New Bobtail Squid (Sepiolidae: Sepiolinae) from the Ryukyu Islands Revealed by Molecular and Morphological Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CEPHALOPODS 688 Cephalopods
click for previous page CEPHALOPODS 688 Cephalopods Introduction and GeneralINTRODUCTION Remarks AND GENERAL REMARKS by M.C. Dunning, M.D. Norman, and A.L. Reid iving cephalopods include nautiluses, bobtail and bottle squids, pygmy cuttlefishes, cuttlefishes, Lsquids, and octopuses. While they may not be as diverse a group as other molluscs or as the bony fishes in terms of number of species (about 600 cephalopod species described worldwide), they are very abundant and some reach large sizes. Hence they are of considerable ecological and commercial fisheries importance globally and in the Western Central Pacific. Remarks on MajorREMARKS Groups of CommercialON MAJOR Importance GROUPS OF COMMERCIAL IMPORTANCE Nautiluses (Family Nautilidae) Nautiluses are the only living cephalopods with an external shell throughout their life cycle. This shell is divided into chambers by a large number of septae and provides buoyancy to the animal. The animal is housed in the newest chamber. A muscular hood on the dorsal side helps close the aperture when the animal is withdrawn into the shell. Nautiluses have primitive eyes filled with seawater and without lenses. They have arms that are whip-like tentacles arranged in a double crown surrounding the mouth. Although they have no suckers on these arms, mucus associated with them is adherent. Nautiluses are restricted to deeper continental shelf and slope waters of the Indo-West Pacific and are caught by artisanal fishers using baited traps set on the bottom. The flesh is used for food and the shell for the souvenir trade. Specimens are also caught for live export for use in home aquaria and for research purposes. -
2020 Ocean Twilight Zone Annual Report
AUDACIOUS PROJECT ANNUAL REPORT Fiscal Year 2020 CONTENTS 3 Introduction 6 Accelerating Fundamental Knowledge 13 Advancing Technology 18 Informing Policy 20 Raising Public Awareness 24 Collaborating and Engaging Academia 26 Establishing Best Practices 28 Funding and Fundraising We have embarked on a bold new journey to explore one of our planet’s final frontiers—the ocean twilight zone (OTZ), a vast, remote part of the ocean teeming with life, which remains shrouded in mystery. Our goal is to rapidly explore, discover, and understand the twilight zone and to share our knowledge in ways that support sustainable use of marine resources for the health of our ocean and our planet. Cover: Larval tube anemone (Ceriantharia). Above: Black dragonfish (Idiacanthus). (Photos by Paul Caiger, © Woods Hole Oceanographic Institution) A shadowgraph image of a siphonophore taken by ISIIS. (© Woods Hole Oceanographic Institution) Introduction In the first two years of the Ocean Twilight Zone project, we formed a core, multi-disciplinary team of 12 scientists and developed an integrated work plan aligned with the proj- ect’s phase one theme: “initiate, accelerate, and engage.” It has created a firm foundation and infrastructure for future research; developed a growing arsenal of tools and techniques to understand the twilight zone; and dramatically improved awareness of this vast ecosystem’s importance within inter- national policy making groups. The team’s continued success is due in part to its powerful suite of sampling and analysis methods. It employs a wide range of different but complementary tech- niques, empowering the team to fill in gaps and shortcomings with higher confi- dence than any single method could produce. -
Cephalopoda: Sepiolidae)
