Species List by Region

Total Page:16

File Type:pdf, Size:1020Kb

Species List by Region SWAFR - IBRA - All Vascular Plant Taxa Paul Gioia, Science and Conservation Division, Department of Parks and Wildlife Report generated on 22/06/2016 10:58:29 AM This analysis uses a pro tem definition of the SWAFR that served to define the study area. It was based on the collection of IBRA 6.1 bioregions most closely approximating the original definition of the Southwest Province by Beard (1980). Data for this report were derived from a snapshot taken from WAHERB on 18/05/2015 for Gioia & Hopper (2016) paper. Criteria for data extraction and analysis were: 1. All vascular plants 2. Species-rank names where the typical subspecies also existed were renamed to the typical subspecies to avoid counting duplicate taxa 3. All vascular plant taxa with current names, including weeds Note: 1. This report contains information generated from intersecting the supplied polygon layer LOCAL_SWFIBR with the point species occurrence layer WAHERB_FILT_ALL. 2. Endemism is calculated based on the records available to this analysis and is not necessarily authoritative. Regions reported on: Region Name Hectares SWAFR - IBRA 29,851,921.5 Species List By Region 1 2 3 1 2 3 NameID Species Cons End WA NameID Species Cons End WA 36 3219 Acacia anomala T Y Y SWAFR - IBRA 37 12247 Acacia anthochaera 1 4889 Abutilon cryptopetalum 38 3220 Acacia aphylla T Y 2 19708 *Abutilon grandifolium Y 39 15466 Acacia applanata 3 4902 Abutilon oxycarpum 40 14049 Acacia aprica T Y Y 4 43020 Abutilon oxycarpum subsp. Prostrate (A.A. Y 41 37260 Acacia aptaneura Mitchell PRP 1266) 42 14050 Acacia arcuatilis P2 Y Y 5 4903 *Abutilon theophrasti Y 43 3221 Acacia argutifolia P4 Y 6 16106 Acacia acanthaster Y 44 14051 Acacia aristulata T Y Y 7 16159 Acacia acanthoclada subsp. acanthoclada Y 45 12248 Acacia ascendens P2 Y 8 14613 Acacia acanthoclada subsp. glaucescens Y 46 14052 Acacia asepala P2 Y 9 3196 Acacia acellerata Y Y 47 3225 Acacia ashbyae 10 3197 Acacia aciphylla Y Y 48 15467 Acacia assimilis subsp. assimilis Y 11 16107 Acacia acoma Y 49 15468 Acacia assimilis subsp. atroviridis Y 12 3199 Acacia acuaria Y 50 14725 Acacia ataxiphylla subsp. ataxiphylla P3 Y 13 15460 Acacia aculeiformis Y Y 51 14687 Acacia ataxiphylla subsp. magna T Y Y 14 3200 Acacia acuminata 52 16112 Acacia aulacophylla Y 15 3201 Acacia acutata Y 53 14053 Acacia auratiflora T Y Y 16 44442 Acacia adjutrices P3 Y Y 54 3231 Acacia auronitens Y Y 17 14608 Acacia aemula subsp. aemula Y 55 12249 Acacia awestoniana T Y Y 18 16108 Acacia aemula subsp. muricata Y Y 56 18285 *Acacia baileyana 19 3206 Acacia aestivalis 57 15469 Acacia barbinervis subsp. barbinervis Y Y 20 15429 Acacia alata var. alata Y 58 15470 Acacia barbinervis subsp. borealis Y Y 21 16111 Acacia alata var. biglandulosa Y 59 41461 Acacia bartlei P3 Y Y 22 16110 Acacia alata var. platyptera P4 Y Y 60 3235 Acacia baxteri Y Y 23 15430 Acacia alata var. tetrantha Y 61 3236 Acacia beauverdiana Y 24 16895 Acacia amblygona 62 3237 Acacia benthamii P2 Y Y 25 14046 