Conceptual Questions in High-Energy Physics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supergravity and Its Legacy Prelude and the Play
Supergravity and its Legacy Prelude and the Play Sergio FERRARA (CERN – LNF INFN) Celebrating Supegravity at 40 CERN, June 24 2016 S. Ferrara - CERN, 2016 1 Supergravity as carved on the Iconic Wall at the «Simons Center for Geometry and Physics», Stony Brook S. Ferrara - CERN, 2016 2 Prelude S. Ferrara - CERN, 2016 3 In the early 1970s I was a staff member at the Frascati National Laboratories of CNEN (then the National Nuclear Energy Agency), and with my colleagues Aurelio Grillo and Giorgio Parisi we were investigating, under the leadership of Raoul Gatto (later Professor at the University of Geneva) the consequences of the application of “Conformal Invariance” to Quantum Field Theory (QFT), stimulated by the ongoing Experiments at SLAC where an unexpected Bjorken Scaling was observed in inclusive electron- proton Cross sections, which was suggesting a larger space-time symmetry in processes dominated by short distance physics. In parallel with Alexander Polyakov, at the time in the Soviet Union, we formulated in those days Conformal invariant Operator Product Expansions (OPE) and proposed the “Conformal Bootstrap” as a non-perturbative approach to QFT. S. Ferrara - CERN, 2016 4 Conformal Invariance, OPEs and Conformal Bootstrap has become again a fashionable subject in recent times, because of the introduction of efficient new methods to solve the “Bootstrap Equations” (Riccardo Rattazzi, Slava Rychkov, Erik Tonni, Alessandro Vichi), and mostly because of their role in the AdS/CFT correspondence. The latter, pioneered by Juan Maldacena, Edward Witten, Steve Gubser, Igor Klebanov and Polyakov, can be regarded, to some extent, as one of the great legacies of higher dimensional Supergravity. -
PHYSICS BEYOND the STANDARD MODEL Jean Iliopoulos
PHYSICS BEYOND THE STANDARD MODEL Jean Iliopoulos To cite this version: Jean Iliopoulos. PHYSICS BEYOND THE STANDARD MODEL. 2008. hal-00308451v1 HAL Id: hal-00308451 https://hal.archives-ouvertes.fr/hal-00308451v1 Preprint submitted on 30 Jul 2008 (v1), last revised 13 Aug 2008 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LPTENS-08/45 PHYSICS BEYOND THE STANDARD MODEL JOHN ILIOPOULOS Laboratoire de Physique Th´eorique de L’Ecole Normale Sup´erieure 75231 Paris Cedex 05, France We review our expectations in the last year before the LHC commissioning. Lectures presented at the 2007 European School of High Energy Physics Trest, August 2007 Contents 1 The standard model 4 2 Waiting for the L.H.C. 6 2.1 Animpressiveglobalfit . .. .. .. .. .. 6 2.2 BoundsontheHiggsmass. 7 2.3 NewPhysics............................ 13 3 Grand Unification 17 3.1 The simplest G.U.T.: SU(5)................... 18 3.2 DynamicsofG.U.T.s. 23 3.2.1 Tree-level SU(5)predictions. 23 3.2.2 Higher order effects . 25 3.3 OtherGrandUnifiedTheories. 28 3.3.1 A rank 5 G.U.T.: SO(10) ................ 29 3.3.2 Othermodels ...................... -
BEYOND the STANDARD MODEL Jean Iliopoulos Laboratoire De Physique Theorique´ De L’Ecole Normale Superieure,´ 75231 Paris Cedex 05, France
BEYOND THE STANDARD MODEL Jean Iliopoulos Laboratoire de Physique Theorique´ de L’Ecole Normale Superieure,´ 75231 Paris Cedex 05, France 1. THE STANDARD MODEL One of the most remarkable achievements of modern theoretical physics has been the construction of the Standard Model for weak, electromagnetic and strong interactions. It is a gauge theory based on the group U(1) SU(2) SU(3) which is spontaneously broken to U(1) SU(3). This relatively simple model epitomizes⊗ our⊗present knowledge of elementary particle interactions.