Manufacturing Processes, Part 4

Total Page:16

File Type:pdf, Size:1020Kb

Manufacturing Processes, Part 4 Study Unit Manufacturing Processes, Part 4 By Thomas Gregory Manufacturers must organize and manage resources to maxi- mize the profitability of their operation. Global competition has caused significant changes in the way business is con- ducted and managed, especially in two areas: manufacturing standards and product quality. Increased emphasis on Preview Preview product quality means that almost every manufacturer must now rely on a quality assurance (QA) program and embrace defined quality standards. Controlling the manufacturing process requires extensive use of technical communication and management tools, many of which are directly imple- mented by technicians. In fact, manufacturing technicians can significantly influence their company’s ability to prof- itably produce high-value goods. When you complete this study unit, you’ll be able to • Understand and describe the basic functions of manage- ment and the principles on which work is organized in a manufacturing business • Understand and describe various types of production control systems • Describe the basic concepts behind modern production systems • Explain how modern QA systems affect the manufacturing processes and product and process quality • Understand how modern network-based communications technologies will affect the manufacturing process now and in the future iii Contents Contents AN INTRODUCTION TO MANUFACTURING ORGANIZATIONS 1 Scientific Management 3 Early Work Organization 3 Factors of Production 11 MANUFACTURING FORMATS 14 Types of Manufacturing Production 14 Equipment Layout 19 AUTOMATION AND MECHANIZATION 29 Evaluating Automation 30 Automation Strategies 34 Industrial Robots 35 MANUFACTURING MANAGEMENT SYSTEMS 46 Just-in-Time (JIT) Manufacturing 47 Lean Manufacturing 49 Quality Management and Quality Assurance Systems 51 eManufacturing 60 The Future of Manufacturing 64 SELF-CHECK ANSWERS 67 EXAMINATION 69 v Manufacturing Processes, Part 4 AN INTRODUCTION TO MANUFACTURING ORGANIZATIONS In your previous studies you’ve learned about many impor- tant aspects of manufacturing materials and processes, and factors that determine efficient and effective production practices. For any given product, a wide variety of material choices and manufacturing methods are available, but in a practical manufacturing environment, these choices some- times come with constraints that are beyond the engineer’s or technician’s control. A manufacturing company must organ- ize and manage its resources in a way that maximizes the value of those resources and the profit from production. The most efficient organization of a manufacturing business depends on many factors, including business location, type of product, production volume, availability of skilled labor, government regulations, and market competition. In recent years, especially since access to the Internet became widespread after 1994, communications and data management techniques have become more sophisticated, resulting in globalization of industries. Globalization has resulted in greater marketing opportunities for U.S. compa- nies and, perhaps more importantly, for other businesses located in less developed countries around the world, such as India, China, and Southeast Asia. Along with an expanded market, U.S. and European companies are also experiencing greater competition in businesses where manual labor or lower-level technical help is significantly less expensive abroad. 1 You’ve probably noticed the number of products now using metric dimensions, and seen product directions printed in multiple languages. American manufacturers are adopting international measurement standards to gain more access to international markets. QA programs are spreading, too. We’ve had QA programs in specific industries in this country for many years, such as the nuclear power industry. Today, many companies are adopting internationally recognized QA systems such as ISO 9000. As a manufacturing technician, you need to be aware of industry trends that will affect both your job and your company’s ability to produce high-value goods. You’ll undoubtedly work under a QA system that regulates manu- facturing processes, and you may be called on to use more extensive technical communication and management tools. In this unit we’ll discuss some of the more important concepts that relate to managing production systems. Operations research is the general term used for the study of management of manufacturing processes, with the general goal of maximizing the effective use of business resources. As we go to our jobs on a regular—probably daily—basis, we tend to overlook some of the larger aspects of what we do, why we do it, and who tells us how to do it. We have skills we bring to a job, and our employer expects us to use those skills to the best of our ability to further the company’s goals. Many jobs have written job descriptions, which are detailed descriptions of all the responsibilities and skill requirements a particular position demands. These documents are usually written with the cooperation of the management, the direct supervisors of the employee, and the human resources department, which oversees the legal aspects of hiring and firing personnel. Our work is organized for us, and we seldom give any additional thought as to how we got to where we are. However, by studying developments in work organization and the evolution of modern manufacturing organizations, we can learn how all of the pieces fit together to make a competitive and profitable organization in an increasingly global economy. 