Acacia ampliata P1 Y 63 44472 Acacia besleyi P1 Y Y 26 18485 Acacia amputata Y Y 64 3238 Acacia bidentata 27 14047 Acacia amyctica P2 Y Y 65 14611 Acacia bifaria P3 Y Y 28 3210 Acacia anarthros P3 Y Y 66 3239 Acacia biflora Y 29 3213 Acacia anceps 67 3240 Acacia binata 30 3214 Acacia ancistrocarpa 68 3242 Acacia blakelyi Y 31 14584 Acacia ancistrophylla var. ancistrophylla Y 69 16113 Acacia blaxellii Y 32 14585 Acacia ancistrophylla var. lissophylla Y 70 3243 Acacia botrydion P4 Y Y 33 14048 Acacia ancistrophylla var. perarcuata P3 Y 71 3244 Acacia brachyclada Y 34 3216 Acacia andrewsii 72 13508 Acacia brachyphylla var. brachyphylla Y Y 35 3218 Acacia anfractuosa Y 73 13509 Acacia brachyphylla var. recurvata P3 Y Y * = Naturalised 1 = Conservation Status 2 = Endemic to region 3 = Endemic to WA Wednesday, 22 June 2016 Page 1 of 60 1 2 3 1 2 3 NameID Species Cons End WA NameID Species Cons End WA 74 12250 Acacia brachypoda T Y Y 155 11926 Acacia drewiana subsp. drewiana Y Y 75 16114 Acacia bracteolata 156 11829 Acacia drewiana subsp. minor P2 Y Y 76 11731 Acacia browniana var. browniana Y 157 11229 Acacia drummondii subsp. affinis P3 Y Y 77 11449 Acacia browniana var. endlicheri Y Y 158 11303 Acacia drummondii subsp. candolleana Y Y 78 11655 Acacia browniana var. glaucescens P2 Y Y 159 11661 Acacia drummondii subsp. drummondii Y Y 79 11915 Acacia browniana var. intermedia Y Y 160 11192 Acacia drummondii subsp. elegans Y 80 11377 Acacia browniana var. obscura Y Y 161 14854 Acacia drummondii subsp. elegans P4 Y Y 81 15471 Acacia brumalis Y Y Porongurup variant (R.J. Cumming 938) 82 3248 Acacia burkittii 162 3314 Acacia dura P2 Y Y 83 36417 Acacia caesaneura 163 14073 Acacia durabilis Y Y 84 12251 Acacia caesariata T Y Y 164 3315 Acacia duriuscula Y 85 3251 Acacia camptoclada 165 32118 Acacia effusifolia Y 86 3252 Acacia campylophylla P3 Y Y 166 18287 *Acacia elata 87 14055 Acacia carens P2 Y Y 167 3317 Acacia empelioclada 88 14056 Acacia carnosula Y 168 16168 Acacia enervia subsp. enervia Y 89 12252 Acacia cassicula Y Y 169 12257 Acacia enervia subsp. explicata Y 90 14057 Acacia castanostegia Y 170 3319 Acacia epacantha P3 Y Y 91 15472 Acacia cavealis Y Y 171 3320 Acacia ephedroides Y 92 3253 Acacia cedroides Y 172 3321 Acacia eremaea 93 3254 Acacia celastrifolia Y 173 16020 Acacia eremophila var. eremophila Y 94 14058 Acacia cerastes P1 174 16121 Acacia eremophila var. variabilis P3 Y 95 16116 Acacia chamaeleon Y 175 3323 Acacia ericifolia Y 96 14059 Acacia chapmanii subsp. australis T Y Y 176 18194 Acacia ericksoniae Y Y 97 14060 Acacia chapmanii subsp. chapmanii P2 Y Y 177 3324 Acacia erinacea 98 13072 Acacia chartacea Y 178 3325 Acacia erioclada Y Y 99 3256 Acacia chrysella 179 14681 Acacia errabunda P3 Y Y 100 3257 Acacia chrysocephala Y 180 14075 Acacia euthyphylla P3 Y Y 101 3259 Acacia chrysopoda Y 181 16123 Acacia evenulosa Y 102 14061 Acacia clydonophora Y 182 3328 Acacia excentrica Y 103 3262 Acacia cochlearis 183 3330 Acacia exocarpoides 104 14062 Acacia cochlocarpa subsp. cochlocarpa T Y Y 184 3331 Acacia extensa Y 105 