Ultrafast Spin Dynamics in Ferromagnetic Thin Films Jerome Hurst

Total Page:16

File Type:pdf, Size:1020Kb

Ultrafast Spin Dynamics in Ferromagnetic Thin Films Jerome Hurst Ultrafast spin dynamics in ferromagnetic thin films Jerome Hurst To cite this version: Jerome Hurst. Ultrafast spin dynamics in ferromagnetic thin films. Condensed Matter [cond-mat]. Université de Strasbourg, 2017. English. NNT : 2017STRAE004. tel-01611649 HAL Id: tel-01611649 https://tel.archives-ouvertes.fr/tel-01611649 Submitted on 6 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ! " " #$%&$' " &$()&* # +,-. /0 1%&2 / + $ -+ )3& " 45!6&% " &$()&* 4&$7$ 8! "!$3 ! 7&&)$*!3 ! 74 /0 "&*% 8$& 9 #: /; $4 !)! !"# #: # < )6$!! !"# 9 #: & #: &!$&" $ % "&'!( ## 1= 9 #: # 1 /$" ! "&( '!)' #: /> 3$&") !"# iii R´esum´een Fran¸caisde la th`ese Dans cette th ese,` on s’int eresse´ a` la mod elisation´ th eorique´ et a` la simulation num erique´ de la dynamique de charges et de spins dans des nano-structures m etalliques.´ Ces dernieres` ann ees,´ la physique des nano-structures m etalliques´ a connu un int er´ etˆ scientifique croissant, aussi bien d’un point de la physique fondamentale que d’un point de vue des applications technologiques. Des nano-structures m etalliques´ sont utilisees´ aujourd’hui dans le domaine de la nano-photonique, de la chime et m emeˆ de la biologie et de la m edecine.´ Il est donc essentiel d’avoir des mod eles` th eoriques´ nous permettant de d ecrire´ correctement de tels objets. Cette th ese` comporte deux etudes´ distinctes. La premi ere,` constitu ee´ des chapitres 1 a` 4, porte sur la dynamique ultra-rapide de spins dans des films ferromagn etiques´ de Nickel. Ces derniers sont en interaction avec un champ laser intense sur des echelles´ de temps tr es` courtes de l’ordre de la dizaine - centaine de femtosecondes. De telles etudes´ ont d ej´ a` et´ e´ realis´ ees´ auparavant sur des films de Sodium, mais en consid erant´ uniquement les interactions electrostatiques.´ Dans ces travaux, on souhaiterait egalement´ inclure les aspects magnetiques´ en tenant compte du spin et des couplages qu’il induit sur la dynamique electronique.´ Un exemple bien connu d’un tel couplage est le couplage spin-orbite. La seconde partie, constitu ee´ du chapitre 5, porte sur sur la dynamique de charge (sans spin) d’ electrons´ confin es´ dans des nano-particules d’Or ou bien encore par des potentiels anisotropes. On s’int eresse´ particuli erement` a` la r eponse´ dipolaire induite par une excitation laser auto-r esonante.´ Chapitre 1 Le premier chapitre de ma th ese` est constitu e´ de cinq parties et constitue une intro- duction aux differents´ mod eles` physiques permettant d’ etudier´ la dynamique quan- tique non-lineaire´ d’un syst eme` d’ electrons´ en interaction. Ce chapitre ne concerne que la dynamique de charge, le spin est volontairement mis de cot e´ et sera trait e´ dans le second chapitre. Dans la premi ere` partie, je d ecris´ les diff erentes´ grandeurs physiques qui car- acterisent´ les electrons´ de conduction dans les m etaux.´ Ces derni eres` sont: La 2 fr equence´ plasma ωp = e n/mǫ 0 dont l’inverse correspond au temps typique de mouvement des electrons,´ p la densit e´ de charge n qui est directement reli e´ au rayon de Wigner-Seitz rs et la longueur d’onde de DeBroglie λDB = ~/p qui est reli e´ a` l’extension spatiale des fonctions d’ondes electroniques.