2 Manufacturing Processes, Part 4 Scientific Management The term scientific management was first applied to early researchers’ attempts to examine the tasks done by workers in early factories, and to use the analysis of the results to improve the organization of work. Frederick W. Taylor (1856–1915) was one of the early pioneers in this area, and his rigorous observations and astute analyses were recognized as having important consequences for the organization and manage- ment of factories of his day. Eventually, his and others’ work evolved into the recognized discipline of industrial engineering, which is an important engineering category today. In the next section we’ll discuss how the organization of work evolved from early manufacturing models to today’s modern factory, and how managers have attempted to improve the productivity of various work arrangements. Early Work Organization The work of people has been organized in many ways since before written history, perhaps even beginning with the separation of people into “hunters,” “gatherers,” or “farmers.” Early communities were governed by a chief or other leader who made the decisions on expected work “assignments” and the division of goods produced, captured, or otherwise acquired by the group. In a sense, this was the first management structure developed by humans: an autocracy (rule of one) based on physical power. As societies became more complex, people’s work became more specialized, and more members in a group were con- cerned with a particular product or developing certain skills. Think about the people who were the first farmers, potters, weavers, or sword makers. For small groups, individuals could probably do all of the tasks necessary to manufacture their products. However, as the number of people in a group, community, or state grew, a demand for increased quantities of products resulted in a further separation of duties and skills. In medieval times, the concept of apprenticeship arose, where younger members of a group or family learned the skills of the master by first doing menial tasks, and later more complex and important tasks as their skills increased. Manufacturing Processes, Part 4 3 Apprentices were the beginners in a trade, journeymen were intermediate-level skilled workers, and masters were the experts. We still apply these categories to many trades now in existence. Work in these organizations was directed by the master, and many masters of a trade in a given region were loosely governed by a guild, an organization of craftsmen engaged in similar occupations who communicated informally about issues related to their businesses (Figure 1). FIGURE 1—In medieval times, apprentices pro- gressed from trainees to Trade Guild journeyman level and eventually joined the Master Master Master loose confederation of Mason Wright Carpenter masters within a guild. Journeyman Journeyman Journeyman Mason Wright Carpenter Apprentice Apprentice Apprentice Mason Wright Carpenter Organization of work on a larger scale was probably first done with the development of class structures in society. Increasing division of labor in larger societies was caused by the development of a government in which the principal ruler didn’t have direct authority over individuals, but instead entrusted supervision and authority to appointed managers or bureaucrats. Distinct economic classes soon developed that determined who did what, and under whose direction. Children born into an economic class were likely to stay there, and families were often confined to specific occupa- tions, passed down from father to son for generations. If you think about our personal naming conventions, you can see remnants of this practice in surnames such as Potter, Smith, Weaver, or Cook. 4 Manufacturing Processes, Part 4 The Romans wrote some of the first management texts about the division of labor on their estates. Their surviving texts specify the desired number of supervisors, farmhands, animal tenders, and slaves
Recommended publications
  • Management Science
    MANAGEMENT SCIENCE CSE DEPARTMENT 1 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD Iv Year B.Tech. CSE- II Sem MANAGEMENT SCIENCE Objectives: This course is intended to familiarise the students with the framework for the managers and leaders availbale for understanding and making decisions realting to issues related organiational structure, production operations, marketing, Human resource Management, product management and strategy. UNIT - I: Introduction to Management and Organisation: Concepts of Management and organization- nature, importance and Functions of Management, Systems Approach to Management - Taylor's Scientific Management Theory- Fayal's Principles of Management- Maslow's theory of Hierarchy of Human Needs- Douglas McGregor's Theory X and Theory Y - Hertzberg Two Factor Theory of Motivation - Leadership Styles, Social responsibilities of Management, Designing Organisational Structures: Basic concepts related to Organisation - Departmentation and Decentralisation, Types and Evaluation of mechanistic and organic structures of organisation and suitability. UNIT - II: Operations and Marketing Management: Principles and Types of Plant Layout-Methods of Production(Job, batch and Mass Production), Work Study - Basic procedure involved in Method Study and Work Measurement - Business Process Reengineering(BPR) - Statistical Quality Control: control charts for Variables and Attributes (simple Problems) and Acceptance Sampling, TQM, Six Sigma, Deming's contribution to quality, Objectives of Inventory control, EOQ, ABC Analysis,