Helgol Mar Res (2011) 65:43–49 DOI 10.1007/s10152-010-0199-y ORIGINAL ARTICLE Spawning strategy in Atlantic bobtail squid Sepiola atlantica (Cephalopoda: Sepiolidae) Marcelo Rodrigues · Manuel E. Garcí · Jesús S. Troncoso · Ángel Guerra Received: 20 November 2009 / Revised: 18 March 2010 / Accepted: 19 March 2010 / Published online: 6 April 2010 © Springer-Verlag and AWI 2010 Abstract This study aimed to determine the spawning Introduction strategy in the Atlantic bobtail squid Sepiola atlantica, in order to add new information to the knowledge of its repro- Cephalopods have highly variable and complex life history ductive strategy. A total of 12 females that spawned in traits related to reproduction (Hanlon and Messenger 1996). aquaria were examined. Characteristics of the reproductive Information on reproductive strategies may lead to a better traits and egg clutches were similar to those of other known understanding of the evolution of life histories, both repro- Sepiolidae. Clutch size varied from 31 up to 115 eggs. ductive strategies and life cycles being genetic adaptations Females of this species had incorporated up to 1.58 times of to optimize the use of ecological niches in direct competi- their body weight into laid eggs. The size of laid eggs tion with other species and in response to environmental showed a positive correlation with maternal body size, sup- conditions (Rocha et al. 2001). The patterns of ovulation porting the idea that female size is a determinant of egg and spawning are basic elements to characterize cephalo- size. Our data suggest that S. atlantica is an intermittent ter- pod reproductive patterns. -
7. Index of Scientific and Vernacular Names
Cephalopods of the World 249 7. INDEX OF SCIENTIFIC AND VERNACULAR NAMES Explanation of the System Italics : Valid scientific names (double entry by genera and species) Italics : Synonyms, misidentifications and subspecies (double entry by genera and species) ROMAN : Family names ROMAN : Scientific names of divisions, classes, subclasses, orders, suborders and subfamilies Roman : FAO names Roman : Local names 250 FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1 A B Acanthosepion pageorum .....................118 Babbunedda ................................184 Acanthosepion whitleyana ....................128 bandensis, Sepia ..........................72, 138 aculeata, Sepia ............................63–64 bartletti, Blandosepia ........................138 acuminata, Sepia..........................97,137 bartletti, Sepia ............................72,138 adami, Sepia ................................137 bartramii, Ommastrephes .......................18 adhaesa, Solitosepia plangon ..................109 bathyalis, Sepia ..............................138 affinis, Sepia ...............................130 Bathypolypus sponsalis........................191 affinis, Sepiola.......................158–159, 177 Bathyteuthis .................................. 3 African cuttlefish..............................73 baxteri, Blandosepia .........................138 Ajia-kouika .................................. 115 baxteri, Sepia.............................72,138 albatrossae, Euprymna ........................181 belauensis, Nautilus .....................51,53–54 -
Sepiola Trirostrata Voss, 1962 Fig
Cephalopods of the World 169 Sepiola trirostrata Voss, 1962 Fig. 245 Sepiola trirostrata Voss, 1962a, Proceedings of the Biological Society of Washington, 75: 172 [type locality: Philippines]. Frequent Synonyms: None. Misidentifications: None. FAO Names: En – Knobby bobtail squid; Fr – Sépiole bosselée; Sp – Sepiola nudosa. tentacle II left hectocotylus III left I right I left IV left male arm arrangement (after Voss, 1963) dorsal view of male Fig. 245 Sepiola trirostrata Diagnostic Features: Fins short, do not exceed length of mantle anteriorly or posteriorly. Arms III in both sexes stout and strongly curved inward, more obviously so in males. Suckers in ventral series of right arm I and arms II of males larger than dorsal suckers. Hectocotylus present, left dorsal arm modified: proximal end with 2 slender fleshy papillae (anteriormost papilla longest) and dorsolateral to these a blunt tongue-like lobe, all formed from enlarged and elongate sucker pedicels; 2 rows of suckers on arm proximal to fleshy pad; distal end of hectocotylized arm with sucker pedicels enlarged and tightly packed to form 2 double rows of columnar structures; suckers reduced with tiny, fleshy, slit-like openings. Club with 4 large suckers in transverse rows; suckers differ in size; dorsal marginal longitudinal series of suckers larger than those in ventral marginal series. Paired kidney-shaped light organs present inside mantle cavity on each side of ink sac. Colour: Mantle and head with many minute brown or black chromatophores; arms III deep pink, arms I to III each with single longitudinal row of large chromatophores, arms IV with double row of small chromatophores. -
