community Consumer systematically documenting findings Information Community Chronic Care and disseminating results. The board Workgroup in accordance with the Empowerment Workgroup in accordance with the Federal Advisory shall evaluate the degree to which the Federal Advisory Committee Act (Pub. activities of NIOSH: (1) Conform to L. 92–463, 5 U.S.C., App.) Committee Act (Pub. L. 92–463, 5 U.S.C., App.) appropriate scientific standards, (2) DATES: March 22, 2006 from 1 p.m. to address current, relevant needs, and (3) DATES: March 20, 2006 from 1 p.m. to 5 p.m. produce intended results. 5 p.m. ADDRESSES: Hubert H. Humphrey Matters to be Discussed: Agenda items ADDRESSES: Hubert H. Humphrey Building (200 Independence Ave., SW., include a report from the Director, Building (200 Independence Ave., SW., Washington, DC 20201), Conference NIOSH; progress report by BSC working Washington, DC 20201), Conference Room 705A. group on the health hazard evaluation Room 705A. program; update on revisions to the FOR FURTHER INFORMATION CONTACT: FOR FURTHER INFORMATION CONTACT: http://www.hhs.gov/healthit. National Occupational Research http://www.hhs.gov/healthit. Agenda; Research to Practice Strategic SUPPLEMENTARY INFORMATION: A web SUPPLEMENTARY INFORMATION: A Web Plan; and closing remarks. address for the meeting will be available address for the meeting will be available Agenda items are subject to change as at: http://www.hhs.gov/healthit. at: http://www.hhs.gov/healthit. priorities dictate. Dated: February 10, 2006. Dated: February 10, 2006. For Further Information Contact: Roger Rosa, Executive Secretary, BSC, Dana Haza, Dana Haza, Office of Programs and Coordination, Office NIOSH, CDC, 200 Independence Office of Programs and Coordination, Office Avenue, SW., Room 715H, Washington, of the National Coordinator. of the National Coordinator. [FR Doc. 06–1552 Filed 2–17–06; 8:45am] DC 20201, telephone (202) 205–7856, [FR Doc. 06–1554 Filed 2–17–06 8:45am] fax (202) 260–4464. BILLING CODE 4150–24–M BILLING CODE 4150–24–M The Director, Management Analysis and Services Office, has been delegated the authority to sign Federal Register DEPARTMENT OF HEALTH AND DEPARTMENT OF HEALTH AND notices pertaining to announcements of HUMAN SERVICES HUMAN SERVICES meetings and other committee Office of the National Coordinator; Centers for Disease Control and management activities for both CDC and American Health Information Prevention the Agency for Toxic Substances and Community Biosurveillance Disease Registry. Workgroup Meeting Board of Scientific Counselors, Dated: February 14, 2006. National Institute for Occupational Alvin Hall, SUMMARY: This notice announces the Safety and Health third meeting of the American Health Director, Management Analysis and Services Information Community Biosurveillance In accordance with section 10(a)(2) of Office, Centers for Disease Control and Prevention. Workgroup in accordance with the the Federal Advisory Committee Act Federal Advisory Committee Act (Pub. (Pub. L. 92–463), the Centers for Disease [FR Doc. 06–1543 Filed 2–17–06; 8:45 am] L. 92–463, 5 U.S.C., App.) Control and Prevention (CDC) BILLING CODE 4163–18–P DATES: March 23, 2006 from 1 p.m. to announces the following committee 5 p.m. meeting: Name: Board of Scientific Counselors DEPARTMENT OF HEALTH AND ADDRESSES: Hubert H. Humphrey (BSC), National Institute for HUMAN SERVICES Building (200 Independence Ave., SW., Occupational Safety and Health Centers for Disease Control and Washington, DC 20201), Conference (NIOSH). Prevention Room 800. Time and Date: 9 a.m.