´ Dans la table 1, on donne iv rs 0.16 nm 28 3 n 5.9 10 m− × T 300 K 1 ωp− 0.5 fs TF 64000 K v 1.4 10 6 m/s F × λF 0.11 nm γq 5.5 TABLE 1: Param etres` physiques pour les electrons´ de conduction de l’Or (T = 300 K ) une application numerique´ pour les electrons´ de conduction de l’Or. La conclusion principale de cette partie est que les electrons´ dans les m etaux´ doivent etreˆ trait e´ comme un plasma quantique confin e´ par le potentiel des ions. Les ions n’ont pas de dynamique orbitale car on travaille sur des echelles´ de temps de l’ordre de la fem- 15 toseconde (10 − s) alors que le temps typique de mouvement des ions est de l’ordre 12 de la picoseconde ( 10 − s). Dans la seconde partie du chapitre, je pr esente´ le formalisme de Schr odinger¨ de la m ecanique´ quantique et je discute de l’approximation du champ moyen. Cette derniere` etant´ utilisee´ dans la suite de la th ese.` Je pr esente´ notamment les equations´ de Hatree et les equations´ de Hartre-Fock. Une discussion sur le traitement de l’ echange´ et des corr elations´ ainsi que sur des mod eles` plus sophistiqu es´ du type DFT/TDDFT figure egalement´ dans cette partie. La troisi eme` partie de la th ese` est une introduction a` la formulation de Wigner de la m ecanique´ quantique ou encore appel e´ formulation de la m ecanique´ quantique dans l’espace des phases. Dans cette partie j’introduis la transformation de Weyl qui permet d’associer a` chaque op erateur´ de la m ecanique´ quantique une fonction des variables r (position) et p (impulsion) d efinit´ dans l’espace des phase. Dans ce formalisme la fonction de Wigner, not ee´ f, est la transform ee´ de Weyl de l’op erateur´ densite.´ Elle s’exprime de la mani ere` suivante: 1 N ip λ λ λ f (r, p, t ) = p dλ exp · Ψ∗ r + , t Ψ r , t , (1) ~ 3 α ~ α 2 α − 2 (2 π ) α=1 X Z ou` les quantit es´ Ψα (r, t ) correspondent aux diff erentes´ fonctions d’ondes du syst eme` d’ electrons´ en interaction et trait es´ dans l’approximation du champ moyen. La fonc- tion de Wigner ob eit´ a` l’ equation´ d’ evolution´ suivante: ∂f i~ = , f , (2) ∂t {H }⋆ ou` est la fonction dans l’espace des phases associ ee´ a` l’op erateur´ Hamiltonien H v du syst eme.` L’ equation´ (2) est appel ee´ equation´ de Wigner. L’ equation´ de Wigner est l’analogue de l’ equation´ d’ evolution´ de la matrice densit e:´ i~∂ ρ = , ρ et t H egalement´ appelee´ equation´ de Von Neumann. Le terme de droite de l’ hequation´ i pr ec´ edente´ correspond au crochet de Moyal. Ce dernier a l’avantageb de pouvoirb b s’ ecrire´ en une s erie´ de termes en puissance de ~. En particulier, le terme d’ordre zero correspond au crochet de Poisson qui est utilis e´ en m ecanique´ classique. On montre dans cette partie que dans la limite classique ( ~ 0), l’ equation´ de Wigner → (2) se r eduit´ a` l’ equation´ de Vlasov: ∂f e + v ∇f + ∇V ∇pf = 0 , (3) ∂t · m H · ou` VH est le potentiel d’Hartree qui est solution de l’ equation´ de Poisson. Cette par- tie comporte egalement´ une discussion sur l’incorporation d’un champ magn etique´ dans l’ equation´ de Wigner et du probl eme` de l’invariance de jauge. En particulier, on montre qu’il faut red efinir´ le crochet de Moyal et la fonction de Wigner afin d’avoir une equation´ de Wigner qui soit ind ependante´ de la jauge electromagn´ etique.´ FIGURE 1: Sch ema´ des differents´ mod eles` physiques decrivant´ la dy- namique d’un gaz d’ electrons´ en interaction, ainsi que les limites de validite´ des diff erents´ mod eles.