    [Show full text]
  • The Recent Trends in Production: 1
    The Recent Trends in Production: 1. Flexibility: The ability to adapt quickly to changes in volumes of demand, in the product mix demanded, and in product design or delivery schedules, has become a major competitive strategy and a competitive advantage to the firms. This is sometimes called as agile (move quickly) manufacturing. 2. Total Quality Management: TQM approach has been adopted by many firms to achieve customer satisfaction by a never ending quest for improving the quality of goods and services. 3. Time Reduction: Reduction of manufacturing cycle time and speed to marker for a new product provide a competitive edge to a firm over other firms. When companies can provide products at the same price and quality, quicker delivery (short lead time) provide one firm competitive edge over the other. 4. Worker Involvement: The recent trend is to assign responsibility for decision making and problem solving to the lower levels in the organization. This is known as employee involvement and empowerment. Examples of employee’s empowerment are quality circle and use of work teams or quality improvement teams. 5. Business Process Re-engineering: BPR involves drastic measures or break-through improvements to improve the performance of a firm. It involves the concept of clean- state approach or starting from a scratch in redesigning in business processes. 6. Global Market Place: Globalization of business has compelled many manufacturing firms to give operations in many countries where they have certain economic advantage. This has resulted in a steep increase in the level of competition among manufacturing firms throughout the world. 7.
    [Show full text]
  • Open Tebi Thesis.Pdf
    The Pennsylvania State University The Graduate School College of Engineering STUDY OF PROCESS IMPROVEMENT TOOLS IMPLEMENTED IN A CUSTOM ENGINEERED MANUFACTURING ENVIRONMENT A Thesis in Industrial Engineering by Tebi Mathew Cheeran © 2013 Tebi Mathew Cheeran Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science December 2013 The thesis of Tebi Mathew Cheeran was reviewed and approved* by the following: Robert Voigt Professor of Industrial and Manufacturing Engineering Thesis Co-adviser Christopher Saldana The Harold and Inge Marcus Career Assistant Professor Thesis Co-adviser Jeya Chandra Professor and Graduate Program Coordinator of Industrial and Manufacturing Engineering *Signatures are on file in the Graduate School. ii ABSTRACT The objective of this research project is to reduce the overall lead time for the manufacture and assembly of Blow Out Preventer stacks, having a highly customized design. The research project is executed for a multi-national company, specialized in the manufacture of mechanical components in the oil and gas industry. The work reviews some of the manufacturing strategies that are employed in today’s industries and tries to identify strategies that could be employed in a custom engineered, Make to Order environment. It then outlines some of the preliminary analysis done using the existing data from the facility. This analysis uses Six Sigma tools to develop an overview of the Blow Out Preventer production process and to identify key focus areas of the project. The preliminary analysis next focuses on the downstream final assembly process and identifies the assembly delays caused due to preassembly operations as the reason for long assembly lead time.
    [Show full text]
  • Industrial Engineering Industrial Engineering Is a Branch of Engineering Which Deals with the Optimization of Complex Processes Or Systems
    Industrial engineering Industrial engineering is a branch of engineering which deals with the optimization of complex processes or systems. It is concerned with the development, improvement, and implementation of integrated systems of people, money, knowledge, information, equipment, energy, materials, analysis and synthesis, as well as the mathematical, physical and social sciences together with the principles and methods of engineering design to specify, predict, and evaluate the results to be obtained from such systems or processes.[1] While industrial engineering is a traditional and longstanding engineering discipline subject to (and eligible for) professional engineering licensure in most jurisdictions, its underlying concepts overlap considerably with certain business-oriented disciplines such as operations management. The various topics concerning industrial engineers include: accounting: the measurement, processing and communication of financial information about economic entities operations research, also known as management science: discipline that deals with the application of advanced analytical methods to help make better decisions operations management: an area of management concerned with overseeing, designing, and controlling the process of production and redesigning business operations in the production of goods or services. project management: is the process and activity of planning, organizing, motivating, and controlling resources, procedures and protocols to achieve specific goals in scientific or daily problems.