⊗ It is analyzed in detail in the lectures of Prof. Quigg. Here I present only a short summary. The model contains three types of fields: [i] The gauge fields. There are twelve spin-one boson fields which can be classified into the (1; 8) ⊕ (3; 1) (1; 1) representation of SU(2) SU(3). The first eight are the gluons which mediate ⊕ ⊗ strong interactions between quarks and the last four are (W +; W −; Z0 and γ), the vector bosons of the electroweak theory. [ii] Matter fields. The basic unit is the “family” consisting exclusively of spinor fields. Until last year we believed that the neutrinos were massless and this allowed us to use only fifteen two-component complex fields, which, under SU(2) SU(3), form the representation (2; 1) (1; 1) (2; 3) ⊗ ⊕ ⊕ ⊕ (1; 3) (1; 3). We can⊕ still fit most experiments with only these fields, but there may be need, suggested by only one experiment, to introduce new degrees of freedom, possibly a right-handed neutrino. The prototype is the electron family: νe ui − ; νeR (??); eR; ; uiR ; diR e di !L !L 9 i = 1; 2; 3 : (1) > => (2; 1) (1; 1) (1; 1) (2; 3) (1; 3) (1; 3) > For the muon family νe νµ; e µ; ui ci and di si and, similarly;> , for the tau family, ! ! ! ! νe ντ ; e τ; ui ti and di bi. -
Quantum Chaos in the Quantum Fluid
Quantum chaos in the quantum fluid Raju Venugopalan Brookhaven Na<onal Laboratory Joe Fest, McGill, Montreal, June 12-14, 2012 Smoking Joe and Holy Indian Lone ranger: I think we are surrounded, Kemo sabe Tonto: What do you mean “we” $@!# Smoking Joe and Holy Indian Lone ranger: I think we are surrounded, Kemo sabe Tonto: Indeed, Lone Ranger – no worries – they are all here to praise you on your 60th ! Talk Mo<va<on: the unreasonable effec<veness of hydrodynamics in heavy ion collisions to paraphrase E. P. Wigner An ab ini<o weak coupling approach: Classical coherence of wee partons in nuclear wavefunc<ons Quantum fluctua<ons: Factoriza<on, Evolu<on, Decoherence Isotropizaon, Bose-Einstein Condensaon, Thermalizaon ? 4 Ab inio approach to heavy ion collisions RV, ICHEP review talk, 1012.4699 Color Glass Inial Glasma sQGP - Hadron Condensates Singularity perfect fluid! Gas t τ0 ? Compute properes of relevant degrees of freedom of wave fns. in a systema<c framework (as opposed to a “model”)? How is maer formed ? What are its non-equilibrium properes & lifeme? Can one “prove” thermalizaon or is the system “parally” thermal ? When is hydrodynamics applicable? How much jet quenching occurs in the Glasma? Are there novel topological effects (sphaleron transions?) Ab inio approach to heavy ion collisions RV, ICHEP review talk, 1012.4699 Color Glass Inial Glasma sQGP - Hadron Condensates Singularity perfect fluid! Gas t τ0 ? Compute properes of relevant degrees of freedom of wave fns. in a systema<c framework (as opposed to a “model”)? How -
A View on the European Strategy for Particle Physics
A VieW ON THE EurOPEAN StrATEGY FOR Particle Physics Contact Person: Michel SpirO ([email protected]) Worldwide, THE PARTICLE PHYSICS AND ACCELERATOR COMMUNITY IS AbstrACT VERY ACTIVELY WORKING TOWARDS THE NEXT MAJOR FACILITY. Based ON THE DESIGNS AND PERFORMANCE OF LINEAR AND CIRCULAR E+E* COLLIDERS IN THE 90 (Z) TO 365 (aboVE top-antitop) GeV CENTRe-of-mass ENERGY Range, WE CONSIDER A CIRCULAR COLLIDER AT CERN TO BE THE MOST ATTRACTIVE option. IT IS ALSO AN INVESTMENT IN THE FUTURE FOR A POSSIBLE LATER STAGE AS A 100 TeV HADRON collider. 1 OF5 A VieW ON THE EurOPEAN StrATEGY FOR Particle Physics The COMMUNITY OF PARTICLE PHYSICISTS IS PREPARING THE NEXT EurOPEAN Strat- EGY. IT WILL CONSIDER RECENT advances, SUCH AS THE IMPRESSIVE SUCCESS OF THE StandarD Model AND THE Higgs BOSON DISCOVERY, BUT ALSO ADDRESS funda- MENTAL QUESTIONS THAT REMAIN open. Exploring THE “UNIQUENESS” OF THE Higgs BOSON AND PLACING THE EMERGING UNDERSTANDING IN A LARGER CONTEXT (and NEW physics?) WILL BE ONE KEY ITEM ON OUR to-do list. While THE ONGOING AND PLANNED LHC EXPLOITATION WILL PROVIDE CONSIDERABLE PROGRess, IT IS GENERALLY AGREED THAT A NEW FACILITY, SOMETIMES DUBBED A “Higgs Factory”, WILL BE REQUIRED FOR THE AMBITIOUS PROGRAMME OF PRECISION MEASURements. CurrENTLY, THIS IS OBVIOUSLY THE DOMAIN OF AN E+E* collider. Linear OR Circular: THAT IS THE question. The OffERS THE POSSIBILITY TO Extend, IN principle, THE Linear Collider AVAILABLE COLLISION ENERGY AS PHYSICS indicates, AND ELECTRIC POWER AND fund- ING ALLOws. Longitudinal BEAM POLARIZATION CAN BE Exploited. IT HAS A disadvantage: ONLY ONE EXPERIMENT WILL TAKE DATA AT A GIVEN time. -