14063 Acacia cochlocarpa subsp. velutinosa T Y Y 185 3332 Acacia fagonioides Y Y 106 3264 Acacia colletioides 186 3334 Acacia fauntleroyi 107 3265 Acacia comans Y 187 3335 Acacia ferocior Y Y 108 14618 Acacia concolorans P2 Y 188 3337 Acacia filifolia P3 109 14064 Acacia congesta subsp. cliftoniana P1 Y Y 189 3338 Acacia flabellifolia P3 Y Y 110 15473 Acacia congesta subsp. congesta Y 190 3339 Acacia flagelliformis P4 Y 111 14065 Acacia congesta subsp. wonganensis P2 Y Y 191 16125 Acacia flavipila var. flavipila Y Y 112 3268 Acacia conniana Y 192 16124 Acacia flavipila var. ovalis Y Y 113 16117 Acacia consanguinea Y 193 18286 *Acacia floribunda 114 12253 Acacia consobrina 194 14076 Acacia formidabilis P3 Y 115 3269 Acacia coolgardiensis 195 3341 Acacia forrestiana T Y Y 116 13500 Acacia coriacea subsp. coriacea Y 196 3342 Acacia fragilis 117 3271 Acacia costata Y Y 197 14077 Acacia gelasina P2 Y 118 12254 Acacia cowaniana P2 Y Y 198 14624 Acacia gemina Y Y 119 16118 Acacia cracentis Y Y 199 15282 Acacia gibbosa Y 120 3274 Acacia crassistipula Y Y 200 3347 Acacia gilbertii Y 121 3275 Acacia crassiuscula Y 201 14621 Acacia glaucissima P3 Y 122 3276 Acacia crassuloides Y 202 3349 Acacia glaucoptera Y 123 14623 Acacia crenulata P3 Y 203 3350 Acacia glutinosissima Y Y 124 3277 Acacia crispula Y 204 3352 Acacia gonoclada 125 14066 Acacia cummingiana P3 Y Y 205 3353 Acacia gonophylla 126 14067 Acacia cuneifolia P4 Y Y 206 31032 Acacia graciliformis P1 Y Y 127 12672 Acacia cupularis 207 16127 Acacia graniticola Y 128 3278 Acacia curvata Y Y 208 3355 Acacia grasbyi 129 3282 Acacia cyclops 209 3357 Acacia grisea P4 Y Y 130 14068 Acacia cylindrica P3 Y 210 3358 Acacia guinetii P4 Y 131 20435 Acacia daphnifolia Y 211 16128 Acacia hadrophylla Y 132 3285 Acacia daviesioides Y 212 3359 Acacia hakeoides 133 19920 *Acacia dealbata subsp. dealbata 213 3362 Acacia harveyi 134 12255 Acacia declinata P3 Y 214 3363 Acacia hastulata Y 135 16975 *Acacia decurrens 215 3366 Acacia hemiteles 136 16169 Acacia deficiens 216 14116 Acacia heterochroa subsp. heterochroa Y Y 137 3287 Acacia deflexa P3 Y Y 217 12760 Acacia heterochroa subsp. robertii P2 Y Y 138 3289 Acacia delphina Y 218 15475 Acacia heteroclita subsp. heteroclita Y 139 3291 Acacia dempsteri 219 14117 Acacia heteroclita subsp. valida P2 Y Y 140 3292 Acacia densiflora Y 220 15284 Acacia heteroneura var. heteroneura Y 141 3293 Acacia denticulosa T 221 15285 Acacia heteroneura var. jutsonii Y 142 3294 Acacia dentifera Y 222 15286 Acacia heteroneura var. petila Y 143 3295 Acacia depressa T Y Y 223 15287 Acacia heteroneura var. prolixa Y 144 3296 Acacia dermatophylla Y 224 18442 Acacia hopperiana Y 145 16019 Acacia diaphana P1 Y 225 3373 Acacia horridula P3 Y 146 3298 Acacia diaphyllodinea Y Y 226 3374 Acacia huegelii Y Y 147 3299 Acacia dictyoneura P4 Y 227 15604 Acacia hystrix subsp. hystrix Y 148 3301 Acacia dielsii Y 228 3376 Acacia idiomorpha 149 3303 Acacia dilatata Y Y 229 14118 Acacia imitans T Y 150 14071 Acacia diminuta P1 Y Y 230 14683 Acacia imparilis P4 Y Y 151 16119 Acacia dissona var.