–3 p.m., March FOR FURTHER INFORMATION CONTACT: 30, 2006. Request for Information on Waste http://www.hhs.gov/healthit. Place: Holiday Inn Capitol, 550 C Halogenated Anesthetic Agents: SUPPLEMENTARY INFORMATION: A Web Street, SW., Washington, DC 20024. Isoflurane, Desflurane, and address for the meeting will be available Status: Open to the public, limited Sevoflurane at: http://www.hhs.gov/healthit. only by the space available. The meeting room accommodates approximately 50 SUMMARY: NIOSH intends to review and Dated: February 10, 2006. people. evaluate toxicity data for the Dana Haza, Purpose: The Secretary, Department halogenated anesthetic agents of Office of Programs and Coordination, Office of Health and Human Services, the isoflurane, desflurane, and sevoflurane. of the National Coordinator. Assistant Secretary for Health, and by The current NIOSH recommended [FR Doc. 06–1553 Filed 2–17–05; 8:45am] delegation the Director, CDC, are exposure limit (REL) of 2 parts per BILLING CODE 4150–24–M authorized under Sections 301 and 308 million (ppm) as a 60-minute ceiling for VerDate Aug<31>2005 13:48 Feb 17, 2006 Jkt 208001 PO 00000 Frm 00027 Fmt 4703 Sfmt 4703 E:\FR\FM\21FEN1.SGM 21FEN1 rmajette on PROD1PC67 with NOTICES1 8860 Federal Register / Vol. 71, No. 34 / Tuesday, February 21, 2006 / Notices the halogenated gases (chloroform, harm to the reproductive system, central protective REL for isoflurane, trichloroethylene, halothane, nervous system, liver, and kidneys desflurane, and sevoflurane. methoxyflurane, fluroxene, and prompted NIOSH to develop RELs for NIOSH will use this information to enflurane) was established in 1977 waste anesthetic gases [NIOSH 1977]. In determine the need for developing [NIOSH 1977]. The halogenated 1977, the current NIOSH REL of 2 parts recommendations for reducing anesthetic agents, isoflurane, desflurane, per million (ppm) as a 60-minute ceiling occupational exposure to isoflurane, and sevoflurane, were subsequently was established for the halogenated desflurane, and sevoflurane. introduced and are not included in the gases chloroform, trichloroethylene, References: DECOS [1998]. Enflurane, 1977 NIOSH recommendation. halothane, methoxyflurane, fluroxene, isoflurane and cyclopropane: health- Isoflurane, desflurane, and sevoflurane and enflurane [NIOSH 1977]. Isoflurane, based recommended occupational are commonly used for anesthesia in desflurane, and sevoflurane were exposure limits. Report of the Dutch modern hospitals; however, no subsequently introduced and are not Expert Committee on Occupational occupational exposure limits exist for included in the 1977 NIOSH Standards, a committee of the Health these agents. NIOSH is requesting: (1) recommendation. Council of the Netherlands. Comments and information relevant to NIOSH has not yet developed RELs NIOSH [1977]. Criteria for a the evaluation of health risks associated for isoflurane, desflurane, and recommended standard * * * with occupational exposure to sevoflurane. Furthermore, the occupational exposure to waste isoflurane, desflurane, and sevoflurane, Occupational Safety and Health anesthetic gases and vapors. Cincinnati, (2) reports or other data that Administration (OSHA) has no OH: U.S. Department of Health, demonstrate adverse health effects in permissible exposure limits (PELs) for Education, and Welfare, Public Health