The Heritage of Supergravity Personal Prelude and the Play
The Heritage of Supergravity Personal Prelude and The Play Sergio FERRARA (CERN – LNF INFN) FayetFest, December 8-9 2016 Ecole Normale Superieure, Paris I happened to meet Pierre Fayet at a CNRS meeting in Marseille, in 1974, where one of the first Conferences covering the subject of Supersymmetry took place (I also met Raymond Stora on that occasion). In those days Pierre had just completed with his mentor Jean Iliopoulos the famous paper on the “Fayet-Ioliopoulos mechanism”, which was the first consistent model with spontaneously broken Supersymmetry. During the subsequent couple of years, when I was at the Ecole Normal Superieure as a CNRS visiting scientist, Pierre obtained several ground-breaking results, including a first version of the MSSM. S. Ferrara - FayetFest, 2016 2 The model spelled out clearly the role of particle superpartners, R- symmetry and the need for two Higgs doublets. He also worked extensively on N=2 Supersymmetry, on the supersymmetric Higgs mechanism in super Yang-Mills theories, and studied the role of central charges. We published together a “Physics Reports” on Supersymmetry (received in 1976 – published in 1977). This work also addressed Supergravity, which was just at its beginning. Supergravity will be the focus of the remainder of this talk, in view of its 40-th Anniversary that the Organizers decided to celebrate within this FayetFest. S. Ferrara - FayetFest, 2016 3 S. Ferrara - FayetFest, 2016 4 Supergravity as carved on the Iconic Wall at the «Simons Center for Geometry and Physics», Stony Brook S. Ferrara - FayetFest, 2016 5 Personal Prelude Toward the birth of Supergravity S. -
Quarks and Quantum Statistics
Quarks and quantum statistics O.W. Greenberg∗† Center for Fundamental Physics, Department of Physics University of Maryland, College Park, MD 20742-4111, USA and Helsinki Institute for Physics P.O.Box 64 (Gustaf Hällströmin katu 2) FIN-00014 University of Helsinki, Finland E-mail: [email protected] I write about Héctor, his contributions to the early work in the quark model, and a general discus- sion of quantum statistics arXiv:1102.0764v1 [physics.hist-ph] 3 Feb 2011 Quarks, Strings and the Cosmos - Héctor Rubinstein Memorial Symposium August 09-11, 2010 AlbaNova )Stockholm) Sweden ∗Speaker. †University of Maryland Preprint PP-11-001 c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Quarks and quantum statistics O.W. Greenberg 1. Introduction Héctor and I first met at a summer workshop in Bebek, near Istanbul, Turkey. The workshop photograph is at the end of this paper. At first sight, Héctor is nowhere to be seen. Actually, he is there, but he is turned around talking or arguing with somebody behind him. That is Héctor, too full of energy to pose passively for a photo. The tallest person above the left of the last row is Shelly Glashow, to his left is Nick Bur- goyne. One row down, from the left, are Arthur Jaffe, Joe Dothan, Sidney Coleman, Gian-Fausto Dell’Antonio, Bruria Kaufman, and Eduardo Caianiello, among others. On the left of the third row down is H.R. Mani, and on the right of that row, there is Héctor, turned facing backwards as just mentioned. -
Arxiv:0801.2562V2 [Hep-Ph]