Recommended publications
  • Acacia Heterochroa Subsp. Heterochroa Occurrence Map
    WATTLE Acacias of Australia Acacia heterochroa Maslin subsp. heterochroa Source: W orldW ideW attle ver. 2. Source: Australian Plant Image Index (dig.948). Published at: w w w .w orldw idew attle.com ANBG © M. Fagg, 2005 B.R. Maslin Buds. Mt Desmond, W A. Mary Hancock Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com B.R. Maslin Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com B.R. Maslin See illustration. Acacia heterochroa subsp. heterochroa occurrence map. O ccurrence map generated via Atlas of Living Australia (https://w w w .ala.org.au). Family Fabaceae Distribution Common in the Ravensthorpe Ra. from Mt Short SE to the vicinity of Elverdton Mine (c. 15 km SE of Ravensthorpe), with several outlying populations about 20–30 km E and 40 km N of Ravensthorpe. Description Phyllodes elliptic with some tending obovate or ovate, sometimes broadly elliptic or almost circular, 1.5–3.5 cm long, (0.8–) 1–2.5 (–2.9) cm wide, with apical point ±pungent. Peduncles 1–2.5 cm long, normally single in axils of reduced phyllodes on upper portion of branchlets, sometimes a few interspersed in short racemes 5-17 mm long; heads 8–12-flowered. Habitat Grows in a variety of habitats but commonly in gravelly sand, laterite or rocky clay or clayey sand, on ridgelines or moderately exposed gentle slopes, in tall dense to low open mallee scrub with a dense sclerophyllous understorey.
    [Show full text]
  • Inventory of Taxa for the Fitzgerald River National Park
    Flora Survey of the Coastal Catchments and Ranges of the Fitzgerald River National Park 2013 Damien Rathbone Department of Environment and Conservation, South Coast Region, 120 Albany Hwy, Albany, 6330. USE OF THIS REPORT Information used in this report may be copied or reproduced for study, research or educational purposed, subject to inclusion of acknowledgement of the source. DISCLAIMER The author has made every effort to ensure the accuracy of the information used. However, the author and participating bodies take no responsibiliy for how this informrion is used subsequently by other and accepts no liability for a third parties use or reliance upon this report. CITATION Rathbone, DA. (2013) Flora Survey of the Coastal Catchments and Ranges of the Fitzgerald River National Park. Unpublished report. Department of Environment and Conservation, Western Australia. ACKNOWLEDGEMENTS The author would like to thank many people that provided valable assistance and input into the project. Sarah Barrett, Anita Barnett, Karen Rusten, Deon Utber, Sarah Comer, Charlotte Mueller, Jason Peters, Roger Cunningham, Chris Rathbone, Carol Ebbett and Janet Newell provided assisstance with fieldwork. Carol Wilkins, Rachel Meissner, Juliet Wege, Barbara Rye, Mike Hislop, Cate Tauss, Rob Davis, Greg Keighery, Nathan McQuoid and Marco Rossetto assissted with plant identification. Coralie Hortin, Karin Baker and many other members of the Albany Wildflower society helped with vouchering of plant specimens. 2 Contents Abstract ..............................................................................................................................