workers exposed to isoflurane, these agents. The Netherlands’ 1998 Service, Center for Disease Control, desflurane, and sevoflurane, and (3) Dutch Expert Committee on National Institute for Occupational information pertinent to establishing a Occupational Standards (DECOS) Safety and Health, DHEW (NIOSH) REL for isoflurane, desflurane, and derived an occupational exposure limit Publication No. 77–140. sevoflurane. of 20 ppm for enflurane on the basis of The Director, Management Analysis reproductive toxicologic data [DECOS and Services Office has been delegated ADDRESSES: Comments should be 1998]. For isoflurane (an isomer of the authority to sign Federal Register transmitted to the NIOSH Docket Office, enflurane), DECOS also recommended notices pertaining to announcements of M/S C–34, Robert A. Taft Laboratories, an occupational exposure limit of 20 meetings and other committee 4676 Columbia Parkway, Cincinnati, ppm on the basis of assumed structure- management activities for both CDC and Ohio 45226, telephone 513/533–8303, related activity [DECOS 1998]. No the Agency for Toxic Substances and fax: 513/533–8285. epidemiologic studies are available on Disease Registry. Comments may also be submitted the health effects of the halogenated Dated: February 14, 2006. directly through the Web site (http:// agents, isoflurane, desflurane, and Alvin Hall, www.cdc.gov/niosh/review/public/ sevoflurane. Waste-Anesthetic-Gases/), by e-mail to Director, Management Analysis and Services NIOSH seeks to obtain materials, Office, Centers for Disease Control and [email protected], or by fax to 513/ including
Recommended publications
  • Veterinary Emergency & Anaesthesia Pfizer
    AVA ECVA & AVEF Thank all their sponsors for this spring edition PARIS 2007 On VETERINARY EMERGENCY & ANAESTHESIA PFIZER MERIAL FORT DODGE BAYER BOEHRINGER MEDISUR COVETO OPTOMED HALLOWELL SCIL JANSSEN SOGEVAL KRUSSE TECHNIBELT MILA TEM The Organisatiors 7th AVEF European Meeting- 10th March 2007-ROISSY 2 AVA – ECVA Spring Meeting 2007 on Veterinary Emergency & Anesthesia 7 – 10 March 2007, Paris, France AVA PARIS 2007 — Wednesday March 7th RESIDENT DAY RUMINANT ANAESTHESIA Hyatt Regency Hotel, Roissy CDG, France K OTTO, D HOLOPHERNE, G TOUZOT 8.30 REGISTRATIONS 9.00-9.45 Specific anatomo-physiology to consider for ruminant peri-anaesthetic period K OTTO 10.00-10.30 COFFEE BREAK 10.30-11.15 Post-anaesthetic and pain management in ruminants K OTTO 11.30-12.15 Physical restraint and sedation of ruminants D HOLOPHERNE 12.30-1.30 LUNCH 1.30-2.15 Anaesthesia of Lamas & Alpagas G TOUZOT 2.30-3.15 Regional & local anaesthesia for ruminants D HOLOPHERNE 3.30-4.00 COFFEE BREAK 4.00-4.45 Pharmacology and protocols for ruminant anaesthesia G TOUZOT AVA-ECVA PARIS 2007, Veterinary Emergency & Anaesthesia, 7-10th March AVA-ECVA PARIS 2007, Veterinary Emergency & Anaesthesia, 7-10th March AVA – ECVA Spring Meeting 2007 on Veterinary Emergency & Anesthesia 7 – 10 March 2007, Paris, France Specific anatomo-physiology to consider for ruminants peri-anaesthetic period Klaus A. Otto Institut für Versuchstierkunde und Zentrales Tierlaboratorium, Medizinische Hochschule Hannover, D-30623 Hannover, Germany The suborder “ruminantia” includes members of the family “bovidae” such as cattle (bos taurus), sheep (ovis spp) and goats (capra spp). Members of the family “camelidae” (camelus spp, llama spp, vicugna spp) belong to the suborder “tylopodia” and therefore are not true ruminants.