NATURALLY SPEAKING: The Naturalness Criterion and Physics at the LHC Gian Francesco GIUDICE CERN, Theoretical Physics Division Geneva, Switzerland 1 Naturalness in Scientific Thought Everything is natural: if it weren’t, it wouldn’t be. Mary Catherine Bateson [1] Almost every branch of science has its own version of the “naturalness criterion”. In environmental sciences, it refers to the degree to which an area is pristine, free from human influence, and characterized by native species [2]. In mathematics, its meaning is associated with the intuitiveness of certain fundamental concepts, viewed as an intrinsic part of our thinking [3]. One can find the use of naturalness criterions in computer science (as a measure of adaptability), in agriculture (as an acceptable level of product manipulation), in linguistics (as translation quality assessment of sentences that do not reflect the natural and idiomatic forms of the receptor language). But certainly nowhere else but in particle physics has the mutable concept of naturalness taken a form which has become so influential in the development of the field. The role of naturalness in the sense of “æsthetic beauty” is a powerful guiding principle for physicists as they try to construct new theories. This may appear surprising since the final product is often a mathematically sophisticated theory based on deep fundamental principles, arXiv:0801.2562v2 [hep-ph] 30 Mar 2008 and one could believe that subjective æsthetic arguments have no place in it. Nevertheless, this is not true and often theoretical physicists formulate their theories inspired by criteria of simplicity and beauty, i.e. by what Nelson [4] defines as “structural naturalness”. -
The Co-Discovery of Conservation Laws and Particle Families
The Co-Discovery of Conservation Laws and Particle Families 1, Oliver Schulte ∗ Department of Philosophy and School of Computing Science, Simon Fraser University, Burnaby, B.C., V5A 1S6, Canada Abstract This paper presents an epistemological analysis of the search for new conservation laws in particle physics. Discovering conservation laws has posed various challenges concerning the underdetermination of theory by evidence, to which physicists have found various responses. These responses include an appeal to a plenitude principle, a maxim for inductive inference, looking for a parsimonious system of generaliza- tions, and unifying particle ontology and particle dynamics. The connection between conservation laws and ontological categories is a major theme in my analysis: While there are infinitely many conservation law theories that are empirically equivalent to the laws physicists adopted for the fundamental Standard Model of particle physics, I show that the standard family laws are the only ones that determine and are de- termined by the simplest division of particles into families. Key words: Conservation Laws, Underdetermination, Plenitude, Simplicity, Natural Kinds, Induction 1 Introduction: Conservation Laws and Underdetermination The underdetermination of belief by evidence is a central topic in epistemology, as it is the point of departure for skeptical arguments against the possibility of knowledge. One aim of the philosophy of science is to study underdetermina- tion as it arises in scientific practice. Such case studies refine our understanding ∗ Corresponding author. Email address: [email protected] (Oliver Schulte ). 1 This research was supported by a research grants from the Natural Sciences and Engineering Research Council of Canada and the Social Sciences and Humanities Research Council of Canada. -
Introduction to the STANDARD MODEL of the Electro-Weak Interactions Jean Iliopoulos