    [Show full text]
  • Table of Contents Below) with Family Name Provided
    1 Australian Plants Society Plant Table Profiles – Sutherland Group (updated August 2021) Below is a progressive list of all cultivated plants from members’ gardens and Joseph Banks Native Plants Reserve that have made an appearance on the Plant Table at Sutherland Group meetings. Links to websites are provided for the plants so that further research can be done. Plants are grouped in the categories of: Trees and large shrubs (woody plants generally taller than 4 m) Medium to small shrubs (woody plants from 0.1 to 4 m) Ground covers or ground-dwelling (Grasses, orchids, herbaceous and soft-wooded plants, ferns etc), as well as epiphytes (eg: Platycerium) Vines and scramblers Plants are in alphabetical order by botanic names within plants categories (see table of contents below) with family name provided. Common names are included where there is a known common name for the plant: Table of Contents Trees and Large shrubs........................................................................................................................... 2 Medium to small shrubs ...................................................................................................................... 23 Groundcovers and other ground‐dwelling plants as well as epiphytes. ............................................ 64 Vines and Scramblers ........................................................................................................................... 86 Sutherland Group http://sutherland.austplants.com.au 2 Trees and Large shrubs Acacia decurrens
    [Show full text]
  • Este Trabalho Não Teria Sido Possível Sem O Contributo De Algumas Pessoas Para As Quais Uma Palavra De Agradecimento É Insufi
    AGRADECIMENTOS Este trabalho não teria sido possível sem o contributo de algumas pessoas para as quais uma palavra de agradecimento é insuficiente para aquilo que representaram nesta tão importante etapa. O meu mais sincero obrigado, Ao Nuno e à minha filha Constança, pelo apoio, compreensão e estímulo que sempre me deram. Aos meus pais, Gaspar e Fátima, por toda a força e apoio. Aos meus orientadores da Dissertação de Mestrado, Professor Doutor António Xavier Pereira Coutinho e Doutora Catarina Schreck Reis, a quem eu agradeço todo o empenho, paciência, disponibilidade, compreensão e dedicação que por mim revelaram ao longo destes meses. À Doutora Palmira Carvalho, do Museu Nacional de História Natural/Jardim Botânico da Universidade de Lisboa por todo o apoio prestado na identificação e reconhecimento dos líquenes recolhidos na mata. Ao Senhor Arménio de Matos, funcionário do Jardim Botânico da Universidade de Coimbra, por todas as vezes que me ajudou na identificação de alguns espécimes vegetais. Aos meus colegas e amigos, pela troca de ideias, pelas explicações, pela força, apoio logístico, etc. I ÍNDICE RESUMO V ABSTRACT VI I. INTRODUÇÃO 1.1. Enquadramento 1 1.2. O clima mediterrânico e a vegetação 1 1.3. Origens da vegetação portuguesa 3 1.4. Objetivos da tese 6 1.5. Estrutura da tese 7 II. A SANTA CASA DA MISERICÓRDIA DE ARGANIL E A MATA DO HOSPITAL 2.1. Breve perspetiva histórica 8 2.2. A Mata do Hospital 8 2.2.1. Localização, limites e vias de acesso 8 2.2.2. Fatores Edafo-Climáticos-Hidrológicos 9 2.2.3.
    [Show full text]
  • 10 Seed Release and Dispersal Mechanisms
    10 Seed Release and Dispersal Mechanisms For seedling recruitment to occur seeds need to be dispersed into an environment that promotes germination and seedling survival. Dispersal consists of two phases. Primary dispersal is defined as the initial transport of seeds or seed-bearing fruits (collectively seeds and fruits are called diaspores) to the ground or water body, or for aerial parasites, a host branch. Secondary dispersal relates to any subsequent movement to the seed’s final resting place. Primary dispersal may be active (e.g. seeds released explosively from the fruit, e.g. dehiscence (opening) of Hardenbergia pods), passive (e.g. seeds fall out when the capsules of Eucalyptus open), or require a vector to aid in seed removal (e.g. wind uplift of winged seeds of Hakea or winged fruits of Nuytsia; Amyema berries consumed by mistletoe birds). Secondary dispersal involves either a biotic (e.g. ants) or environmental (e.g. wind, water) vector, and it is usually a different mechanism than that involved in primary dispersal. While primary dispersal is usually only for a few metres, secondary dispersal may cover several kilometres, and sometimes thousands for tiny seeds. This chapter covers some of the dispersal mechanisms exhibited by the SouthWest flora following their release. Terminology used to describe seed dispersal mechanisms is provided in Table 10.1. Table 10.1: Seed dispersal terminology. Term Definition Anemochory Wind dispersed Chamaechory Dispersal by rolling along the ground (wind assisted) Zoochory Animal dispersed (general) Myrmecochory Ant dispersed Ornithochory Bird dispersed Mammalochory Mammal dispersed Hydrochory Water dispersed Barochory Unassisted (gravity causes seeds to drop to the ground) Autochory Dispersal assisted by the actions of the parent plant (e.g.