    [Show full text]
  • Cyclopropane Anaesthesia by JOHN BOYD, M.D., D.A
    Cyclopropane Anaesthesia By JOHN BOYD, M.D., D.A. TLHIS paper is based on my experience of one thousand cases of cyclopropane anaesthesia personally conducted by me since October, 1938, both in hospital and in private. But before discussing these it might be convenient for me to mention here something about the drug itself. HISTORY. Cyclopropane was first isolated in Germany in 1882 by Freund, who also demonstrated its chemical structure, C3H6. He did not, however, describe its anaesthetic properties. Following its discovery it seems to have been forgotten until 1928, when Henderson and Lucas of Toronto, in investigating contaminants of propylene, another anesthetic with undesirable side-effects, and itself'an isomer of cyclopropane, found that the supposed cause of the cardiac disturbances was in reality a better and less toxic anaesthetic. They demonstrated its anaesthetic properties first on animals, and then, before releasing it to the medical profession for clinical trial, they anaesthetised each other, and determined the quantities necessary for administration to man. In 1933 the first clinical trials of cyclopropane were made by Waters and his associates of the University of Wisconsin. In October of that year Waters presented a preliminary report on its anaesthetic properties in man,1 confirming the findings of Henderson and Lucas. Rowbotham introduced it to England first in 1935, and since then its use has spread rapidly throughout the country. PREPARATION. Cyclopropane is prepared commercially by the reduction of trimethylene bromide in the presence of metallic zinc in ethyl alcohol. It is also made commercially from propane in natural gas by progressive thermal chlorination.
    [Show full text]
  • Unnamed Document
    Mutations M287L and Q266I in the Glycine Receptor ␣1 Subunit Change Sensitivity to Volatile Anesthetics in Oocytes and Neurons, but Not the Minimal Alveolar Concentration in Knockin Mice Cecilia M. Borghese, Ph.D.,* Wei Xiong, Ph.D.,† S. Irene Oh, B.S.,‡ Angel Ho, B.S.,§ S. John Mihic, Ph.D.,ʈ Li Zhang, M.D.,# David M. Lovinger, Ph.D.,** Gregg E. Homanics, Ph.D.,†† Edmond I. Eger 2nd, M.D.,‡‡ R. Adron Harris, Ph.D.§§ ABSTRACT What We Already Know about This Topic • Inhibitory spinal glycine receptor function is enhanced by vol- Background: Volatile anesthetics (VAs) alter the function of atile anesthetics, making this a leading candidate for their key central nervous system proteins but it is not clear which, immobilizing effect if any, of these targets mediates the immobility produced by • Point mutations in the ␣1 subunit of glycine receptors have been identified that increase or decrease receptor potentiation VAs in the face of noxious stimulation. A leading candidate is by volatile anesthetics the glycine receptor, a ligand-gated ion channel important for spinal physiology. VAs variously enhance such function, and blockade of spinal glycine receptors with strychnine af- fects the minimal alveolar concentration (an anesthetic What This Article Tells Us That Is New EC50) in proportion to the degree of enhancement. • Mice harboring specific mutations in their glycine receptors Methods: We produced single amino acid mutations into that increased or decreased potentiation by volatile anesthetic in vitro did not have significantly altered changes in anesthetic the glycine receptor ␣1 subunit that increased (M287L, third potency in vivo transmembrane region) or decreased (Q266I, second trans- • These findings indicate that this glycine receptor does not me- membrane region) sensitivity to isoflurane in recombinant diate anesthetic immobility, and that other targets must be receptors, and introduced such receptors into mice.
    [Show full text]
  • Cyclobutane Derivatives in Drug Discovery
    Cyclobutane Derivatives in Drug Discovery Overview Key Points Unlike larger and conformationally flexible cycloalkanes, Cyclobutane adopts a rigid cyclobutane and cyclopropane have rigid conformations. Due to the ring strain, cyclobutane adopts a rigid puckered puckered conformation Offer ing advantages on (~30°) conformation. This unique architecture bestowed potency, selectivity and certain cyclobutane-containing drugs with unique pharmacokinetic (PK) properties. When applied appropriately, cyclobutyl profile. scaffolds may offer advantages on potency, selectivity and pharmacokinetic (PK) profile. Bridging Molecules for Innovative Medicines 1 PharmaBlock designs and Cyclobutane-containing Drugs synthesizes over 1846 At least four cyclobutane-containing drugs are currently on the market. cyclobutanes, and 497 Chemotherapy carboplatin (Paraplatin, 1) for treating ovarian cancer was cyclobutane products are prepared to lower the strong nephrotoxicity associated with cisplatin. By in stock. CLICK HERE to replacing cisplatin’s two chlorine atoms with cyclobutane-1,1-dicarboxylic find detailed product acid, carboplatin (1) has a much lower nephrotoxicity than cisplatin. On information on webpage. the other hand, Schering-Plough/Merck’s hepatitis C virus (HCV) NS3/4A protease inhibitor boceprevir (Victrelis, 2) also contains a cyclobutane group in its P1 region. It is 3- and 19-fold more potent than the 1 corresponding cyclopropyl and cyclopentyl analogues, respectively. Androgen receptor (AR) antagonist apalutamide (Erleada, 4) for treating castration-resistant prostate cancer (CRPC) has a spirocyclic cyclobutane scaffold. It is in the same series as enzalutamide (Xtandi, 3) discovered by Jung’s group at UCLA in the 2000s. The cyclobutyl- (4) and cyclopentyl- derivative have activities comparable to the dimethyl analogue although the corresponding six-, seven-, and eight-membered rings are slightly less 2 active.