` Les parametres` gC et gQ repr esentent,´ respectivement, les param etres` de couplage classiques et quantiques d’un plasma. La quatri eme` partie du chapitre 1 porte sur la construction de mod eles` fluides vi classiques et quantiques a` partir des equations´ de Vlasov et de Wigner. Les equations´ fluides decrivent´ l’ evolution´ de variables hydrodynamiques tels que la densit e´ de charge: n = fd v, la vitesse moyenne des electrons:´ j = vfd v/n ou encore le tenseur de pression: p = w w fd v (w = v u). D’un point de vue th eorique,´ les R ij i j − R equations´ cinetiques´ de Wigner/VlasovR sont equivalentes´ a` une infinit e´ d’ equations´ fluides. Afin de construire un mod ele` fluide raisonnable, il nous faut donc trouver un moyen de fermer ces equations.´ Dans cette partie, on montre que sous certaines conditions sp ecifiques´ les equations´ fluides peuvent etreˆ ferm ees´ et s’ ecrivent´ de la maniere` suivante: ∂n + ∇ (nu) = 0 , ∂t · (4) 2 2 ∂u i ~ ∇ √n 1 1 + u (∂ u ) = ∂ ∂ (P ) + ∂ V . ∂t j j i 2m2 i √n − nm j C ij m i H Dans le mod ele` fluide ci-dessus, le terme PC correspond a` la pression classique des electrons.´ Cette derni ere` peut s’exprimer de la mani ere` suivante: (3 π2)2/3 ~2 (P ) = n5/3δ , (5) C ij 5m 0 ij dans le cas d’un syst eme` d’ electrons´ compl etement` d eg´ en´ er´ es.´ La derni ere` partie du premier chapitre est une analyse des conditions de validit e´ des modeles` fluides a` travers l’ etude´ des relations de dispersion. En particulier, on compare la relation de dispersion de l’ equation´ de Wigner a` celle provenant du modele` fluide (4). La conclusion principale de ce chapitre est que les mod eles` fluides sont valides dans la limite des grandes longueurs d’onde.
Recommended publications
  • Canonical Ensemble
    ME346A Introduction to Statistical Mechanics { Wei Cai { Stanford University { Win 2011 Handout 8. Canonical Ensemble January 26, 2011 Contents Outline • In this chapter, we will establish the equilibrium statistical distribution for systems maintained at a constant temperature T , through thermal contact with a heat bath. • The resulting distribution is also called Boltzmann's distribution. • The canonical distribution also leads to definition of the partition function and an expression for Helmholtz free energy, analogous to Boltzmann's Entropy formula. • We will study energy fluctuation at constant temperature, and witness another fluctuation- dissipation theorem (FDT) and finally establish the equivalence of micro canonical ensemble and canonical ensemble in the thermodynamic limit. (We first met a mani- festation of FDT in diffusion as Einstein's relation.) Reading Assignment: Reif x6.1-6.7, x6.10 1 1 Temperature For an isolated system, with fixed N { number of particles, V { volume, E { total energy, it is most conveniently described by the microcanonical (NVE) ensemble, which is a uniform distribution between two constant energy surfaces. const E ≤ H(fq g; fp g) ≤ E + ∆E ρ (fq g; fp g) = i i (1) mc i i 0 otherwise Statistical mechanics also provides the expression for entropy S(N; V; E) = kB ln Ω. In thermodynamics, S(N; V; E) can be transformed to a more convenient form (by Legendre transform) of Helmholtz free energy A(N; V; T ), which correspond to a system with constant N; V and temperature T . Q: Does the transformation from N; V; E to N; V; T have a meaning in statistical mechanics? A: The ensemble of systems all at constant N; V; T is called the canonical NVT ensemble.