    [Show full text]
  • Origin and Age of Australian Chenopodiaceae
    ARTICLE IN PRESS Organisms, Diversity & Evolution 5 (2005) 59–80 www.elsevier.de/ode Origin and age of Australian Chenopodiaceae Gudrun Kadereita,Ã, DietrichGotzek b, Surrey Jacobsc, Helmut Freitagd aInstitut fu¨r Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universita¨t Mainz, D-55099 Mainz, Germany bDepartment of Genetics, University of Georgia, Athens, GA 30602, USA cRoyal Botanic Gardens, Sydney, Australia dArbeitsgruppe Systematik und Morphologie der Pflanzen, Universita¨t Kassel, D-34109 Kassel, Germany Received 20 May 2004; accepted 31 July 2004 Abstract We studied the age, origins, and possible routes of colonization of the Australian Chenopodiaceae. Using a previously published rbcL phylogeny of the Amaranthaceae–Chenopodiaceae alliance (Kadereit et al. 2003) and new ITS phylogenies of the Camphorosmeae and Salicornieae, we conclude that Australia has been reached in at least nine independent colonization events: four in the Chenopodioideae, two in the Salicornieae, and one each in the Camphorosmeae, Suaedeae, and Salsoleae. Where feasible, we used molecular clock estimates to date the ages of the respective lineages. The two oldest lineages both belong to the Chenopodioideae (Scleroblitum and Chenopodium sect. Orthosporum/Dysphania) and date to 42.2–26.0 and 16.1–9.9 Mya, respectively. Most lineages (Australian Camphorosmeae, the Halosarcia lineage in the Salicornieae, Sarcocornia, Chenopodium subg. Chenopodium/Rhagodia, and Atriplex) arrived in Australia during the late Miocene to Pliocene when aridification and increasing salinity changed the landscape of many parts of the continent. The Australian Camphorosmeae and Salicornieae diversified rapidly after their arrival. The molecular-clock results clearly reject the hypothesis of an autochthonous stock of Chenopodiaceae dating back to Gondwanan times.
    [Show full text]
  • Integrated Approach to Nitrogen Fixing Tree Germplasm Development
    INTEGRATED APPROACH TO NITROGEN FIXING TREE GERMPLASM DEVELOPMENT JAKE HALLIDAY' ABSTRACT - The performance of nitrogen fixing trees introduced to new environments depends on proper reconstitution of the symbiotic associatioi on which the trees rely for their nutrition. Thus selection strategies employed to identify adapted g.rmplasm for particular sites must provide for three-way selection of seed, rhiobia and mycorrhizae. Selected lines must then be multiplied before they can be deployed in varying types of development programs. Speciai problems are faced in accomplishing these ends with virtually all nitrogen fixing tr-es. Results and experiences are described which emphasize the importance of parallel selection of plant germplasm and Rhizobiurn strains. '.n the case of VA mycorrhizae, effective symbioses can occur without specific inoculation. Methods for selecting and multiplying trees and their microsymbionts on a large scale are described and discussed. Index terms: mycorrhiza technology, Rhizobium technology, nitrogen fixing trees, plant selection, seed technology. AqAO INTEGRADA PARA DESENVOLVER GERMOPLASMAS FIXADORES DE NITROGtNIO RESUMO - 0 comportamento de Arvores fixadoras denitrogdniodcpoisde serem introdu­ zidas em novas ambientes depende da reconstituiiSo plena das associaq6es simbi6ticas, as quais contribuem para a nutripo drs plantas. No entanto, as estrat~gias de selecio em­ pregadas para identificar germoplasmas adaptados para certos locais precisam levar em conta a seleno conjunta das sementes, do riz6bio e das micorrizas. As linhas selecionadao tim de multiplicar-se em grande escala arites de serem utilizadas em vdrios tipos de progra­ mas. Encontram-se grades problemas para alcancar estes fins em quase todoi os casos de Arvores fixadaras de nitrogdnio. Descrevem-se experidncias e resultados que enfatizam a importhncia da seleqio paralela de germoplasma de plantas e cepas de Rhizobium.