    [Show full text]
  • Evaluating the Translational Potential of Progesterone Treatment Following
    Wong et al. BMC Neuroscience 2014, 15:131 http://www.biomedcentral.com/1471-2202/15/131 RESEARCH ARTICLE Open Access Evaluating the translational potential of progesterone treatment following transient cerebral ischaemia in male mice Raymond Wong1, Claire L Gibson2*, David A Kendall3 and Philip MW Bath1 Abstract Background: Progesterone is neuroprotective in numerous preclinical CNS injury models including cerebral ischaemia. The aim of this study was two-fold; firstly, we aimed to determine whether progesterone delivery via osmotic mini-pump would confer neuroprotective effects and whether such neuroprotection could be produced in co-morbid animals. Results: Animals underwent transient middle cerebral artery occlusion. At the onset of reperfusion, mice were injected intraperitoneally with progesterone (8 mg/kg in dimethylsulfoxide). Adult and aged C57 Bl/6 mice were dosed additionally with subcutaneous infusion (1.0 μl/h of a 50 mg/ml progesterone solution) via implanted osmotic minipumps. Mice were allowed to survive for up to 7 days post-ischaemia and assessed for general well-being (mass loss and survival), neurological score, foot fault and t-maze performance. Progesterone reduced neurological deficit [F(1,2) = 5.38, P = 0.027] and number of contralateral foot-faults [F(1,2) = 7.36, P = 0.0108] in adult, but not aged animals, following ischaemia. In hypertensive animals, progesterone treatment lowered neurological deficit [F(1,6) = 18.31, P = 0.0001], reduced contralateral/ipsilateral alternation ratio % [F(1,2) = 17.05, P = 0.0006] and time taken to complete trials [F(1,2) = 15.92, P = 0.0009] for t-maze. Conclusion: Post-ischemic progesterone administration via mini-pump delivery is effective in conferring functional improvement in a transient MCAO model in adult mice.
    [Show full text]
  • Euthanasia of Experimental Animals
    EUTHANASIA OF EXPERIMENTAL ANIMALS • *• • • • • • • *•* EUROPEAN 1COMMISSIO N This document has been prepared for use within the Commission. It does not necessarily represent the Commission's official position. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu.int) Cataloguing data can be found at the end of this publication Luxembourg: Office for Official Publications of the European Communities, 1997 ISBN 92-827-9694-9 © European Communities, 1997 Reproduction is authorized, except for commercial purposes, provided the source is acknowledged Printed in Belgium European Commission EUTHANASIA OF EXPERIMENTAL ANIMALS Document EUTHANASIA OF EXPERIMENTAL ANIMALS Report prepared for the European Commission by Mrs Bryony Close Dr Keith Banister Dr Vera Baumans Dr Eva-Maria Bernoth Dr Niall Bromage Dr John Bunyan Professor Dr Wolff Erhardt Professor Paul Flecknell Dr Neville Gregory Professor Dr Hansjoachim Hackbarth Professor David Morton Mr Clifford Warwick EUTHANASIA OF EXPERIMENTAL ANIMALS CONTENTS Page Preface 1 Acknowledgements 2 1. Introduction 3 1.1 Objectives of euthanasia 3 1.2 Definition of terms 3 1.3 Signs of pain and distress 4 1.4 Recognition and confirmation of death 5 1.5 Personnel and training 5 1.6 Handling and restraint 6 1.7 Equipment 6 1.8 Carcass and waste disposal 6 2. General comments on methods of euthanasia 7 2.1 Acceptable methods of euthanasia 7 2.2 Methods acceptable for unconscious animals 15 2.3 Methods that are not acceptable for euthanasia 16 3. Methods of euthanasia for each species group 21 3.1 Fish 21 3.2 Amphibians 27 3.3 Reptiles 31 3.4 Birds 35 3.5 Rodents 41 3.6 Rabbits 47 3.7 Carnivores - dogs, cats, ferrets 53 3.8 Large mammals - pigs, sheep, goats, cattle, horses 57 3.9 Non-human primates 61 3.10 Other animals not commonly used for experiments 62 4.