    [Show full text]
  • Magnetism, Magnetic Properties, Magnetochemistry
    Magnetism, Magnetic Properties, Magnetochemistry 1 Magnetism All matter is electronic Positive/negative charges - bound by Coulombic forces Result of electric field E between charges, electric dipole Electric and magnetic fields = the electromagnetic interaction (Oersted, Maxwell) Electric field = electric +/ charges, electric dipole Magnetic field ??No source?? No magnetic charges, N-S No magnetic monopole Magnetic field = motion of electric charges (electric current, atomic motions) Magnetic dipole – magnetic moment = i A [A m2] 2 Electromagnetic Fields 3 Magnetism Magnetic field = motion of electric charges • Macro - electric current • Micro - spin + orbital momentum Ampère 1822 Poisson model Magnetic dipole – magnetic (dipole) moment [A m2] i A 4 Ampere model Magnetism Microscopic explanation of source of magnetism = Fundamental quantum magnets Unpaired electrons = spins (Bohr 1913) Atomic building blocks (protons, neutrons and electrons = fermions) possess an intrinsic magnetic moment Relativistic quantum theory (P. Dirac 1928) SPIN (quantum property ~ rotation of charged particles) Spin (½ for all fermions) gives rise to a magnetic moment 5 Atomic Motions of Electric Charges The origins for the magnetic moment of a free atom Motions of Electric Charges: 1) The spins of the electrons S. Unpaired spins give a paramagnetic contribution. Paired spins give a diamagnetic contribution. 2) The orbital angular momentum L of the electrons about the nucleus, degenerate orbitals, paramagnetic contribution. The change in the orbital moment
    [Show full text]
  • Spin Statistics, Partition Functions and Network Entropy
    This is a repository copy of Spin Statistics, Partition Functions and Network Entropy. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/118694/ Version: Accepted Version Article: Wang, Jianjia, Wilson, Richard Charles orcid.org/0000-0001-7265-3033 and Hancock, Edwin R orcid.org/0000-0003-4496-2028 (2017) Spin Statistics, Partition Functions and Network Entropy. Journal of Complex Networks. pp. 1-25. ISSN 2051-1329 https://doi.org/10.1093/comnet/cnx017 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ IMA Journal of Complex Networks (2017)Page 1 of 25 doi:10.1093/comnet/xxx000 Spin Statistics, Partition Functions and Network Entropy JIANJIA WANG∗ Department of Computer Science,University of York, York, YO10 5DD, UK ∗[email protected] RICHARD C. WILSON Department of Computer Science,University of York, York, YO10 5DD, UK AND EDWIN R. HANCOCK Department of Computer Science,University of York, York, YO10 5DD, UK [Received on 2 May 2017] This paper explores the thermodynamic characterization of networks using the heat bath analogy when the energy states are occupied under different spin statistics, specified by a partition function.
    [Show full text]
  • Entropy: from the Boltzmann Equation to the Maxwell Boltzmann Distribution
    Entropy: From the Boltzmann equation to the Maxwell Boltzmann distribution A formula to relate entropy to probability Often it is a lot more useful to think about entropy in terms of the probability with which different states are occupied. Lets see if we can describe entropy as a function of the probability distribution between different states. N! WN particles = n1!n2!....nt! stirling (N e)N N N W = = N particles n1 n2 nt n1 n2 nt (n1 e) (n2 e) ....(nt e) n1 n2 ...nt with N pi = ni 1 W = N particles n1 n2 nt p1 p2 ...pt takeln t lnWN particles = "#ni ln pi i=1 divide N particles t lnW1particle = "# pi ln pi i=1 times k t k lnW1particle = "k# pi ln pi = S1particle i=1 and t t S = "N k p ln p = "R p ln p NA A # i # i i i=1 i=1 ! Think about how this equation behaves for a moment. If any one of the states has a probability of occurring equal to 1, then the ln pi of that state is 0 and the probability of all the other states has to be 0 (the sum over all probabilities has to be 1). So the entropy of such a system is 0. This is exactly what we would have expected. In our coin flipping case there was only one way to be all heads and the W of that configuration was 1. Also, and this is not so obvious, the maximal entropy will result if all states are equally populated (if you want to see a mathematical proof of this check out Ken Dill’s book on page 85).