    [Show full text]
  • Value Stream Mapping Adapted to High- Mix, Low-Volume Manufacturing Environments 2012:120
    Value Stream Mapping adapted to High- Mix, Low-Volume Manufacturing Environments 2012:120 JUAN MANUEL ARAYA Master of Science Thesis Stockholm, Sweden 2011 VALUE STREAM MAPPING adapted to HIGH-MIX, LOW-VOLUME Manufacturing Environments Juan Manuel Araya Master of Science Thesis INDEK 2011:x KTH Industrial Engineering and Management Industrial Management SE-100 44 STOCKHOLM Examensarbete INDEK 2011:x {Rapporttitel} {Namn1} {Namn2} Godkänt Examinator Handledare 2011-mån-dag {Namn} {Namn} Uppdragsgivare Kontaktperson {Namn} {Namn} Sammanfattning Nyckelord Master of Science Thesis INDEK 2011:x {Title} {Name1} {Name2} Approved Examiner Supervisor 2011-month-day {Name} {Name} Commissioner Contact person {Name} {Name} Abstract This research work proposes a new methodology for implementing Value Stream Mapping, in processes that feature a High-Mix, Low-Volume product base. The opportunity for adapting the methodology singularly for these types of environments was identified because implementing Value Stream Mapping as proposed in Learning to See features several drawbacks when implemented in High-Mix, Low-Volume. Although Value Stream Mapping has been proven to enhance many types of processes, its advantages are shrunk if they are implemented in High- Mix, Low-Volume processes. High-Mix, Low-Volume processes are types of processes in which a high variety of finished goods are produced in relatively low amounts. The high variety of finished goods causes several complications for the implementation of flow. The difficulties that prevent the flow are the following: • The variance in the products: With hundreds, or sometimes thousands of possible finished goods, the number of products causes a non-repetitive process. • The variance in the routings: All of the products that are produced can have completely different process routings, or order of stations it has to visit.
    [Show full text]
  • Production and Opera
    MODULE 1 A Bird view of Production System Marketing Engineering Research Plant department Department & Engineering Development Department Materials Customer Management Production In Department Division Target Market (shop floor) Raw Vendor/ Materials Suppliers Stores Quality Factory Assurance Sales Management Department Department & Liasioning Management Information Customer Finance Human System Support Department Resource Department Department Department Introduction • Production and operations management (POM) is the management of an organization’s production system. • A production system takes inputs and converts them into outputs. • The conversion process is the predominant activity of a production system. • The primary concern of an operations manager is the activities of the conversion process. Today's Factors Affecting POM • Global Competition • U.S. Quality, Customer Service, and Cost Challenges • Computers and Advanced Production Technology • Growth of U.S. Service Sector • Scarcity of Production Resources • Issues of Social Responsibility Different Ways to Study POM • Production as a System • Production as an Organization Function • Decision Making in POM Production as a System Production System Conversion Inputs Outputs Subsystem Control Subsystem Inputs of a Production System • External – Legal, Economic, Social, Technological • Market – Competition, Customer Desires, Product Info. • Primary Resources – Materials, Personnel, Capital, Utilities Conversion Subsystem • Physical (Manufacturing) • Location Services (Transportation)
    [Show full text]
  • 2021 IEEE Taxonomy Version
    2021 IEEE Taxonomy Version 1.0 Created by The Institute of Electrical and Electronics Engineers (IEEE) 2021 IEEE Taxonomy IEEE Taxonomy: A Subset Hierarchical Display of IEEE Thesaurus Terms The IEEE Taxonomy comprises the first three hierarchical 'levels' under each term-family (or branch) that is formed from the top-most terms of the IEEE Thesaurus. In this document these term-families are arranged alphabetically and denoted by boldface type. Each term family's hierarchy goes to no more than three sublevels, denoted by indents (in groups of four dots) preceding the next level terms. A term can appear in more than one hierarchical branch and can appear more than once in any particular hierarchy. The IEEE Taxonomy is defined in this way so that it is always a subset of the 2021 IEEE Thesaurus. Aerospace and electronic systems ............Guns ............Missiles ....Aerospace control ............Nuclear weapons ........Air traffic control ............Projectiles ........Attitude control ....Radar ........Ground support ........Airborne radar ....Aerospace engineering ........Bistatic radar ........Aerospace biophysics ........Cognitive radar ........Aerospace electronics ........Doppler radar ........Aerospace safety ........Ground penetrating radar ............Air safety ........High frequency radar ........Aerospace simulation ........Laser radar ........Aerospace testing ........Meteorological radar ............Wind tunnels ........Millimeter wave radar ........Artificial satellites ........Multistatic radar ............Earth Observing
    [Show full text]
  • Applying the Supervisory Control System and Data Acquisition (SCADA) to Monitor Production Processes in Baghdad Soft Drinks Comp