    [Show full text]
  • Pharmacology – Inhalant Anesthetics
    Pharmacology- Inhalant Anesthetics Lyon Lee DVM PhD DACVA Introduction • Maintenance of general anesthesia is primarily carried out using inhalation anesthetics, although intravenous anesthetics may be used for short procedures. • Inhalation anesthetics provide quicker changes of anesthetic depth than injectable anesthetics, and reversal of central nervous depression is more readily achieved, explaining for its popularity in prolonged anesthesia (less risk of overdosing, less accumulation and quicker recovery) (see table 1) Table 1. Comparison of inhalant and injectable anesthetics Inhalant Technique Injectable Technique Expensive Equipment Cheap (needles, syringes) Patent Airway and high O2 Not necessarily Better control of anesthetic depth Once given, suffer the consequences Ease of elimination (ventilation) Only through metabolism & Excretion Pollution No • Commonly administered inhalant anesthetics include volatile liquids such as isoflurane, halothane, sevoflurane and desflurane, and inorganic gas, nitrous oxide (N2O). Except N2O, these volatile anesthetics are chemically ‘halogenated hydrocarbons’ and all are closely related. • Physical characteristics of volatile anesthetics govern their clinical effects and practicality associated with their use. Table 2. Physical characteristics of some volatile anesthetic agents. (MAC is for man) Name partition coefficient. boiling point MAC % blood /gas oil/gas (deg=C) Nitrous oxide 0.47 1.4 -89 105 Cyclopropane 0.55 11.5 -34 9.2 Halothane 2.4 220 50.2 0.75 Methoxyflurane 11.0 950 104.7 0.2 Enflurane 1.9 98 56.5 1.68 Isoflurane 1.4 97 48.5 1.15 Sevoflurane 0.6 53 58.5 2.5 Desflurane 0.42 18.7 25 5.72 Diethyl ether 12 65 34.6 1.92 Chloroform 8 400 61.2 0.77 Trichloroethylene 9 714 86.7 0.23 • The volatile anesthetics are administered as vapors after their evaporization in devices known as vaporizers.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,603,526 B2 Tygesen Et Al
    USOO8603526B2 (12) United States Patent (10) Patent No.: US 8,603,526 B2 Tygesen et al. (45) Date of Patent: Dec. 10, 2013 (54) PHARMACEUTICAL COMPOSITIONS 2008. O152595 A1 6/2008 Emigh et al. RESISTANT TO ABUSE 2008. O166407 A1 7/2008 Shalaby et al. 2008/0299.199 A1 12/2008 Bar-Shalom et al. 2008/0311205 A1 12/2008 Habib et al. (75) Inventors: Peter Holm Tygesen, Smoerum (DK); 2009/0022790 A1 1/2009 Flath et al. Jan Martin Oevergaard, Frederikssund 2010/0203129 A1 8/2010 Andersen et al. (DK); Karsten Lindhardt, Haslev (DK); 2010/0204259 A1 8/2010 Tygesen et al. Louise Inoka Lyhne-versen, Gentofte 2010/0239667 A1 9/2010 Hemmingsen et al. (DK); Martin Rex Olsen, Holbaek 2010, O291205 A1 11/2010 Downie et al. (DK); Anne-Mette Haahr, Birkeroed 2011 O159100 A1 6/2011 Andersen et al. (DK); Jacob Aas Hoellund-Jensen, FOREIGN PATENT DOCUMENTS Frederikssund (DK); Pemille Kristine Hoeyrup Hemmingsen, Bagsvaerd DE 20 2006 014131 1, 2007 (DK) EP O435,726 8, 1991 EP O493513 7, 1992 EP O406315 11, 1992 (73) Assignee: Egalet Ltd., London (GB) EP 1213014 6, 2002 WO WO 89,09066 10, 1989 (*) Notice: Subject to any disclaimer, the term of this WO WO91,040 15 4f1991 patent is extended or adjusted under 35 WO WO95/22962 8, 1995 U.S.C. 154(b) by 489 days. WO WO99,51208 10, 1999 WO WOOOf 41704 T 2000 WO WO 03/024426 3, 2003 (21) Appl. No.: 12/701,429 WO WOO3,O24429 3, 2003 WO WOO3,O24430 3, 2003 (22) Filed: Feb.