    [Show full text]
  • Physical Biology
    Physical Biology Kevin Cahill Department of Physics and Astronomy University of New Mexico, Albuquerque, NM 87131 i For Ginette, Mike, Sean, Peter, Mia, James, Dylan, and Christopher Contents Preface page v 1 Atoms and Molecules 1 1.1 Atoms 1 1.2 Bonds between atoms 1 1.3 Oxidation and reduction 5 1.4 Molecules in cells 6 1.5 Sugars 6 1.6 Hydrocarbons, fatty acids, and fats 8 1.7 Nucleotides 10 1.8 Amino acids 15 1.9 Proteins 19 Exercises 20 2 Metabolism 23 2.1 Glycolysis 23 2.2 The citric-acid cycle 23 3 Molecular devices 27 3.1 Transport 27 4 Probability and statistics 28 4.1 Mean and variance 28 4.2 The binomial distribution 29 4.3 Random walks 32 4.4 Diffusion as a random walk 33 4.5 Continuous diffusion 34 4.6 The Poisson distribution 36 4.7 The gaussian distribution 37 4.8 The error function erf 39 4.9 The Maxwell-Boltzmann distribution 40 Contents iii 4.10 Characteristic functions 41 4.11 Central limit theorem 42 Exercises 45 5 Statistical Mechanics 47 5.1 Probability and the Boltzmann distribution 47 5.2 Equilibrium and the Boltzmann distribution 49 5.3 Entropy 53 5.4 Temperature and entropy 54 5.5 The partition function 55 5.6 The Helmholtz free energy 57 5.7 The Gibbs free energy 58 Exercises 59 6 Chemical Reactions 61 7 Liquids 65 7.1 Diffusion 65 7.2 Langevin's Theory of Brownian Motion 67 7.3 The Einstein-Nernst relation 71 7.4 The Poisson-Boltzmann equation 72 7.5 Reynolds number 73 7.6 Fluid mechanics 76 8 Cell structure 77 8.1 Organelles 77 8.2 Membranes 78 8.3 Membrane potentials 80 8.4 Potassium leak channels 82 8.5 The Debye-H¨uckel equation 83 8.6 The Poisson-Boltzmann equation in one dimension 87 8.7 Neurons 87 Exercises 89 9 Polymers 90 9.1 Freely jointed polymers 90 9.2 Entropic force 91 10 Mechanics 93 11 Some Experimental Methods 94 11.1 Time-dependent perturbation theory 94 11.2 FRET 96 11.3 Fluorescence 103 11.4 Some mathematics 107 iv Contents References 109 Index 111 Preface Most books on biophysics hide the physics so as to appeal to a wide audi- ence of students.
    [Show full text]
  • Chapter 6. the Ising Model on a Square Lattice
    Chapter 6. The Ising model on a square lattice 6.1 The basic Ising model The Ising model is a minimal model to capture the spontaneous emergence of macroscopic ferromagnetism from the interaction of individual microscopic magnetic dipole moments. Consider a two-dimensional system of spin 1=2 magnetic dipoles arrayed on a square L L lattice. At each lattice point .i; j /, the dipole can assume only one of two spin states, i;j 1. The dipoles interact with an externally applied constant magnetic field B, and the energyD˙ of a dipole interacting with the external field, Uext, is given by U .i;j / Hi;j ext D where H is a non-dimensionalized version of B. The energy of each spin (dipole) is lower when it is aligned with the external magnetic field. The dipoles also interact with their nearest neighbors. Due to quantum effects the energy of two spins in a ferromagnetic material is lower when they are aligned with each other1. As a model of this, it is assumed in the Ising model that the interaction energy for the dipole at .i; j / is given by Uint.i;j / Ji;j .i 1;j i 1;j i;j 1 i;j 1/ D C C C C C where J is a non-dimensionalized coupling strength. Summing over all sites, we get the total energy for a configuration given by E L L J L L U./ H i;j i;j .i 1;j i 1;j i;j 1 i;j 1/: E D 2 C C C C C i 1 j 1 i 1 j 1 XD XD XD XD The second sum is divided by two to account for each interaction being counted twice.
    [Show full text]
  • Lecture 7: Ensembles
    Matthew Schwartz Statistical Mechanics, Spring 2019 Lecture 7: Ensembles 1 Introduction In statistical mechanics, we study the possible microstates of a system. We never know exactly which microstate the system is in. Nor do we care. We are interested only in the behavior of a system based on the possible microstates it could be, that share some macroscopic proporty (like volume V ; energy E, or number of particles N). The possible microstates a system could be in are known as the ensemble of states for a system. There are dierent kinds of ensembles. So far, we have been counting microstates with a xed number of particles N and a xed total energy E. We dened as the total number microstates for a system. That is (E; V ; N) = 1 (1) microstatesk withsaXmeN ;V ;E Then S = kBln is the entropy, and all other thermodynamic quantities follow from S. For an isolated system with N xed and E xed the ensemble is known as the microcanonical 1 @S ensemble. In the microcanonical ensemble, the temperature is a derived quantity, with T = @E . So far, we have only been using the microcanonical ensemble. 1 3 N For example, a gas of identical monatomic particles has (E; V ; N) V NE 2 . From this N! we computed the entropy S = kBln which at large N reduces to the Sackur-Tetrode formula. 1 @S 3 NkB 3 The temperature is T = @E = 2 E so that E = 2 NkBT . Also in the microcanonical ensemble we observed that the number of states for which the energy of one degree of freedom is xed to "i is (E "i) "i/k T (E " ).