    [Show full text]
  • Structural Botany / Botánica Estructural
    Botanical Sciences 99(3): 588-598. 2021 Received: October 15, 2020, Accepted: December 1, 2020 DOI: 10.17129/botsci.2776 AcaciaOn linecornigera first: April 15, 2021 Structural Botany / Botánica Estructural FLORAL DEVELOPMENT OF THE MYRMECOPHYTIC ACACIA CORNIGERA (LEGUMINOSAE) DESARROLLO FLORAL DE LA MIRMECÓFITA ACACIA CORNIGERA (LEGUMINOSAE) SANDRA LUZ GÓMEZ-ACEVEDO1,2 1 Unidad de Morfología y Función. Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México. 2 Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, México. Author for correspondence: [email protected] Abstract Background: The Neotropical ant-acacias show morphological variations in their vegetative characteristics as a consequence of their relation- ship with ants. However, there is no information regarding whether floral organs have also undergone any modification that prevents resident ants from approaching the inflorescences in anthesis. Questions: Are the patterns of floral development affected by the relationship with ants? Is there any floral organ or structure involved in avoid- ing the presence of ants during the flowering period? At what stage of development do these modifications arise, if at all? Studied species: Acacia cornigera (L.) Willd. Study site: Santiago Pinotepa Nacional, Oaxaca and Los Tuxtlas, Veracruz. March and May 2015. Methods: Dissections of inflorescences in every developmental stage from two populations, were examined using scanning electron micros- copy. Results: The inception patterns of the calyx (irregular), corolla (simultaneous), androecium (acropetally in alternate sectors) and gynoecium (precocious) agree with previous reports for non-myrmecophyic species of the Acacia genus. In mature stages, the presence of stomata is char- acteristic of bracts and petals.
    [Show full text]
  • A Conserved Role for the NAM/Mir164 Developmental
    ORIGINAL RESEARCH published: 13 January 2016 doi: 10.3389/fpls.2015.01239 AConservedRoleforthe NAM/miR164 Developmental Module Reveals a Common Mechanism Underlying Carpel Margin Fusion in Monocarpous and Syncarpous Eurosids Aurélie C. M. Vialette-Guiraud1, Aurélie Chauvet1, Juliana Gutierrez-Mazariegos1, Alexis Eschstruth2, Pascal Ratet2 and Charles P. Scutt1* 1 Laboratoire de Reproduction et Développement des Plantes, UMR 5667, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique – Université de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France, 2 Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique – Université de Paris Sud, Orsay, France The majority of angiosperms are syncarpous- their gynoecium is composed of two or more fused carpels. In Arabidopsis thaliana, this fusion is regulated through the Edited by: balance of expression between CUP SHAPED COTYLEDON (CUC) genes, which are Rainer Melzer, University College Dublin, Ireland orthologs of the Petunia hybrida transcription factor NO APICAL MERISTEM (NAM), and Reviewed by: their post-transcriptional regulator miR164. Accordingly, the expression of a miR164- Stefan De Folter, insensitive form of A. thaliana CUC2 causes a radical breakdown of carpel fusion. Centro de Investigación y de Estudios Here, we investigate the role of the NAM/miR164 genetic module in carpel closure Avanzados del Instituto Politécnico Nacional, Mexico in monocarpous plants. We show that the disruption of this module in monocarpous Barbara Ambrose, flowers of A. thaliana aux1-22 mutants causes a failure of carpel closure, similar The New York Botanical Garden, USA to the failure of carpel fusion observed in the wild-type genetic background.