    PSYCHOLOGY AND EDUCATION (2021) 58(2): 11018-11028 ISSN: 00333077 Applying the supervisory control system and data acquisition (SCADA) to monitor production processes in Baghdad soft drinks company Batool Attia Kalaf 1 and Ahmed Qasim Abed AL badrawi2 1Assis. prof , College of Administration and Economics/ Industrial Management / University of Baghdad , Baghdad, Iraq. [email protected] 2College of Administration and Economics/ University of Baghdad/ Department of Industrial Management, Baghdad, Iraq. [email protected] ABSTRACT The research aims to apply the SCADA system to monitor production processes in Baghdad Soft Drinks Company, specifically the Dijla plant, cans production line (250 ML) to implement the system. The Baghdad Company’s choice to implement the system came because the company has the infrastructure to implement the system as it has the first level of sensors and controllers related to the operations and also The second level of the PLC (Programmable Logical Controller) that collects data from the sensors and controls the operations in the production line, the DIA View SCADA program (2019) was used to create a monitoring screen and control the production processes, and the important production processes in the company were controlled. In the juice preparation phase and the centrally filled phase, the system was not limited to monitoring the equipment, ambient conditions and system parameters (temperature, pressure, level, etc.), but also exceeded the control of the production quantities of production processes accurately (the amount of sugar and water) to reach the highest efficiency and use the company's resources at the best level, including waste in the raw materials.
    [Show full text]
  • Automation of Input Data Management for Discrete Event Simulation Phanindra Kshatra Damarapurapu Sourabh Gargatte
    Data Fusion and Management Intelligent Data Points Automated Modeling & Decision Support Optimization PLM System e . g . TCM Data Driven Analysis Legacy System Information : model entities DSS Data The GDM Tool & logic Fact Analyzer Decision Support ( Data Processing ) conceptional modeling Simulation System Manually Based Collected Optimization Data e . g . Cycle Time Plant Simulation detail modeling Sustainability Data Machine Novel Solutions for Energy Data Control System and PLC Sustainability Modeling Automation of Input D ata M anagement for Discrete Event Simulation Master’s T hesis in Production Engineering Phanindra Kshatra Damarapurapu Sourabh Gargatte Department of Product and Production Development CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2016 Master’s Thesis - 2016 Automation of Input D ata M anagement for Discrete Event Simulation Phanindra Kshatra Damarapurapu Sourabh Gargatte Department of Product and Production Engineering Chalmers University of Technology Gothenburg, Sweden 2016 Automation of Input Data Management for Discrete Event Simulation Phanindra Kshatra Damarapurapu Sourabh Gargatte © Phanindra Kshatra Damarapurapu and Sourabh Gargatte, 2016. Supervisor: Jon Larbo r n, Project Manager, Department of Product and Production Development [email protected] Company Supervisor: Atieh Hanna, Volvo Group Trucks Operations [email protected] Examiner: Anders Skoogh, Director, Departmen t of Product and Production De velopment [email protected] Master’s Thesis 2016 Department of Product and Production Development Chalmers University of Technology SE - 412 96, Gothenburg. Sweden Telephone +46 (0)31 - 772 1000 Cover: Automation of Input Data Managemen t for Discrete Event Simulation . Printed by Reproservice, Chalmers Gothenburg, Sweden 2016 Abstract In manufacturing industry Discr ete Event Simulation (DES) is a powerful tool in making decision su pport with the help of modelled production systems.
    [Show full text]
  • A Framework to Offer High Value Manufacturing Through Self-Reconfigurable Manufacturing Systems
    A framework to offer high value manufacturing through self-reconfigurable manufacturing systems Victor Manuel Cedeno-Campos A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Faculty of engineering Department of Automatic Control and Systems Engineering August 2016 Abstract The High Value Manufacturing (HVM) sector is vital for developed countries due to the creation of innovative products with advanced technology that cannot be reproduced at the same cost and time with traditional technology. The main challenge for HVM is to rapidly increase production volume from one-off products to low production volume. This requires highly flexible manufacturing systems that can produce new products at variable production volumes. Current manufacturing systems, classified as dedicated, flexible and reconfigurable systems, are limited to produce one type of product(s), within a production volume range and have fixed layouts of machines. Thus, there is a need for highly flexible systems that can rapidly adjust their production volume according to the production demand (i.e. main HVM challenge). Therefore, a novel manufacturing framework, called INTelligent REconfiguration for a raPID production change (INTREPID), is presented in this thesis. INTREPID consists of a user interface and communications platform, a job allocation system, a globally distributed network of Reconfigurable Manufacturing Centres (RMCs), consisting of interconnected factories, and Self- Reconfigurable Manufacturing Systems (S-RMSs). The highly flexible S-RMS consists of movable machines and Mobile Manufacturing Robots (MMRs). The novelty of the S-RMS is its capability of forming layouts bespoke to the current production needs. The vision of INTREPID is to offer global HVM services through the network of RMCs.
