54 (2) • May 2005: 337–352 Shaw & al. • Global patterns of moss diversity CORE Metadata, citation and similar papers at core.ac.uk Provided by Sapientia Global patterns of moss diversity: taxonomic and molecular inferences A. Jonathan Shaw1, Cymon J. Cox1 & Bernard Goffinet2 1 Department of Biology, Duke University, Durham, North Carolina 27278, U.S.A.
[email protected] (author for correspondence);
[email protected] 2 Department of Ecology and Evolution, University of Connecticut, Storrs, Connecticut, 06269, U.S.A.
[email protected] Taxonomic and molecular data were utilized to test the hypothesis that moss diversity is greatest near the equa- tor. Species richness estimates from 86 taxonomic checklists representing global moss diversity do not support the hypothesis that, in general, mosses are more species-rich in the tropics than at higher latitudes. A signifi- cant latitudinal gradient was, however, detected for North, Central, and South American samples when ana- lyzed alone. Taxonomic estimates of biodiversity patterns were compared to molecular estimates based on standing nucleotide diversity, and on phylogenetic diversity, the latter taking into account the historical infor- mation contained in a molecular phylogenetic tree for the mosses. Molecular estimates suggest that moss diver- sity is highest in the Southern Hemisphere and lowest in the Northern Hemisphere, with the tropics having an intermediate level. The differences, however, are slight, and analyses of molecular variance (AMOVA) indi- cate that there is virtually no generalized differentiation between major latitudinal zones. These results reflect the fact that virtually all moss lineages have representatives in all three latitudinal zones. At the nucleotide level, mosses best fit the pattern of “everything is everywhere”.