The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks. -
Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo -
Nishiguchi 64.Indd
VIE ET MILIEU - LIFE AND ENVIRONMENT, 2014, 64: 23-34 A REVIEW OF THE PYGMY SQUID IDIOSEPIUS: PERspEctiVES EMERGING FROM AN “INCONSPICUOUS” CEPHALOPOD M. K. NISHIGUCHI 1*, J. NABHITABHATA 2, N. A. MOLTSCHANIWSKYJ 3, S. V. BOLETZKY 4 1 New Mexico State University, Department of Biology, Box 30001, MSC 3AF, Las Cruces, NM 88003-8001, USA 2 Centre for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90112, Thailand 3 The University of Newcastle, School of Environmental and Life Sciences, Ourimbah NSW, 2258, Australia 4 CNRS, Observatoire Océanologique de Banyuls, Av du Fontaulé, 66650 Banyuls-sur-Mer, France * Corresponding author: [email protected] IDIOSEPIUS ABSTRACT. – The monogeneric family Idiosepiidae (Mollusca: Cephalopoda: Idiosepiida) CEPHALOPOD LIFE HISTORY contains the smallest living representatives of squid. Sexual dimorphism, presence of an adhe- EVOLUTION sive organ on the dorsal mantle integument, lack of fully developed tentacles on hatching, and SQUID ability to produce large quantities of eggs relative to their body size during reproduction provide MOLLUSC unique characteristics not commonly found in other cephalopods. These “mini-maximalists” have a life history strategy of rapid growth and high fecundity, and species of Idiosepius have been used as a model to examine embryonic and post-embryonic development, neurobiology, phylogeny, physiology, and life history strategies. Their small size, rapid generation time, soli- tary nature, and ease of producing eggs/hatchlings in captivity has provided a solid foundation for better understanding the evolution of an organism that has pushed the boundaries of a multi- tude of life history characteristics not observed in other metazoans. -
Egg Masses of Sepietta Oweniana (Cephalopoda: Sepiolidae) Collected in the Catalan Sea *
sm69n2205 22/5/05 19:26 Página 205 SCI. MAR., 69 (2): 205-209 SCIENTIA MARINA 2005 Egg masses of Sepietta oweniana (Cephalopoda: Sepiolidae) collected in the Catalan Sea * ADRIANNE DEICKERT1 and GIAMBATTISTA BELLO2 1Fensengrundweg 13, D-69198 Schriesheim, Germany. E-mail: [email protected] 2Arion, C.P. 61, 70042 Mola di Bari, Italy. E-mail: [email protected] SUMMARY: Examination of 89 egg masses of Sepietta oweniana collected in the Catalan Sea (western Mediterranean) showed that 15.8% of them were composed of eggs at different developmental stages laid in more than one spawning bout; 6.7% of them were polyspecific and contained eggs of other sepioline species in addition to S. oweniana. The egg mass size, or number of eggs per egg mass, does not necessarily correspond to the spawning batch size, i.e. the number of eggs laid by a female in one spawning event. Furthermore the egg mass size appears to vary depending on the season. Keywords: Sepietta oweniana, egg mass, reproduction, batch fecundity, Mediterranean. RESUMEN: PUESTAS DE SEPIETTA OWENIANA (CEPHALOPODA: SEPIOLIDAE) COLECTADAS EN EL MAR CATALAN. – El examen de 89 puestas de Sepietta oweniana recogidas en el mar Catalán (Mediterráneo occidental) mostraron que el 15.8% estaba com- puesto de huevos en diferentes estadios de madurez, procedentes de mas de un episodio de desove; el 6.7% era poliespeci- fico y contenía huevos de otra especie de sepiolido además de los de S. oweniana. El tamaño de las puestas, o número de huevos por puesta, no es una mediada apropiada del tamaño de un desove, es decir, el número de huevos desovados por una hembra en un episodio de puesta. -
Ecological Diversification of Vibrio Fischeri Serially Passaged for 500 Generations in Novel Squid Host Euprymna Tasmanica