    [Show full text]
  • Section 2 Introduction to Statistical Mechanics
    Section 2 Introduction to Statistical Mechanics 2.1 Introducing entropy 2.1.1 Boltzmann’s formula A very important thermodynamic concept is that of entropy S. Entropy is a function of state, like the internal energy. It measures the relative degree of order (as opposed to disorder) of the system when in this state. An understanding of the meaning of entropy thus requires some appreciation of the way systems can be described microscopically. This connection between thermodynamics and statistical mechanics is enshrined in the formula due to Boltzmann and Planck: S = k ln Ω where Ω is the number of microstates accessible to the system (the meaning of that phrase to be explained). We will first try to explain what a microstate is and how we count them. This leads to a statement of the second law of thermodynamics, which as we shall see has to do with maximising the entropy of an isolated system. As a thermodynamic function of state, entropy is easy to understand. Entropy changes of a system are intimately connected with heat flow into it. In an infinitesimal reversible process dQ = TdS; the heat flowing into the system is the product of the increment in entropy and the temperature. Thus while heat is not a function of state entropy is. 2.2 The spin 1/2 paramagnet as a model system Here we introduce the concepts of microstate, distribution, average distribution and the relationship to entropy using a model system. This treatment is intended to complement that of Guenault (chapter 1) which is very clear and which you must read.
    [Show full text]
  • From Kadanoff-Baym Dynamics to Off-Shell Parton Transport
    EPJ manuscript No. (will be inserted by the editor) From Kadanoff-Baym dynamics to off-shell parton transport W. Cassing1,a Institut f¨ur Theoretische Physik, Universit¨at Giessen, 35392 Giessen, Germany Abstract. The description of strongly interacting quantum fields is based on two- particle irreducible (2PI) approaches that allow for a consistent treatment of quan- tum systems out-of-equilibrium as well as in thermal equilibrium. As a theoret- ical test case the quantum time evolution of Φ4-field theory in 2+1 space-time dimensions is investigated numerically for out-of-equilibrium initial conditions on the basis of the Kadanoff-Baym-equations including the tadpole and sunset self energies. In particular we address the dynamics of the spectral (‘off-shell’) distributions of the excited quantum modes and the different phases in the ap- proach to equilibrium described by Kubo-Martin-Schwinger relations for thermal equilibrium states. A detailed comparison of the full quantum dynamics to ap- proximate schemes like that of a standard kinetic (on-shell) Boltzmann equation is performed. We find that far off-shell 1 3 processes are responsible for chem- ical equilibration, which is not included↔ in the Boltzmann limit. Furthermore, we derive generalized transport equations for the same theory in a first order gradient expansion in phase space thus explicitly retaining the off-shell dynam- ics as inherent in the time-dependent spectral functions. The solutions of these equations compare very well with the exact solutions of the full Kadanoff-Baym equations with respect to the occupation numbers of the individual modes, the spectral evolution as well as the chemical equilibration process.
    [Show full text]
  • Town of Westerly Complete Probate Estate Listing
    Town of Westerly Complete Probate Estate Listing Name of Estate Estate Petition For Date Opened Date Closed AALUND, THOMAS 16-117 Will/waived 09-27-2016 ABATE, FRANK 04-26A Voluntary Informal Executor 03-02-2004 03-17-2004 ABATE JR., JOSEPH T. 16-63A Voluntary Informal Administration 05-12-2016 05-18-2016 ABATE, SANDRA LEE 09-147C Name Change 12-02-2009 01-06-2010 ABBRUZZESE, CHARLES N. 09-145 Will/waived 11-30-2009 08-04-2010 ABERLE, EVELYN M. 08-63 Will/waived 05-15-2008 ABOSSO, ANTOINETTE C. 02-116 Will/adv 10-10-2002 08-06-2003 ABOSSO, DOMENIC J. 98-46 Will/waived 05-06-1998 03-17-1999 ABOSSO, DORIS M. 19-160A Voluntary Informal Executor 11-19-2019 12-04-2019 ABRUZZESE, ANTHONY C. 05-44A Will W/o Probate 04-25-2005 04-27-2005 ABRUZZESE, CHARLES H. 98-18 Will/waived 02-12-1998 05-19-2004 ABRUZZESE, MARY M. 21-26A Voluntary Informal Executor 02-12-2021 03-03-2021 ABRUZZESE, RALPH P. 18-63A Will W/o Probate 05-23-2018 05-23-2018 ACHILLES, HENRY LA 96-89 Will/adv 10-15-1996 06-17-1998 ACHILLES, VIRGINIA G. 04-163 Will/waived 12-28-2004 ACKERMAN, GRACE A. 99-05A Voluntary Informal Administration 02-26-1999 03-10-1999 ADAMO, PAT J. 09-86 Will/waived 07-20-2009 05-19-2010 ADAMO, VIOLET 05-33 Will/adv 04-07-2005 03-15-2006 ADAMS, ERIKAH LYN 20-29G Minor Guardianship 02-18-2020 ADAMS, FRANCES C.