    [Show full text]
  • Selection of a Data Exchange Format for Industry 4.0 Manufacturing Systems
    Selection of a Data Exchange Format for Industry 4.0 Manufacturing Systems Ricardo Silva Peres1, Mafalda Parreira-Rocha1, Andre Dionisio Rocha1, Jose´ Barbosa2, Paulo Leitao˜ 2, and Jose´ Barata1 1CTS - UNINOVA, Faculdade de Cienciasˆ e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal, Email: fricardo.peres, mafalda.rocha, andre.rocha, [email protected] 2Polytechnic Institute of Braganc¸a, Portugal, Email: fjbarbosa, [email protected] Abstract—With the emergence of the Industry 4.0 concept, or standard interfaces and common semantics as key enablers of the fourth industrial revolution, the industry is bearing witness interoperability within project itself. to the appearance of more and more complex systems, often requiring the integration of various new heterogeneous, modular A. The PERFoRM Project and intelligent elements with pre-existing legacy devices. This challenge of interoperability is one of the main concerns taken The PERFoRM project is aligned with the Industry 4.0 into account when designing such systems-of-systems, commonly vision aiming the conceptual transformation of existing indus- requiring the use of standard interfaces to ensure this seamless trial production systems towards plug and produce production integration. To aid in tackling this challenge, a common format systems to achieve flexible manufacturing environments based for data exchange should be adopted. Thus, a study to select the foundations for the development of such a format is hereby on rapid and seamless reconfiguration of machinery and robots presented, taking into account the specific needs of four different as response to operational or business events. An important use cases representing varied key European industry sectors. assumption, as an innovation action, is not to create a new system architecture from scratch but instead to use the best I.
    [Show full text]
  • The Role of Lean and Agile Logistics During Production Ramp-Up
    THE ROLE OF LEAN AND AGILE LOGISTICS DURING PRODUCTION RAMP-UP Von der Fakultät für Ingenieurwissenschaften, Abteilung Maschinenbau und Verfahrenstechnik der Universität Duisburg-Essen zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften Dr. rer. pol. Genehmigte Dissertation von Abdelrahim Alsoussi aus Amman, Jordanien Gutachter: Prof. Dr. Rainer Leisten Prof. Dr.-Ing. Bernd Noche Tag der mündlichen Prüfung: 04. November 2015 This dissertation is dedicated to my mother Najah Rida; my father Fathi Alsoussi; the memory of my father-in-law Ziyad Abdelrazeq; my wife Fatima Abdelrazeq; my daughter Leen; my son Hamzah; and my brothers Issam, Amjad, Ahmad, and Abdelhadi I ACKNOWLEDGMENTS Firstly, I would like to express my sincere gratitude to my advisor for his continuous support, patience, motivation, and immense knowledge. Besides my advisor, I would like to thank the rest of my thesis committee for their insightful comments and encouragement. My sincere thanks also goes to my colleagues in the department of mechanical and process engineering in the University of Duisburg-Essen. My study in Germany was financed by a scholarship from the German Jordanian University in Jordan; I would like to express my special gratitude for their financial support. Special thanks are due to my wife for her unwavering and unconditional support and encouragement. Special thanks also to my parents, brothers, and children for supporting me spiritually throughout writing this dissertation and throughout my life in general. Abdelrahim Alsoussi Duisburg, Germany November, 2015 II ABSTRACT In addition to the rareness of theoretical and empirical research, which extends to every aspect of the production ramp-up literature, the increasing importance of the ramp-up phase – due to the continuously decreasing product lifecycle in almost all industrial sectors –magnifies the need for more research efforts in this field.
    [Show full text]