Microb Ecol DOI 10.1007/s00248-013-0356-3 HOST MICROBE INTERACTIONS Ecological Diversification of Vibrio fischeri Serially Passaged for 500 Generations in Novel Squid Host Euprymna tasmanica William Soto & Ferdinand M. Rivera & Michele K. Nishiguchi Received: 4 June 2013 /Accepted: 16 December 2013 # Springer Science+Business Media New York 2014 Abstract Vibrio fischeri isolated from Euprymna scolopes V. fischeri ecotypes, and complex changes in biolumines- (Cephalopoda: Sepiolidae) was used to create 24 lines that cence. Our data demonstrate that numerous alternate fitness were serially passaged through the non-native host Euprymna optima or peaks are available to V. fi sc he ri in host adaptive tasmanica for 500 generations. These derived lines were char- landscapes, where novel host squids serve as habitat islands. acterized for biofilm formation, swarming motility, carbon Thus, V. fischeri founder flushes occur during the initiation of source utilization, and in vitro bioluminescence. Phenotypic light organ colonization that ultimately trigger founder effect assays were compared between “ES” (E. scolopes)and“ET” diversification. (E. tasmanica) V. fischeri wild isolates to determine if conver- gent evolution was apparent between E. tasmanica evolved lines and ET V. fischeri. Ecological diversification was ob- Introduction served in utilization of most carbon sources examined. Con- vergent evolution was evident in motility, biofilm formation, The Sepiolid Squid–Vibrio Mutualism and select carbon sources displaying hyperpolymorphic usage in V. fischeri. Convergence in bioluminescence (a 2.5-fold Sepiolid squids in the genera Sepiola and Euprymna form light increase in brightness) was collectively evident in the derived organ mutualisms with marine bioluminescent bacteria from lines relative to the ancestor. -
Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries
Advances in Cephalopod Science:Biology, Ecology, Cultivation and Fisheries,Vol 67 (2014) Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Marine Biology, Vol. 67 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Paul G.K. Rodhouse, Graham J. Pierce, Owen C. Nichols, Warwick H.H. Sauer, Alexander I. Arkhipkin, Vladimir V. Laptikhovsky, Marek R. Lipiński, Jorge E. Ramos, Michaël Gras, Hideaki Kidokoro, Kazuhiro Sadayasu, João Pereira, Evgenia Lefkaditou, Cristina Pita, Maria Gasalla, Manuel Haimovici, Mitsuo Sakai and Nicola Downey. Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries. In Erica A.G. Vidal, editor: Advances in Marine Biology, Vol. 67, Oxford: United Kingdom, 2014, pp. 99-233. ISBN: 978-0-12-800287-2 © Copyright 2014 Elsevier Ltd. Academic Press Advances in CephalopodAuthor's Science:Biology, personal Ecology, copy Cultivation and Fisheries,Vol 67 (2014) CHAPTER TWO Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries Paul G.K. -
Counterillumination in the Hawaiian Bobtail Squid, Euprymna Scolopes Berry (Mollusca: Cephalopoda)
Marine Biology (2004) 144: 1151–1155 DOI 10.1007/s00227-003-1285-3 RESEARCH ARTICLE B. W. Jones Æ M. K. Nishiguchi Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda) Received: 27 May 2003 / Accepted: 24 November 2003 / Published online: 10 January 2004 Ó Springer-Verlag 2004 Abstract The mutualism between the Hawaiian bobtail 1999), predator evasion (Hartline et al. 1999), and squid Euprymna scolopes and the luminescent symbiont counterillumination, an antipredatory behavior com- Vibrio fischeri has been used extensively as a model mon to many midwater cephalopods, decapod crusta- system for studies ranging from co-speciation and bio- ceans, and fishes (Young 1977; Harper and Case 1999; geography to gene regulation and the evolution of Lindsay et al. 1999). Animals exhibiting counterillumi- pathogenesis. In this association, the luminescent bac- nation reduce their silhouette by producing biolumi- terium V. fischeri is housed in a complex light organ nescence in an attempt to match the intensity and within the mantle cavity of E. scolopes. Prior hypotheses wavelength of down-welling light (Young and Roper have assumed that sepiolid squids in general utilize the 1977), providing a mechanism that allows them to evade bioluminescence produced by their V. fischeri symbionts predators by camouflage. The light produced can either for counterillumination, a behavior that helps squid be autogenic (luminescence produced intrinsically by the camouflage themselves by matching down-welling animal itself), or bacteriogenic (produced by bacterial moonlight via silhouette reduction. This assumption, symbionts). based solely on the morphology of the squid light organ, Establishing a morphological design for efficient has never been empirically tested for Euprymna in the counterillumination has resulted in the evolution of a laboratory.