    [Show full text]
  • Beyond the Boltzmann Distribution
    Beyond the Boltzmann factor for corrections to scaling in ferromagnetic materials and critical fluids Ralph V. Chamberlin and Josh V. Vermaas, Department of Physics, Arizona State University, Tempe AZ 85287-1504 George H. Wolf, Department of Chemistry and Biochemistry, Arizona State University, Tempe AZ 85287-1604 Abstract The Boltzmann factor comes from the linear change in entropy of an infinite heat bath during a local fluctuation; small systems have significant nonlinear terms. We present theoretical arguments, experimental data, and Monte-Carlo simulations indicating that nonlinear terms may also occur when a particle interacts directly with a finite number of neighboring particles, forming a local region that fluctuates independent of the infinite bath. A possible mechanism comes from the net force necessary to change the state of a particle while conserving local momentum. These finite-sized local regions yield nonlinear fluctuation constraints, beyond the Boltzmann factor. One such fluctuation constraint applied to simulations of the Ising model lowers the energy, makes the entropy extensive, and greatly improves agreement with the corrections to scaling measured in ferromagnetic materials and critical fluids. PACS numbers: 64.60.an, 64.60.F–, 64.60.De, 75.40.Mg Keywords: Ising model; phase transitions; corrections to scaling; nanothermodynamics; Boltzmann factor; Onsager relations; heterogeneous dynamics 1 The Boltzmann factor is the most widely used formula in statistical thermodynamics, providing the foundation for the Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac distributions. The Boltzmann factor comes from the linear change in entropy with changing energy of an infinite heat bath; small systems have nonlinear terms that influence their behavior.
    [Show full text]
  • Iwce 2012 Program
    IWCE 2012 PROGRAM Registration Monday: 8:00-1:00 Engineering Hall Lobby Tuesday: 3:00-5:00 Engineering Hall Lobby 5:30-7:30 Union South, Varsity Lounge Wednesday: 8:00-1:00 Engineering Hall Lobby Technical program will be held in 1800 Engineering Hall. Breaks and lunch will be held in Engineering Hall Lobby. Reception will be held on Tuesday, May 22, 6-9 pm in Union South Pavilion. In case of inclement weather, it will move to Union South Varsity Hall III. See maps in the back of the book. Poster session will be held on Wednesday, May 23, 6-9 pm. in Engineering Centers Building Lobby. Refreshments and hors d'oeuvres will be served. Banquet and Best Student Paper Award Ceremony will be held on Thursday, May 24, 6-9 pm, in Union South, Varsity Hall II and III. Maps of Engineering Hall 1st floor, Union South (where the reception and banquet will be held) and the campus vicinity of Engineering Hall (with relevant buildings such as Union South and Engineering Centers Building) are in the back of this book. TUESDAY, MAY 22 4:00-6:00 Meeting of the Editorial Board of the Journal of Computational Electronics 4610 Engineering Hall 6:00-9:00 Reception and registration (drinks and hors d'oeuvres) Union South Pavilion (in case of rain, moving to Varsity Hall III) IWCE 2012 May 22-25, 2012 WEDNESDAY, MAY 23 W0 PLENARY SESSION Chair: Wolfgang Porod 8:00-8:15 Welcome and Opening Remarks 8:15-9:00 Plenary talk Computational Electronics—Past, Present, and Future D.
    [Show full text]