    [Show full text]
  • 1,1,1-Trichloroethane (CASRN 71-55-6) | IRIS
    Integrated Risk Information System (IRIS) U.S. Environmental Protection Agency Chemical Assessment Summary National Center for Environmental Assessment 1,1,1-Trichloroethane; CASRN 71-55-6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data, as outlined in the IRIS assessment development process. Sections I (Health Hazard Assessments for Noncarcinogenic Effects) and II (Carcinogenicity Assessment for Lifetime Exposure) present the conclusions that were reached during the assessment development process. Supporting information and explanations of the methods used to derive the values given in IRIS are provided in the guidance documents located on the IRIS website. STATUS OF DATA FOR 1,1,1-Trichloroethane File First On-Line 03/31/1987 Category (section) Assessment Available? Last Revised Oral RfD (I.A.) Acute Oral RfD (I.A.1.) qualitative discussion 09/28/2007 Short-term Oral RfD (I.A.2.) qualitative discussion 09/28/2007 Subchronic Oral RfD (I.A.3.) yes 09/28/2007 Chronic Oral RfD (I.A.4.) yes 09/28/2007 Inhalation RfC (I.B.) Acute Inhalation RfC (I.B.1.) yes 09/28/2007 Short-term Inhalation RfC (I.B.2.) yes 09/28/2007 Subchronic Inhalation RfC (I.B.3.) yes 09/28/2007 1 Integrated Risk Information System (IRIS) U.S. Environmental Protection Agency Chemical Assessment Summary National Center for Environmental Assessment Category (section) Assessment Available? Last Revised Chronic Inhalation RfC (I.B.4.) yes 09/28/2007 Carcinogenicity Assessment (II.) yes 09/28/2007 I. Health Hazard Assessments for Noncarcinogenic Effects I.A.
    [Show full text]
  • FORANE (Isoflurane, USP)
    Forane ® (isoflurane, USP) Proposed Package Insert FORANE (isoflurane, USP) Liquid For Inhalation Rx only DESCRIPTION FORANE (isoflurane, USP), a nonflammable liquid administered by vaporizing, is a general inhalation anesthetic drug. It is 1-chloro-2, 2,2-trifluoroethyl difluoromethyl ether, and its structural formula is: Some physical constants are: Molecular weight 184.5 Boiling point at 760 mm Hg 48.5°C (uncorr.) 20 1.2990-1.3005 Refractive index n D Specific gravity 25°/25°C 1.496 Vapor pressure in mm Hg** 20°C 238 25°C 295 30°C 367 35°C 450 **Equation for vapor pressure calculation: log10Pvap = A + B where A = 8.056 T B = -1664.58 T = °C + 273.16 (Kelvin) Partition coefficients at 37°C: Water/gas 0.61 Blood/gas 1.43 Oil/gas 90.8 1 Forane ® (isoflurane, USP) Proposed Package Insert Partition coefficients at 25°C – rubber and plastic Conductive rubber/gas 62.0 Butyl rubber/gas 75.0 Polyvinyl chloride/gas 110.0 Polyethylene/gas ~2.0 Polyurethane/gas ~1.4 Polyolefin/gas ~1.1 Butyl acetate/gas ~2.5 Purity by gas >99.9% chromatography Lower limit of None flammability in oxygen or nitrous oxide at 9 joules/sec. and 23°C Lower limit of Greater than useful concentration in flammability in oxygen anesthesia. or nitrous oxide at 900 joules/sec. and 23°C Isoflurane is a clear, colorless, stable liquid containing no additives or chemical stabilizers. Isoflurane has a mildly pungent, musty, ethereal odor. Samples stored in indirect sunlight in clear, colorless glass for five years, as well as samples directly exposed for 30 hours to a 2 amp, 115 volt, 60 cycle long wave U.V.