Introduction to the STANDARD MODEL of the Electro-Weak Interactions Jean Iliopoulos To cite this version: Jean Iliopoulos. Introduction to the STANDARD MODEL of the Electro-Weak Interactions. 2012 CERN Summer School of Particle Physics, Jun 2012, Angers, France. hal-00827554 HAL Id: hal-00827554 https://hal.archives-ouvertes.fr/hal-00827554 Submitted on 29 May 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LPTENS-13/14 Introduction to the STANDARD MODEL of the Electro-Weak Interactions JOHN ILIOPOULOS Laboratoire de Physique Th´eorique de L’Ecole Normale Sup´erieure 75231 Paris Cedex 05, France Lectures given at the 2012 CERN Summer School June 2012, Angers, France 1 Introduction These are the notes of a set of four lectures which I gave at the 2012 CERN Summer School of Particle Physics. They were supposed to serve as intro- ductory material to more specialised lectures. The students were mainly young graduate students in Experimental High Energy Physics. They were supposed to be familiar with the phenomenology of Particle Physics and to have a working knowledge of Quantum Field Theory and the techniques of Feynman diagrams. -
Non Participation in an « Initiatives D’Excellence » Project
APPEL A PROJETS LABEX/ CALL FOR PROPOSALS ENS-ICFP 2010 DOCUMENT SCIENTIFIQUE B / SCIENTIFIC SUBMISSION FORM B Acronyme du projet/ Acronym of the ENS-ICFP project Titre du projet en Centre international ENS de physique fondamentale et de français ses interfaces ENS - International Centre for Fundamental Physics and Project title in English its interfaces Nom / Name : Krauth, Werner Coordinateur du Etablissement / Institution : Ecole normale supérieure projet/Coordinator of Laboratoire / Laboratory : Département de physique the project Numéro d’unité/Unit number : FR 684 Aide demandée/ 9,755,142 Euros Requested funding □ Santé, bien-être, alimentation et biotechnologies / Health, well- being, nutrition and biotechnologies □ Urgence environnementale et écotechnologies / Environnemental Champs disciplinaires urgency, ecotechnologies (SNRI) / Disciplinary □ Information, communication et nanotechnologies / Information, field communication and nantechnologies □ Sciences humaines et sociales / Social sciences X Autre champ disciplinaire / Other disciplinary scope Domaines scientifiques/ Physics, Nano, Astro scientific areas Participation à un ou plusieurs projet(s) « Initiatives d’excellence » (IDEX) / X oui □ non Participation in an « Initiatives d’excellence » project 1/108 APPEL A PROJETS LABEX/ CALL FOR PROPOSALS ENS-ICFP 2010 DOCUMENT SCIENTIFIQUE B / SCIENTIFIC SUBMISSION FORM B Affiliation(s) du partenaire coordinateur de projet/ Organisation of the coordinating partner Laboratoire(s)/Etablissement(s) Numéro(s) d’unité/ Tutelle(s) /Research -
Phenomenology and Astrophysics of Gravitationally-Bound Condensates of Axion-Like Particles
Phenomenology and Astrophysics of Gravitationally-Bound Condensates of Axion-Like Particles Joshua Armstrong Eby B.S. Physics, Indiana University South Bend (2011) A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics of the College of Arts and Sciences Committee Chair: L.C.R. Wijewardhana, Ph.D Date: 4/24/2017 ii iii Abstract Light, spin-0 particles are ubiquitous in theories of physics beyond the Standard Model, and many of these make good candidates for the identity of dark matter. One very well-motivated candidate of this type is the axion. Due to their small mass and adherence to Bose statis- tics, axions can coalesce into heavy, gravitationally-bound condensates known as boson stars, also known as axion stars (in particular). In this work, we outline our recent progress in attempts to determine the properties of axion stars. We begin with a brief overview of the Standard Model, axions, and bosonic condensates in general. Then, in the context of axion stars, we will present our recent work, which includes: numerical estimates of the macroscopic properties (mass, radius, and particle number) of gravitationally stable axion stars; a cal- culation of their decay lifetime through number-changing interactions; an analysis of the gravitational collapse process for very heavy states; and an investigation of the implications of axion stars as dark matter. The basic conclusions of our work are that weakly-bound axion stars are only stable up to some calculable maximum mass, whereas states with larger masses collapse to a small radius, but do not form black holes.