    [Show full text]
  • Potential Agroforestry Species and Regional Industries for Lower Rainfall
    PotentialPotential agroforestryagroforestry speciesspecies andand regionalregional industriesindustries forfor lowerlower rainfall rainfall southernsouthern AustraliaAustralia FLORASEARCHFLORASEARCH 2 2 Australia Australia Potential agroforestry species and regional industries for lower rainfall southern Australia FLORASEARCH 2 Australia A report for the RIRDC / L&WA / FWPA / MDBC Joint Venture Agroforestry Program Future Farm Industries CRC by Trevor J. Hobbs, Mike Bennell, Dan Huxtable, John Bartle, Craig Neumann, Nic George, Wayne O’Sullivan and David McKenna January 2009 © 20092008 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 479 7 ISSN 1440-6845 Please cite this report as: Hobbs TJ, Bennell M, Huxtable D, Bartle J, Neumann C, George N, O’Sullivan W and McKenna D (2008). Potential agroforestry species and regional industries for lower rainfall southern Australia: FloraSearch 2. Report to the Joint Venture Agroforestry Program (JVAP) and the Future Farm Industries CRC*. Published by RIRDC, Canberra Publication No. 07/082 Project No. UWA-83A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia
    [Show full text]
  • Red Hill Quarry Screening Plan
    Red Hill Quarry Assessment of Rehabilitation, Southern Face December 2013 Contents 1.0 Background 1 2.0 Methods Used 2 3.0 Soil Conditions 2 4.0 Natural Vegetation Communities 3 5.0 Rehabilitation 4 6.0 Results 5 7.0 Future Rehabilitation 14 8.0 Recommendations 16 Tables Table 1A – 1C Species Observed in the Rehabilitation 8 Table 2A – 2C Percentage Vegetation Cover 11 Table 3 Suitability of Species for Visual Management 20 Prepared by Lindsay Stephens BSc , MSc, MAGS, MEIANZ, FIQA LANDFORM RESEARCH Review of Rehabilitation Southern Faces – Hanson Red Hill Quarry – December 2013 ASSESSMENT OF REHABILITATION ON THE SOUTHERN FACES 1.0 Background The assessment of the rehabilitation on the batter faces at the southern end of the pit was reviewed in December 2013. That rehabilitation seeks to provide visual management of he completed and backfilled faces when viewed from outside the pit and from longer distance. 2.0 Methods used There are difficulties in assessing the vegetation on the batters and slopes. The slopes are at the angle of repose for the dumped materials such as overburden. As such the hardened surface can be slippery and present a hazard to walking on the slopes in a number of locations, but particularly where the slopes are high or are above drops of the face of the quarry. The slopes were not walked on, on safety grounds but the vegetation was assessed by walking along the upper or lower edge of the rehabilitation and reviewing it from the edges. As such the data provides a guide and is close to the true values but is not to the same accuracy as using measuring tapes.
    [Show full text]
  • Version 2 Targeted Threatened Flora Search Proposed Demonstration Trail Mount Clarence Albany
    Unit 5A 209 Chester Pass Road Albany WA 6330 9842 1575 [email protected] ABN 48 138 824 272 Job Ref: COA011 7th December 2016 Sandra Maciejewski Reserves Officer City of Albany PO Box 484 Albany WA 6331 Updated Report – Version 2 Targeted Threatened Flora Search Proposed Demonstration Trail Mount Clarence Albany Dear Sandra, On the 26th October 2016 Botanists/Ecologist, Karlene Bain and Bianca Theyer (Bio Diverse Solutions) undertook a targeted linear threatened flora search of 840m for a proposed mountain bike alignment at Mount Clarence, City of Albany (refer to Attachment A for the survey area). This survey was required as there was potential for threatened flora to be present within the subject area and there is proposed clearing of native vegetation as part of the proposed bike trail. The scope of work included: Undertake Targeted Flora Survey across subject site through linear sampling (10m buffer) in vegetation types present and mapping of boundaries of vegetation; Undertake any identification of any flora species, including herbarium identification if required; GPS and map any populations of Threatened Species (if applicable); and Prepare brief report on findings as per appropriate government agency legislation and guidelines. It is noted this survey was undertaken during the spring flowering period. The threatened flora search of the linear bike trail found that the Mount Clarence reserve is a diverse habitat with four vegetation types mapped, being: 1. Granite outcrop and fringing Taxandria shrub land; 2. Tall Gastrolobium shrub land; 3. Open Jarrah/ Marri woodland; and 4. Coastal heath. In November 2016 an occurrence of Stylidium falcatum (P1) was found (5 plants) on laterite soils associated with a cleared alignment for a powerline, on the edge of the jarrah/ marri ecotype.
    [Show full text]