    [Show full text]
  • DOCUMENT RESUME ED 300 697 CG 021 192 AUTHOR Gougelet, Robert M.; Nelson, E. Don TITLE Alcohol and Other Chemicals. Adolescent A
    DOCUMENT RESUME ED 300 697 CG 021 192 AUTHOR Gougelet, Robert M.; Nelson, E. Don TITLE Alcohol and Other Chemicals. Adolescent Alcoholism: Recognizing, Intervening, and Treating Series No. 6. INSTITUTION Ohio State Univ., Columbus. Dept. of Family Medicine. SPONS AGENCY Health Resources and Services Administration (DHHS/PHS), Rockville, MD. Bureau of Health Professions. PUB DATE 87 CONTRACT 240-83-0094 NOTE 30p.; For other guides in this series, see CG 021 187-193. AVAILABLE FROMDepartment of Family Medicine, The Ohio State University, Columbus, OH 43210 ($5.00 each, set of seven, $25.00; audiocassette of series, $15.00; set of four videotapes keyed to guides, $165.00 half-inch tape, $225.00 three-quarter inch tape; all orders prepaid). PUB TYPE Guides - Classroom Use - Materials (For Learner) (051) -- Reports - General (140) EDRS PRICE MF01 Plus Plstage. PC Not Available from EDRS. DESCRIPTORS *Adolescents; *Alcoholism; *Clinical Diagnosis; *Drug Use; *Family Problems; Physician Patient Relationship; *Physicians; Substance Abuse; Units of Study ABSTRACT This document is one of seven publications contained in a series of materials for physicians on recognizing, intervening with, and treating adolescent alcoholism. The materials in this unit of study are designed to help the physician know the different classes of drugs, recognize common presenting symptoms of drug overdose, and place use and abuse in context. To do this, drug characteristics and pathophysiological and psychological effects of drugs are examined as they relate to administration,
    [Show full text]
  • Divergent Synthesis of Cyclopropane-Containing Fragments and Lead-Like Compounds for Drug Discovery
    Divergent Synthesis of Cyclopropane-Containing Fragments and Lead-Like Compounds for Drug Discovery A Thesis submitted by Stephen John Chawner In partial fulfilment of the requirement for the degree of DOCTOR OF PHILOSOPHY Department of Chemistry Imperial College London South Kensington London SW7 2AZ United Kingdom 2017 1 I confirm that the work presented within this document is my own. Clear acknowledgement has been made when referring to the work of others, or where help has been received. The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 2 Acknowledgements Firstly, I would like to thank Imperial College London and Eli Lilly whose combined generosity through a CASE award made my PhD financially possible. I would like to thank my academic supervisor Dr James Bull for providing me with the opportunity to undertake a PhD in his group. I am grateful for the chemistry knowledge that he has shared, his encouragement to present at conferences and the freedom to follow new project ideas. In addition to funding, the CASE award provided me with the opportunity to collaborate with Dr Manuel Cases-Thomas at Erl Wood. Manuel was a constant source of enthusiasm throughout my PhD and has been a joy to work with.
    [Show full text]